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Abstract—During last decades, developing multi-objective On the other hand, most studies optimize these smo

evolutionary algorithms for optimization problemsash found
considerable attention. Flexible job shop schedufpiroblem, as an
important scheduling optimization problem, has fbuhis attention
too. However, most of the multi-objective algorithnthat are
developed for this problem use nonprofessional @gugres. In
another words, most of them combine their objestiaed then solve
multi-objective problem through single objectivepapaches. Of
course, except some scarce researches that useso-Based
algorithms. Therefore, in this paper, a new Pabatged algorithm
called controlled elitism non-dominated sorting g algorithm
(CENSGA) is proposed for the multi-objective FISFOFJISP). Our
considered objectives are makespan, critical machiork load, and
total work load of machines. The proposed algaoritis also
compared with one the best Pareto-based algoridirtie literature
on some multi-objective criteria, statistically.
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|. INTRODUCTION

problems, simultaneously. Many of these studiesusadl tabu
search (TS) algorithm ([5]-[6]-[7]-[8]) or genetialgorithm
(GA) ([9]-[20]-[11]) in their single objective prasing
algorithms. However, in recent years, new genematib the
meta-heuristic algorithms like variable neighborthogearch
(VNS) [12] or
algorithm [13] have been also introduced to theglsin
objective area of the FISP.

In the multi-objective literature of the integratedproach,
Kacem et al. [14] developed a localization approaah et al.
[15] proposed an algorithm, called VNPSO, in whiiS and
particle swarm optimization (PSO) algorithms arenbmed.
Gao, et al. [16] used genetic algorithm to solvdtinabjective
FJSP. Wang et al. [1] proposed a multi-objectivenegie
algorithm (MOGA) in which immune and entropy priples
are used to guide the Pareto-based optimizatiooepso It
worth to be mentioned their algorithm dominate maofsthe
famous algorithm of the literature.

As it mentioned, most of the studies of the literatare

F'—EXlBLE job shop scheduling problem (FJSP) is knowryggregated single-objective algorithms. But, regerst new

as one the most important scheduling problems ith bogeneration of the multi-objective algorithms has erbe

cases, theoretical and practical areas. During desades,
because of multi-objective nature of the real wqatdblems,
its multi-objective version, called multi-objectivé-JSP
(MOFJSP), has also found more attention. This embis a
developed version of the job shop scheduling proll&SP) in
which operation can be operated by machines frain get of
capable machines [1]. Consequently, in FJSP, thezetwo
main obstacles, including 1) assignment of the afpar to
machine and 2) sequencing of the operations. Siige
belongs to NP-Hard class of the optimization problg],

FJSP is known as a NP-Hard problem too.

In the literature, some researchers considered tie
mentioned obstacles separately and proposed ardfieral
approach. Brandimarte [2] and Barnes and Chami®rarg
two examples that used this approach in single ctibg
environment and Xia and Wu [4] is an example ofubkers of
this approach in multi-objective environment. Fostance,
Xia and Wu [4] proposed an algorithm in which SAiged for
operation sequence and PSO is used for machingnassnt
sub problem.
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introduced. These algorithms don’t convert a multfjective
problem to a single objective one [17] and are nstrength to
guide multi-objective process. Non-dominated sgriyenetic
algorithm (NSGAII) is one the most famous algorithrof
these category which was proposed by [17]. A cdlietio
based version of the NSGAII is called controlleitissh non-
dominated sorting genetic algorithm (CENSGA) [18he
major difference of the CENSGA with NSGAII is inleetion
strategy that in CENSGA all fronts participate lie tselection
through a geometric distribution.

In this paper, CENSGA is developed for the MGSF.
Then, the proposed algorithm is compared with dree ktest
MOEAs of the literature called MOGA [1]. To do sa,the
beginning, some multi-objective criteria are inwodd. Then,
by using a non-parametric statistical test, callgénn-
Whitney test, algorithms are compared on BrandienBiotary
[2].

Rest of the paper is organized as follow. Next isact
introduces MOFJSP. Section 3 explains
principles of MOEAs and our proposed algorithm. tieec4,
by introducing some multi-objective metrics, conmgzar
proposed algorithm with the literature. Finally, c8en 5
presents the conclusion and suggests some futuie wo

biogeography-based optimization (BBO)

fundamental
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[1.PROBLEM DEFINITION
In MOFJSP, as many other scheduling problems, n jobs
J(Ji,iD{LZ,...,n}) should be operated by means of m

existing machineM(Mk,kD{LZ,...,m}). In this model,
Job J;, is consisted of n; operations. For each of these

operations (O”-) a predetermined set of capable machines is

considered(Mij) . One of these capable machines should be

selected to do the operation. The processing time and start
time of operation j (Oij) of job J; onmachinek are denoted
by pjik andtjik, respectively.

Now, according to what mentioned, MOFJSP is going to
optimize some objective functions simultaneoudly. In this
paper, these objectives are maximal makespan (Cpax ) -

critical machine work load (CWL), and total work load (TWL)
of machines. In fact, MOFJSP is going to 1) assign each
operation to a suitable machine and 2) determine the sequence
of assigned operation on each machine in a way that
mentioned objectives being optimized. These objective
functions are optimized in Eq.1 to Eq.3. In these equations,

Xjik denotes an assignment decision variable and Cx denotes

complementation time of machinek . The assumptions of the
MOFRJSP are asfollows.

» Fixed and predetermined order is assumed for the
operations of each job.

» Among operations of different jobs priority restriction isn't
assumed.

 Jobs priorities are the same.

* Inthe beginning (at time 0), jobs are released and machines
are available.

» Move times between operations and setup times of machines
areignorable.

* Only one job can be processed on each machine at each
specific moment and during the process, operations can't
be broken off.

mezmax{CK|k=L...,n} @
n% m
TWL=_Z ¥y F?jkxijk k:1,2,3,...,m )
i=1j=1k=1
nf
CM:mx{_Zl_leijkxijk} k:14,2,3,....m 3
1=1)=

An example of a FJSP is shown in Tablel [13]. This
example presents a FISP with 3 jobs and 4 machines. Numbers
of the table presents processing times of operations on
different machines of their set of capable machines and symbol
‘-* shows an infeasible situation in which the operation cannot

be processed on corresponding machine.

TABLEI
AN EXAMPLE OF FJSPWITH 3 JOBS AND 4 MACHINES [13]
FJSP Processing Times
MI M2 M3 M4
011 2 - 1 6
J1 0l1,2 5 3 - 2
01,3 - 2 4 -
021 7 - - 11
J2 022 4 4 12 8
03,1 2 - 7 9
J3 03,2 3 5 8 1
03,3 4 3 - 5

I11. CONTROLLED ELITISM NON-DOMINATED SORTING GENETIC
ALGORITHM

As mentioned, Pareto-based agorithms are the most
professional approaches in which Pareto optimality is
incorporated in the selection process. In these approaches, the
optimization process is guided by considering al objective
functions ssimultaneoudly. It means that they don’'t convert a
multi-objective problem to single objective one. One of these
algorithms is CENSGA which is a developed version of the
popular NSGAII [17]. In this part of the paper operators of
this algorithm are presented. However, since this paper want to
compare CENSGA with MOGA of Wang et al. [1], most of
the CENSGA’s operator are designed like MOGA. In this way,
we can minimize the effects of different operators on the
performance of the algorithms. Therefore, different results of
the algorithms are just according to their search ability. In the
beginning, some fundamental concept of multi-objective
algorithmsis defined.

A.Fundamental concept of multi-objective algorithms
Assume a minimization model of a set of conflict

objectives f (%) = ,(X).... f(X) | subject

to,g;(X)<0,i =1,2,...,.c, X0 X (X denotes an n-dimensional
vector that can gets real, integer, or even Boolean value and
X isthe feasible region). Now, solution & dominates solution
b(a, b0 X) if:

1) fj(a) < f; (b), 0i =1,2,...m

2) OO{L2,...m:f(8) < f;(b)

Under these circumstances, a set of solutions that cannot
dominate each other is called Pareto solutions set or Pareto
front. Then, the objective isto obtain Pareto optimal front. For
obtaining Pareto optimal front two main characteristics should
be achieved [17], including 1) good convergence of the Pareto
front and 2) good diversity within the solutions of the Pareto
front.

B. Initialization
This operator of the evolutionary algorithms can have a
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great deal in improving the performance of the Ai@aristic maximum number of the allowed individuals in tif front
algorithms. As mentioned, in this paper Wang esdll] and r (<1) denotes the reduction rate.

approach is utilized. In their method, first, opgena sequence o=y 4)
vector is generated randomly. Then, two machineselected
for each operation from the set of capable machiNew, if a

randomly generated numbeRand [1[0,1]) is less than 0.8,

machine with shorter process time is chosen, otkerw
machine with longer process time is chosen.

It is also worth to be mentioned, in a populatidrsiae N,
the maximum number of individuals which is allowiedeach
i"(i =1,2,...k ) frontis calculated as (5).

1-r ja
' . n =N r ) (5
C.Encoding and decoding scheme of the chromosome ! 1-/K
As mentioned, to minimize the effect of differemtenators NSGAII CENSGA
: P Piiq Py
on the performance of the algorithms, another aindperator
of our algorithm with MOGA of Wang et al. [1] is ¢h
chromosome representation. A scheme of this repratsen is 1
shown is Fig.1. n
3 ! 2 3 1 2 3 1 N
On On On On On On On On

1 2 2 1 2 3 2 4
On On On On On O3t On O
First Job Second Job Third Job

Fig. 1 A two vectors representation for a 3 jobmathines, 8
operations FJSP [13]

Fig. 2 Selection strategy of CENSGA vs. NSGAII [17]

Considered decoding process of this paper prodactse E. Crossover operator
schedules. To do so, the decoding process startstfie left  1pjs gperator is another similar operator with MOGA
of 'Fhe operat|o_n sequence yector and for (_each o;_mra Wang et al. [1]. In their method, they proposed riowed
assigned machine is detgrmmed from maCh'ne,asgghmprecedence operation crossover (IPOX) and multipoin
vec;or. Then, ea_ch opgratlon 1S chated on the feasible preservative crossover (MPX) for operation sequereseor
available time of its assigned machine [1]. and machine assignment vector, respectively.

D. Selection method and €elitism F. Mutation operator

In single objective algorithms, generally fitnesalue or  thig gperator is the final similar operator with Keget al.’s
objective function value is used to rank the sohsi of the \ioca [1]. In this operator, swap method is used for

population.  However, in Pareto-based = multi-ObjeEtiv yneration sequence vector and machine changinge for
algorithms, domination concept is used for rankingn machine assignment vector [1].

NSGAII, for inserting dominance concept, an operatalled
fast non-dominated sorting (FNDS) is developed [TFe less ~ G. CENSGA flow chart
value of FNDS means a better rank. In fact, thierafor is Figure 3 summarizes CENSGA algorithm schematically.
used for searching the first objective of Pareteeda
algorithms which is good convergence. To searchatier
objective which is good diversity, another operatailled
crowing distance (CD) is considered in NSGAII [17]his
operator is used for solutions of the same rank estiinates
density of solutions which are laid surrounding artigular
solution. More value of CD shows a better solutidrich is
laid in a less crowded area [17]. Then, a binatynament
selection is performed according to these two dpesa
CENSGA is a developed version of the NSGAIl in whi
specific selection is done such that all frontdipgate in the
selection strategy [17]. However, better fronts éhawnore
participation and affect on the next generationsnocess is
controlled by a geometric distribution. Differenélection
strategy of CENSGA vs. NSGAII is shown in Fig.2.uatjon
4 formulates this distribution. In this equatiqq, denotes the
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Fig. 3 Flow chart of CENSGA algorithm

IV. COMPUTATIONAL EXPERIENCE

This section compares proposed algorithm with Wanhg
al.’s algorithm [1]. To do so, the impact of diféett operators
on the results of the algorithms by designing oenddic
operators similar to Wang's operators has beenmimeid. In
this way, the comparisons of the proposed algoritluith
MOGA of Wang et al. [1] will be more sensible. |hig
comparison Brandimarte’ library [2] with 10 tesbptems is
used. Algorithms are written by Matlab softwareaoRC with
4 GB RAM and 2.4 GHz CPU. Population and iteratsixe,
in all test problems, are set as 200, Pc=%85(CvasRate),
and Pm=%210(Mutation rate). In following sub-secsiai this
section, computational results of the algorithmsome multi-
objective performance metrics, are presented.

A. Performance measures

To compare proposed algorithm with the literatuvE3GA
four common metrics of multi-objective literaturerea
implemented as follows.

¢ Diversity: measures the extension of the Paretat fit8].

* Spacing: measures the standard deviation of thanties
among solutions of the Pareto front [19].

¢ Mean ideal distance (MID): measures the convergerice

Pareto fronts to a certain poiﬂ?' O)[20].
¢ Number of found solutions (NOS): measures numbeahef
Pareto solutions in Pareto optimal front.

B. Computational results

The outputs of the mentioned metrics are shownaibld 2.
Then, they metrics are evaluated statistically bgans of
Mann-Whitney test [21]. Output of this statistitast is shown
on Table 3.

Before describing the metrics, it should be notiteat for
Diversity and NOS the more value is better, while as for
Spacing andMID less value is better. Now, in a total view to
summarized results presented in last row of Tapbl@ENSGA
has a better value of tif&acing and NOS, while as MOGA
has a better value of tHeiversity and MID. The outputs of
these metrics on different test problems for eadtrim are
also shown in Fig.4.

e — 3000
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200 1 2000

150 1500
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100 4 ~f=Diversity VOGA 1000 =B=MD MOGA
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Fig. 4 Outputs of metrics on different test prokdem
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TABLE

COMPARISON OFCENSGAWITH MOGA ON MULTI-OBJECTIVE METRICS

Proposed CENSGA MOGA
Problem  nxm T Flex.
Diversity  Spacing MID NOS Diversity Spacing MID NOS
MKO1 10*6 58 2.09 20.49 4.03 175.36 9 16.03 576  69.06 4
MKO02 10*6 150  4.10 18.05 1.74 170.8 9 14.79 1.38  50.00 6
MKO3 15*8 90 3.01 85.66 20.13 1114.9 4 89.59 5.74 903.00 10
MKO04 15*8 106 1.91 35.51 5.19 364.3 10 69.74 14.16 371.00 10
MKO5 15*4 150 1.71 21.65 2.3 737.28 9 18.35 2.00 52.00 5
MKO06 1015 100  3.27 32.06 1.64 476.83 9 123.35 4Q8. 398.08 10
MKO7 20*5 225  2.83 46.91 15.44 772.7 4 53.00 4.69 705.00 7
MKO8 20*10 240 1.43 43.82 4.63 2700.8 8 121.00 75.0 2625.60 5
MKO09 20*10 240 253 110.7 11.4 2563.59 11 125.52  74.87 2457.04 9
MK10 20*15 58 2.98 63.7 4.96 2174.9 14 246.10 5.00 1946.90 18
Total value 478.55 71.46 11251.46 87 877.47 436.87  10477.68 84
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