
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:12, 2008

4227

Design Method for Knowledge Base Systems in
Education Using COKB-ONT

Nhon Do,Tuyen Trong Tran, Phan Hoai Truong

Abstract— Nowadays e-Learning is more popular, in Vietnam

especially. In e-learning, materials for studying are very important.

It is necessary to design the knowledge base systems and expert

systems which support for searching, querying, solving of

problems. The ontology, which was called Computational Object

Knowledge Base Ontology (COB-ONT), is a useful tool for

designing knowledge base systems in practice. In this paper, a

design method for knowledge base systems in education using

COKB-ONT will be presented. We also present the design of a

knowledge base system that supports studying knowledge and

solving problems in higher mathematics.

Keywords—artificial intelligence, knowledge base systems,

ontology, educational software.

I. INTRODUCTION

NOWLEDGE representation has a very important role

in designing knowledge base systems (KBS) and expert

systems, especially those for education. There are many

various models and methods for knowledge representation

which have already been suggested and applied in many

fields of science. Ontology is a new method which gives us a

modern approach for designing knowledge components of

KBS. However, practical applications of intelligent systems

expect more powerful and useful models for knowledge

representation. In this paper, we will use the ontology, which

is called Computational Object Knowledge Base Ontology
(COKB-ONT) [16], to produce an application in education

and training. The COKB-ONT was used to produce many

applications in education and training such as a program for

studying and solving problems in plane geometry presented

in [6], a system that supports studying knowledge and

solving of analytic geometry problems presented in [7], and

a knowledge base system in linear algebra, etc. These

programs must have suitable knowledge base. They not only

give human readable solutions but also present solutions as

the way teachers and students usually write them. The

COKB-ONT includes models, specification language and

deductive methods. It is the new and modern method which

is convenient for studying of users and for using by

inference engine. Besides, problems are also modeled easily

so that we can design algorithms for solving problems

automatically and propose a simple language for specifying

them. COKB-ONT is a natural and reasonable tool for

designing knowledge bases. Nowadays, the COKB-ONT is

often used to represent knowledge in different domain such

as mathematics, physics, etc. In this paper, we will present a

design method for knowledge base systems in education

using COKB-ONT. It is also presented a case study, the

design of a knowledge base system that supports studying

knowledge and solving problems in higher mathematics.

II. COMPUTATIONAL OBJECT KNOWLEDGE BASE

ONTOLOGY

There are many methods for knowledge representation

[2], [4], [9] and [14]. These methods are interested and

useful for many applications. However, they are not enough

powerful and very difficult to use for constructing knowledge

base systems in different domains of knowledge. The

Computational Object Knowledge Base Ontology (COKB-

ONT, [16]) and its models have been established from

Object-Oriented approach to represent knowledge together

with programming techniques for symbolic computation.

There have been many results and tools for Object-Oriented

methods, and some principles as well as techniques were

presented in [15]. This way also gives us a method to model

problems and to design algorithms. The models are very

useful for constructing the components and the whole

knowledge base of knowledge base systems in education.

A. Components of the COKB model
The model of computational object knowledge base

(COKB model) consists of 6 components: (C, H, R, Ops,
Funcs, Rules). The meanings of the components are as

follows:

- C is a set of concepts of computational objects (C-

Object).

- H is a set of hierarchy relation on the concepts.

- R is a set of relations on the concepts.

- Ops is a set of operators.

- Funcs is a set of functions.

- Rules is a set of rules.

Each concept in C is a class of C-objects. The structure C-

Objects can be modeled by (Attrs, F, Facts, Rules). Attrs is
a set of attributes, F is a set of equations called computation

relations, Facts is a set of properties or events of objects, and

Rules is a set of deductive rules on facts. An object also has

basic behaviors for solving problems on its attributes.

Objects are equipped abilities to solve problems such as:

1. Determines the closure of a set of attributes.

2. Executes deduction and gives answers for questions

about problems of the form: determine some

attributes from some other attributes.

3. Executes computations

4. Suggests completing the hypothesis if needed.

There are relations represent specializations between

K

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:12, 2008

4228

concepts in the set C; H represents these special relations on

C. This relation is an ordered relation on the set C, and H

can be considered as the Hasse diagram for that relation.

R is a set of other relations on C, and in case a relation r is

a binary relation it may have properties such as reflexivity,

symmetry, etc. In plane geometry and analytic geometry,

there are many such relations: relation “belongs to” of a

point and a line, relation “parallel” between two line

segments, relation “perpendicular” between two line

segments, the equality relation between triangles, etc.

The set Ops consists of operators on C. This component

represents a part of knowledge about operations on the

objects. Almost knowledge domains have a component

consisting of operators.

The set Funcs consists of functions on C-Objects.

Knowledge about functions is also a popular kind of

knowledge in almost knowledge domains in practice,

especially fields of natural sciences such as fields of

mathematics, fields of physics.

The set Rules represents for deductive rules. The rules

represent for statements, theorems, principles, formulas, and

so forth. Almost rules can be written as the form “if <facts>

then <facts>”. In the structure of a deductive rule, <facts> is

a set of facts with certain classification. Therefore, we use

deductive rules in the COKB model. Facts must be classified

so that the component Rules can be specified and processed

in the inference engine of knowledge base system or

intelligent systems.

Base on the COKB model, the knowledge base can be

organized by the following components:

1. The dictionary of concepts about kinds of objects,

attributes, operators, functions, relations and

related concepts.

2. The table of descriptions for structures and features

of objects. For example, we can request a triangle

to compute and to give us its attributes.

3. The tables for representing hierarchical relations of

concepts.

4. The tables for representing other relations of

concepts.

5. The tables for representing knowledge about

operators.

6. The tables for representing knowledge about

functions.

7. The tables of descriptions for kinds of facts. For

example, a relational fact consists of kind of the

relation and the list of objects in the relation.

8. The tables of descriptions for rules. For example, a

deductive rule consists of hypothesis part and

conclusion part. Both of them are lists of facts.

9. The lists or sets of rules.

10. The lists of problem patterns.

B. Kinds of facts in COKB model
In the COKB model there are 11 kinds of facts accepted.

These kinds of facts have been proposed from the

researching on real requirements and problems in different

domains of knowledge. The kinds of facts are as follows:

- Fact of kind 1: information about object kind.

- Fact of kind 2: a determination of an object or an

attribute of an object.

- Fact of kind 3: a determination of an object or an

attribute of an object by a value or a constant

expression.

- Fact of kind 4: equality on objects or attributes of

objects. This kind of facts is also popular, and there

are many problems related to it on the knowledge

base.

- Fact of kind 5: a dependence of an object on other

objects by a general equation.

- Fact of kind 6: a relation on objects or attributes of

the objects. In almost problems there are facts of

kind 6 such as the parallel of two lines, a line is

perpendicular to a plane, a point belongs to a line

segment.

- Fact of kind 7: a determination of a function.

- Fact of kind 8: a determination of a function by a

value or a constant expression.

- Fact of kind 9: equality between an object and a

function.

- Fact of kind 10: equality between a function and

another function.

- Fact of kind 11: a dependence of a function on

other functions or other objects by an equation.

The above models and kinds of facts can be used to

represent knowledge in practical applications. Unification

algorithms of facts were designed and used in different

applications.

C. Specification Language for COKB model
The language for the COKB model is constructed to

represent the knowledge of the form COKB model. This

language includes the following:

- A set of characters: letter, number, special letter.

- Vocabulary: keywords, names.

- Data types: basic types and structured types.

- Expressions and sentences.

- Statements.

- Syntax for specifying the components of COKB

model.

III. DESIGN METHOD

In this section, we will present a process to construct a

knowledge base system for solving some problems in higher

mathematics. Besides, techniques in each phase will be

presented also.

A. Structure of System
A system, which supports searching, querying and solving

higher mathematics problem, has the structure of an expert

system. We can design the system which consists of six

components:

- The knowledge base.

- The inference engine.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:12, 2008

4229

- The explanation component.

- The working memory.

- The knowledge manager.

- The interface.

The figure 1 below shows the structure of the system.

Fig. 1 Structure of system

The Knowledge Base contains the knowledge for solving

some problems in a specific knowledge domain.

The Inference engine will use the knowledge stored in

knowledge base to solve problems, to search or to answer for

the query. It must identify problem and use suitable

deductive strategies to find out right rules and facts for

solving the problem.

The working memory stores the facts and rules in the

process of searching and deduction.

The explanation component supports to explain the

phases, concepts in the process of solving the problem.

The knowledge manager aims to support updating

knowledge into knowledge base. It also supports to search

the knowledge and test consistence of knowledge.

The interface component of the system is required to have

a specification language for communication between the

system and learners, between the system and teachers as

well.

B. Design Technique
The process of analysis and design the components of the

systems consists of the following stages.

Stage 1: Collecting real knowledge based on COKB-ONT

model.

Stage 2: Classifying the knowledge in the Stage 1, to

analyze requirements.

Stage 3: Establishing knowledge base organization for the

system based on COKB-ONT model and its specification

language. Knowledge base can be organized by structured

text files. They include the files below.

- The file OBJECT_KINDS.txt stores names of

concepts.

- The file HIERARCHY.txt stores information of the

Hasse diagram representing for the component H of

COKB model.

- The files RELATIONS.txt and RELATIONS_DEF.txt

store the specification of relations (the component R

of COKB model).

- The file OPERATORS.txt and the file

OPERATORS_DEF.txt store the specification of

operators (the component Ops of COKB model).

- The files FUNCTIONS.txt and FUNCTIONS_DEF.txt

store the specification of functions (the component

Funcs of COKB model).

- The file FACT_KINDS.txt stores the definition of

kinds of facts.

- The file RULES.txt stores deductive rules.

- The file SOMEOBJECTS.txt stores certain objects.

Stage 4: Modeling of problems and designing algorithms.

Problems are represented using a model that is called

networks of C-Objects. It consists of three sets below.

 O = {O1, O2, . . ., On},

 F = {f1, f2, . . ., fm},

 Goal = { g1, g2, . . ., gm }.

In the above model the set O consists of n C-objects, F is

the set of facts given on the objects, and Goal consists of

goals.

The design of deductive algorithms for solving problems

and the design of interface of the system can be developed

by three steps for modeling:

Step 1: Classify problems such as problems as frames,

problems of a determination or a proof of a fact,

problems of finding objects or facts, etc…

Step 2: Classify facts and representing them based on the

kinds of facts of COKB model.

Step 3: Modeling kinds of problems from classifying in

step 1 and 2. From models of each kind, we can

construct a general model for problems, which are

given to the system for solving them.

The basic technique for designing deductive algorithms is

the unification of facts. Based on the kinds of facts and their

structures, there will be criteria for unification proposed.

Then it produces algorithms to check the unification of two

facts.

The next important work is doing research on strategies

for deduction to solve problems on computer. The most

difficult thing is modeling for experience, sensible reaction

and intuitional human to find the heuristics rules, which

were able to imitate the human thinking for solving

problems.

Stage 5: Creating a query language for the model. The

language helps to design the communication between the

system and users by words.

Stage 6: Designing the interface of software and

programming the software. Our application has been

implemented by using programming tools and computer

algebra systems such as Visual Basic.NET or C#, SQL

Server. They are very easy to use for students, to search,

query and solve automatically problems.
Stage 7: Testing, maintaining and developing the

application. This stage is similar as in other computer

systems.

User

Knowledge

Engineer

Interface

Explaining

Part

Deduction

Engine

Knowledge

Manager
Knowledge

Base

Working

Memory

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:12, 2008

4230

IV. CASE STUDY: DESIGN PARTERN – A

KNOWLEDGE BASE SYSTEM FOR QUERYING

KNOWLEDGE OF HIGHER MATHEMATICS

The software can support for searching, querying and

solving some problems in higher mathematics. The first

function of the program is "Search for Knowledge". This

function helps users to find out necessary knowledge

quickly. It can search for concepts, definitions, properties,

related theorems or formulas, and problem patterns. Users

declare some information base on a simple language. The

information can consist of objects, relations between objects

or between attributes. The program can automatically give

instructions that help them to know more about the problem.

The second function of the program is “Query for

Knowledge”. This function helps users to query knowledge

based on the query language which is a very simple

language.

Stage 1: Collecting real knowledge based o n COKB-

ONT model.

The knowledge of higher mathematics consists of the

following components.

A. Concepts:
• Numeric representation: natural numbers, integers, real

numbers, complex numbers, etc.

• Category of sets: collection, Venn diagram, set

operatoions, etc.

• Mapping: map, injection, surjection, bijection, identity

mapping, inverse mapping, etc.

• Sequence of numbers: sequence, bounded sequence,

bounded below sequence, bounded above sequence,

Cauchy’s sequence, monotone sequence, Fibonacci

sequence, pseudo random number sequence, strictly

decreasing sequence, convergent sequence of function,

convergence monotone sequence, double sequence, null

sequence, decreasing sequence, random number

sequence, strictly increasing sequence, limit of a

sequence, etc.

• Real function with one variable: function, domain of a

function, the range of a function, arithmetic function,

even function, odd function, doubly periodic function,

monotone function, polynomial, rational function,

composite function, inverse function, reversible

function, complex function, power function,

exponential, Logarithmic function, trigonometric

functions, inverse trigonometric functions, limit of a

function, one-sides limit, limit of composite function,

limit of monotone function, infinitesimal, infinitely

great, continuity of function, continuous function at one

point, one-sided continuous function, continuous

function in a range, piecewise continuous function, point

of discontinuity of function, function chart, maximum of

a function, minimum of a function, concave of function,

convexity of function, bending point of function chart,

approximations of function chart, tangent line of

function chart, etc.

• Derivation: derivation at a point, one-sided derivation at

one point, derivation in a range, derivation of inverse

function, high derivative, etc.

• Differential: differential invariant, differential at a point,

differential on a range, primary differential, advance

differential, etc.

• Initial function: complete primitive, primitive function

calculus, etc.

• Integral: integral formula, integral domain,

indeterminate integral, determinate integral, generalized

integral with infinite bound (type 1 generalized integral),

generalized integral of unbound function (type 2

generalized integral), integrate by parts, etc.

• Theory of series: series, convergent series, positive

series, negative series, alternate series, random series,

series of functions, domain of convergence of series of

functions, convergence of series of functions,

exponential series, radius of convergence of exponential

series, Taylor's series of a function f(x) at adjacent point

x0., trigonometric series, Fourier’s series, Fibonacci

series, etc.

B. List of properties: properties of series of convergence,

bounded, order, etc.

C. List of formulas: Natural limit of series, Formulas for

power function, Formulas for Logarithmic function,

Taylor formula, MacLaurin’s theorem, L’Hospital rule,

Derivation table, Cauchy-Schwarz’s inequality,

Newton-Leibnitz formula, etc.

D. List of computing method: Function exploration,

computing method of undetermined integral: analysis

method, variable method, partial method, computing

method of determined integral: analysis method,

variable method, partial method finding radius

convergence of power series, etc.

E. List of theorems: Infinitesimal and infinitely great

theorem, Continuity theorem of function: Weierstrass1

theorem, Weierstrass2 theorem, Theorem of derivation,

Mean theorem: Fermat, Rolle, Lagrange, Cauchy,

L’Hospital 1 and L’Hospital 2 Theorems for function

exploration, Theorem for initial function and integral,

Series theorem, etc.

F. Some applications of simply analytic function:
geometric meaning of derivation, application of

determinate integral, etc.

Stage 2: Classifying the k n o w l e d g e in the Stage 1, to

analyze requirements.

• Basic concept: numeric representation, collection.

• Concepts are constructed from other concepts. For

example: Map: collection; Function: map; Limit of

series: series; Limit of function: function, limit of series;

Chart of function: function, point; Derivation: function,

limit of function; derivatives of higher order: derivation;

Differential: function, derivation; Initial function:

function, derivation; Integral: function, initial function;

Series: array of number; Positive series: series;

Alternative series: series; Series of functions: series,

functions; Power series: series of functions; etc.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:12, 2008

4231

• Concepts are inherited from other concepts. For

example: Injection: map; Surjection: map; bijection:

map; Identity mapping: map; Function: map; etc.

• Attribute of concept. For example: Collection: number

of element; Function: domain of determinacy, range of

values; Chart of function: approximation, bend point;

Power series: interval of convergence, radius of

convergence; etc.

• Property of concept. For example: Collection: infinity,

finite, empty; Series: ascending, descending,

convergence, divergence; Function: ascending,

descending, even, odd, convex, concave; etc.

• Operations on concepts. For example: arithmetic

operations, collection operations, etc.

• Computing for functions. For example: limit of series,

limit of function, inverse function, continuity of

function, derivation, differential, initial function,

integral, etc.

Stage 3: Establishing knowledge base organization for the

system based on COKB-ONT model and specification

language. Knowledge base can be organized by structured

text files. They include the files below.

- The file OBJECT_KINDS.txt stores names of concepts.
begin_Objects
 <object name >
 <object name>

...
end_Objects

Example:
begin_Objects

COLLECTION
MAP

SERIES

FUNCTION
DERIVATION

INITIAL_FUNCTION
...

end_Objects
- The file HIERARCHY.txt stores the Hasse diagram

representing for the component H of COKB model.
begin_Hierarchy

[<high-order object>, <low-grade object>]

[<high-order object>, <low-grade object>]

...
end_Hierarchy

Example:
begin_Hierarchy

INJECTION, MAP

SURJECTION, MAP

BIJECTION, MAP
IDENTITY_MAPPING, MAP

POWER_FUNCTION, FUNCTION

EXPONENTIAL, FUNCTION
LOGARIT_FUNCTION, FUNCTION

POSITIVE_SERIES, SERIES

FUNCTIONS_SERIES, SERIES

...
end_Hierarchy

- The files RELATIONS.txt and RELATIONS_DEF.txt

store the specification of relations (the component R of

COKB model).
begin_Relations

[<relation name>,<object 1>,<object 2>],{<behavior>,< behavior >,...}
[<relation name>,<object 1>,<object 2>],{<behavior>,< behavior >,...}

 ...

end_Relations
Example:
begin_Relations
[CONSTRUCTION, COLLECTION, MAP],{}

[CONSTRUCTION, COLLECTION, FUNCTION],{}
[INHERITANCE, INJECTION, MAP],{}

[INHERITANCE, SURJECTION, MAP],{}

[INHERITANCE, BIJECTION, MAP],{}
[INHERITANCE, SERIES, ARRAY],{CONVERGENCE, DIVERGENCE}

[INHERITANCE, FUNCTION_POWER, FUNCTION],{ODD_EVEN}

...

end_Relations
- The files OPERATORS.txt and OPERATORS_DEF.txt

store the specification of operators (the component Ops

of COKB model).
begin_object: <Object name>

 begin_variables
 <attribute 1>
 <attribute 2>

 ...
end_ variables

 begin_contains
 <path to file which stores object content>

 end_contains
end_object

Example:
COLLECTION.txt:

begin_object: COLLECTION
begin_variables:
 n: NUMBER_OF_ITEM
 A: ARRAY#LIST_OF_ITEM

end_variables
begin_contains

\Contains_Object\COLLECTION

end_contains
end_object

MAP.txt:
begin_object: MAP
begin_variables:
 X: COLLECTION_SOURCE

 Y: COLLECTION_DESTINATION

end_variables
begin_contains
 \Contains_Object\MAP

end_contains
end_object

....

- The files FUNCTIONS.txt and FUNCTIONS_DEF.txt

store the specification of functions (the component Funcs

of COKB model).
Begin_Functions
Begin_Function <name of function>([<list of arguments>])
 <argument>:<kind>

 Return <variable result>:<kind>

 Begin_description
 <path to the file which describes function>

 End_description
 End_Function
Begin_Function <name of function>([<list of arguments>])

 <argument>:<kind>

 Return <variable result>:<kind>

 Begin_description
 <path to the file which describes function>

 End_description
End_Function

 ...
End_Functions
Example:
Begin_Functions
 Begin_Function INVERSE_FUNCTION(y)
 y: FUNCTION

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:12, 2008

4232

 Return f: FUNCTION #f is the inverse function of y

 Begin_description
 \Contains_Object\INVERSE_FUNCTION

 End_description
 End_Function
 Begin_Function LIMIT_OF_ARRAY(d)
 d: ARRAY

 Return a: REAL

 Begin_description
 \Contains_Object\ LIMIT_OF_ARRAY

 End_description
 End_Function
 etc.
End_Functions
- The file FACT_KINDS.txt stores the definition of kinds

of facts.
Begin_Methods
 Begin_Method < name of method>

 Begin_description
 <path to the file which describes method>

 End_description
 End_Method
 Begin_Method <name of method>

 Begin_description
 <path to the file which describes method>

 End_description
 End_Method
 ...
End_Methods
Example:

Begin_Methods
Begin_Method INDETERMINATE_FORM_ELIMINATION
Begin_description
 \Contains_Object\

INDETERMINATE_FORM_ELIMINATION

End_description
End_Method
Begin_Method FUNCTION_EXPLORATION_PROCESS
Begin_description
 \Contains_Object\ FUNCTION_EXPLORATION_PROCESS

End_description
End_Method
...

End_Methods
- The file RULES.txt stores deductive rules.

Begin_Rules
 Begin_Rule <Rule name>:<kind of rule>

 Variables:
 <object>:<kind>

 <object>:<kind>

 ...
 Begin_description
 < path to the file which describes rules>

 End_description
 Goal:
 <result of using rule>

 End_Goal
 End_Rule
 Begin_Rule <Rule name>:<kind of rule>

 Variables:
 <object>:<kind>

 <object>:<kind>

 ...
 Begin_description
 < path to the file which describes rules>

 End_description
 Goal:
 <result of using rule>

 End_Goal
 End_Rule
 ...
End_Rules

- The file SOMEOBJECTS.txt stores certain objects.

Stage 4: Modeling for problems and designing

algorithms. Problems are represented using a model that is

called networks of C-Objects.
The design of deductive algorithms for solving

problems and the design of interface of the system can

be developed by three steps for modeling:

Step 1: Classify problems such as problems as

frames, problems of a determination or a proof of a

fact, problems of finding objects or facts, etc.

Step 2: Classify facts and representing them based

on the kinds of facts of COKB model.

Step 3: Modeling kinds of problems from

classifying in step 1 and 2. From models of each

kind, we can construct a general model for

problems, which are given to the system for solving

them.

The basic technique for designing deductive algorithms

is the unification of facts. Based on the kinds of facts

and their structures, there will be criteria for unification

proposed. Then it produces algorithms to check the

unification of two facts.

The next important work is doing research on strategies

for deduction to solve problems on computer. The most

difficult thing is modeling for experience, sensible

reaction and intuitional human to find the heuristics

rules, which were able to imitate the human thinking

for solving problems.

Stage 5: Creating a query language for the COKB-ONT.

There are eight of simple query kinds and one of combine

query kind:

• Kind 1: ?concepts|define <concept>

Example:
 ?concepts COLLECTION

 ?define FUNCTION

• Kind 2: ?attributes <concept>
Example: ?attributes COLLECTION

• Kind 3: ?properties <concept>
Example: ?properties CONVERGENCE_ARRAY

• Kind 4: ?formula <concept>
Example: ?formula LIMIT_OF_ARRAY

• Kind 5:
a)?theorems <concept>

Example: ?theorems DERIVATE

b) ?theorems <concept1, concept2,...>

Example: ?theorems FUNCTION, DERIVATE

c) ?content <name of theorem>

Example: ?content WEIERSTRASS_THEOREM

• Kind 6: ?methods <concept>
Example: ?methods LIMIT_OF_FUNCTION

• Kind 7: ? concepts_related <concept>
Example: ? concept_object FUNCTION

� Kind 8: querying of many kind (kind 2 to kind 7)

q → kind 1..7

kind 8 → q1 and q2

 | kind 81 and kind 82

Example:

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:12, 2008

4233

 (? define LIMIT_OF_FUNCTION) and

 (? properties LIMIT_OF_FUNCTION)

Annotation: All of concepts which is queried by

using kinds of the query sentences, are in

Objects.txt.
Stage 6: Designing the interface of software and

programming the software. Our application has been

implemented by using programming tools and computer

algebra systems such as Visual Basic.NET or C#, SQL

Server. They are very easy to use for students, to search,

query and solve automatically problems.
Stage 7: Testing, maintaining and developing the

application. This stage is similar as in other computer

systems.

V. CONCLUSION

The design method using COKB-ONT provided a natural

way for representing knowledge for a class of knowledge

base systems in education. We have designed the intelligent

educational software for e-learning. Main functions of the

software support for searching, querying and solving the

problems in higher mathematics. Certainly, this design

method can be used for applications in different domains of

knowledge.

REFERENCES
[1] L. Stojanovic, J. Schneider, A. Maedche, S. Libischer, R. Suder, T.

Lumpp, A. Abecker, G. Breiter, J. Dinger, The Role of Ontologies in

Autonomic Computing Systems, TBM Systems Journal, Vol 43, No 3,
2004.

[2] Stuart Russell & Peter Norvig, Artificial Intelligence – A modern
approach (second edition), Prentice Hall, 2003.

[3] John F. Sowa. Knowledge Representation: Logical, Philosophical and
Computational Foundations, Brooks/Cole, 2000.

[4] George F. Luger & William A Stubblefield, Artificial Intelligence,
Addison Wesley Longman, Inc. 1998.

[5] Gruber, T. R., Toward Principles for the Design of Ontologies Used
for Knowledge Sharing. International Journal Human-Computer
Studies, 43(5-6):907-928, 1995.

[6] Do Van Nhon, A Program for studying and Solving of problems in

Plane Geometry, Proceedings of International Conference on Artificial

Intelligence 2000, Las Vegas, USA, 2000, pp. 1441-1447.
[7] Do Van Nhon, A system that supports studying knowledge and solving

of analytic geometry problems, 16th World Computer Congress 2000,

Proceedings of Conference on Education Uses of Information and
Communication Technologies, Beijing, China, 2000, pp. 236-239.

[8] Asunción Gómez-Pérez & Mariano Férnandez-López & Oscar Corcho,

Ontological Engineering. Springer-Verlag, 2004.
[9] Chitta Baral, Knowledge Representation, Reasoning and Declarative

Problem Solving, Cambridge University Press, 2003.

[10] Guarino, N. Formal Ontology, Conceptual Analysis and Knowledge
Representation, International Journal of Human-Computer Studies,

43(5-6):625–640, 1995.

[11] Wen-tsun Wu, Mechanical Theorem Proving in Geometries. Springer-
Verlag, 1994.

[12] Chou, S.C. & Gao, X.S. & Zhang, J.Z. Machine Proofs in Geometry.
Singapore: Utopia Press, 1994.

[13] Pfalzgraf, J. & Wang, D. Automated Practical Reasoning. New

York: Springer-Verlag, 1995.

[14] Lakemeyer, G. & Nebel, B. Foundations of Knowledge representation
and Reasoning. Berlin Heidelberg: Springer-Verlag, 1994.

[15] Berge, J.M. & Levia, O. & Rouillard, J. Object-Oriented Modeling.
Netherlands: Kluwer Academic Publishers, 1996.

[16] Nhon Do, An ontology for knowledge representation And Applications.
Waset, International Conference on Data, Information and Knowledge

Management, Singapore, 2008.

Nhon Do is currently a senior lecturer in the faculty of Computer Science at
the University of Information Technology, Ho Chi Minh City, Vietnam. He

got his M.Sc. and Ph.D. in 1996 and 2002 respectively, from The University

of Natural Sciences – National University of Ho Chi Minh City. His
research interests include Artificial Intelligence, computer science, and their

practical applications, especially intelligent systems and knowledge base

systems.
 Tuyen Trong Tran is currently a senior lecturer in the faculty of

Information Technology at the Binh Duong University, Binh Duong

Province, Vietnam. He got his M.Sc. in 2003 from The University of
Natural Sciences – Viet Nam National University of Ho Chi Minh City.

His research interests include Computer science, Management Information

System.
Phan Hoai Truong is currently a senior lecturer in the faculty of

Economics and Law at the Vietnam University of Ho chi minh city. He got

his M.Sc. in 2002 from The University of Natural Sciences – Viet Nam
National University of Ho Chi Minh City. His research interests include

Computer science, Management Information System.

