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Abstract—In this study the integration of an absorption heat

pump (AHP) with the concentration section of anustdal pulp and
paper process is investigated using pinch techgoldge optimum
design of the proposed water-lithium bromide AHRhisn achieved
by minimizing the total annual cost. A compreheasiptimization is
carried out by relaxation of all stream pressudras well as heat
exchanger areas involving in AHP structure. It l®wn that by
applying genetic algorithm optimizer, the total aahcost of the
proposed AHP is decreased by 18% compared to audted from
simulation.

Il. AHP INTEGRATION WITH KRAFT INDUSTRY

A.Kraft Process — Case Study

The Kraft process is a chemical process in whiehgaper
pulp is produced by wood chips in a digester using
delignification liquor. Paper pulp is an importasdurce for
producing many kinds of paper products [16]. The
delignification liguor decomposes lignin and sepesathe
cellulosic fibers. The spent delignification liqudBlack
liquor) contains valuable chemical materials thauld be

Keywords—Absorption Heat Pump, Genetic Algorithm, Kraft recovered. Moreover, the residual wood materialglccdoe

Industry, Pinch Technology

|. INTRODUCTION

burnt to utilize of its energy content [17]. To neathe liquor
combustible, its solid content must be increasesthe black
liquor concentration section is sometimes the tsglemergy

HE pulp and paper industry is a very large energgonsumer in Pulp and paper mill, this section oflmmian

consumer industry, in the form of heating and aapli
energy to dry liquor in evaporation section andntaintain
critical streams blow temperature limits, respeagiv[1].
More recently, the advanced energy conversion tolies
such as absorption heat pump (AHP) and tri-germratire
used to improve energy efficiency [2], [3]. Theliatition of
AHPs for heat upgrading in pulp and paper indubrtg been
investigated [4]. Also, modeling, design and camgion of a
lithium bromide water absorption cycle has beerestigated
[5], [6] with shell and tube heat exchangers whaca widely
used in industry [7]. Optimum design of a shell anle heat
exchanger has been studied in many works [8], T9]e
geometry of shell and tube heat exchangers for mihmg
their cost has been optimized by several methd@sdenetic
algorithm (GA) [10]-[13]. However, the optimizationethods
are mainly carried out for single phase flow heathangers
and optimum design of them with presence of phasage,
like their application in refrigeration systems ameht pumps
has received less attention. The design and ogtioiz of a
shell and tube heat exchanger with phase change shell
and tube condenser has been investigated in some \Wid ],
[14]. [15].
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pulp and paper mill is considered for efficiencypimvement.
The black liquor (BL) coming from the washing seatihas
about 6.8% solids content. To prepare the liqudpadburnt,
its solid content is increased to 53% in a fivesefffalling
film evaporator. Table | shows the stream datahaf BL
concentration section. Using pinch technology todlse
minimum heating and cooling requirements for
concentration section is obtained as 15.2 and MY,
respectively.

the

TABLE |
STREAM DATA FOR CONCENTRATION SECTION

Tin (°C)  Tout(°C) Q (MW)
effectl BL 93.5 99.7 0.24
BLev 99.7 99.7 15
effect2 BL 86 935 0.5
BLev 93.5 935 145
Heating
demand  effect3 BL 69.1 86 1.4
BLev 86 86 13
effect4 BL 45.8 69.1 2.4
BLev 69.1 69.1 10.6
effectd BLev 45.8 45.8 10.6
vapl to effect2 99.6 99.6 15
Cooling vap?2 to effect3 935 935 145
demand vap3 to effect4 86 86 13
vap4 to effect5 69.1 69.1 10.6
vap5 to condenser 45.8 45.8 17.3
Cold fresh water 31 44.8 17.2
utility
Hot fresh steam 188.0 188.0 15.2
utility

BL= Black Liquor, ev: evaporation
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B.AHP— Scheme Proposal

In our previous work a single effect water-lithilbromide
AHP was designed to upgrade low temperature hedhen
concentration section [18]. A schematic diagranthef AHP
with its five heat exchangers is given in Fig. ticdnsists of a
generator, a condenser, an evaporator, an absarimra
solution heat exchanger (SHX).

Moreover, there is a steam turbine in the mill vhic
produces power and delivers steam at a lower preshat it
can be used to drive the generator of an AHP. Tiletosteam
of the steam turbine supplies the heat of gener@@. A
low-temperature process stream supplies the hest alu
evaporator and the useful heat is released viaerwst, QC,
and the absorber, QA, in which QC+QA is more th& Q
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Fig. 2 Integration of a proposed AHP with the Blncentration

section

Q

The Grand Composite Curve can be used in this work
select a hot stream below the pinch point to sufidyenergy
demand of the evaporator and a cold stream abagittth
point to receive the heat duties released fromctiredenser
and absorber, as it can be seen in Fig. 2. Aftentification
the source and sink, the phase equilibrium diagsaosed to
determine the temperature of evaporator, condeabsqrber
and generator of AHP [1]. Therefore, by applying thHP,
the net heating and cooling demand in the concéotra
section is reduced.

From the simulation of the AHP by Aspen plus sofevi
was found that 17.6 ton/hr of Medium Pressure stésif)
discharging from steam turbine is used to suppiygénerator
load, QG (9.2 MW). The total amount of useful h&E+QA
is 15.2 MW and evaporator duty, QE is 5.9MW. The
simulation of the AHP with Aspen Plus software ®wn in
Fig. 3.

]

Fig. 3 Simulation of the proposed AHP

As it described the AHP is considered to supplh2 19W
of heating demand of concentration section, from it
condenser and absorber and also reducing coolingaule of
this section by its evaporator. Our purpose ispbnuze the
AHP heat exchangers design, with regard to itsigardtion
as well as producing 15.2 MW heating energy andBo
cooling energy at desired temperatures. Some unknow
temperatures and duties are obtained again frommizattion.
All heat exchangers are considered to be shelltabe heat
exchangers.

I1l. OBJECTIVEFUNCTION

There is a trade-off between required heat trarsfieiace
area and pressure drop of streams in design ofeixehangers
involved in AHP. Therefore, the following cost coomgnts
should be considered in heat exchanger optimizakiost, the
annualized capital cost of the heat exchanger, rfBeampital
cost and operating cost of pumps (for liquid streaand the
capital cost and operating cost of compressors (fas
streams).

The total cost as the objective function includesstment
cost (IC) and operating cost (OC) [19]:

i(i+1)"

TAC =IC+AF +0C, AF = 1)

Where AF,i andn are annual factor, annual interest rate and
heat exchanger lifetime, respectively.
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The investment cost includes the capital cost oathe The overall heat transfer coefficient can be exgrddy the
exchangers@,x) and required pump<€g,m) and compressors general equation:

(Ccomp, Which are calculated as follows [20]:

Cyx = ay + a,A%

)

CPump = bl + b2 (mFAP)bz 3)(

CComp =0+ (m?AP)Cg'

(4)

Wherea;, b;, ¢; are relative constantd, AP, m’, p are heat
exchange surface area, pressure drop of streanss fioav
rate and density of streams, respectively.

The operating cost is related to power consumpbgn
pump and compressor to drive fluids for shell (g and
tube side K,) [21]:

__ (EstEt)XopXec
1000

oc (5)

Whereop is the annual operating time aed is electricity
cost. The power is computed from below equatioreneh is
the pump or compressor efficiency:

APmM’
E —

pn

(6)

Also the power required for driving two-phase fl¢#,) is
related to two-phase pressure dropiPf) and can be
computed by Equation 7 [11]:

_ APpym’(pg+pp)

E
tp 2npgpn

()

d
do ln(d_(-)) do (1
i R -1
2kyy + d; (ht + Rt))

U= (his + Ry + 9)
Where hy and h, are heat transfer coefficients of shell and
tube sides, and®, and R, are fouling resistances for these
sides.d,, d; and k,, are tube outside diameter, tube inside
diameter and wall thermal conductivity.

The heat transfer rate can also be computed framht
side or cold side in following two ways:

Q= mocp(Ti - To) (10)

Q =m’hy (12)
Where the equation 10 is related to sensible haasfer and
the equation 11 is related to latent heat trangfieheat
exchanger sides [224,, is heat capacityy,4is latent heat and
T;, T, are inlet and outlet temperatures of streams.

B.Tube Side Heat Transfer Coefficient and Pressuim@pDr
in Single Phase Flow

The film heat transfer coefficient for tube side)(ban be
calculated as follows [23]:

Nu = 0.023Re*Pro33 (=)0 1+ (12)

WhereNu, Re, Pr are Nusselt number, Reynolds number and
Prandtl number. Equation12 can be re-arrangedv& gi

he = 0.023() (58 Pros uos (13)

pg and pyare the density of gas and liquid streamsynerek, 4, u, 1y are conductivity, dynamic viscosity, velocity

respectively.

Here, we aim to minimize the total cost of the m%gd
AHP by varying the heat exchangers geometry. Thoengéry
of heat exchangers has a strong effect on the lbvesat
transfer coefficient and pressure drops and comisety on
the total cost. Therefore, first we have to defihe required
equations for heat transfer coefficients and pmesdtops as a
function of design variables.

As there are phase changes in AHP heat exchangers,

have to consider two-phase heat exchanger equat®ngell
as single phase equations in the optimization phoee

IV. HEAT TRANSFER ANDPRESSUREDROPCALCULATIONS

A.Heat Transfer Rate

The heat transfer rat@) between the shell and tube fluids

can be determined from the following basic equation

Q = UAFAT,, 8)
WhereU is the overall heat transfer coefficient akii,,,is

log mean temperature difference. The correctionofakE is

used when the number of tube passes is more than 1.

of tube fluid and wall dynamic viscosity, respeetiu
The pressure drop through a single tube is giverthigy
fanning equation:

AP = 2f()pu? (14)
| is tube length andf is friction factor given by following
equation:
f = 0.046 Re~*2 (15)
The velocity of a fluid through a single tube ifuaction of
volumetric flowrate ¥) and the number of tubeX

=2 (16)

- Nn'di2
And the surface of the heat exchanger is calculayed

A =Nnd,l 17)
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~ C.Shell Side Heat Transfer Coefficient and PressunepD = (1__x)o.9 (p_g)o.s (501 (29)

in Single Phase Flow t x 1 Ky
Kern’s formulation is used for computing shell sideat ) o ]

transfer coefficient and pressure drop. Accordingkern’s Wherex,, is Lockart-Martinelli parameter, C is a constamd a

correlation we consider the assumption that thélebatit is X IS mass quality. By an integral over the massiguehange,
25% [24]: the mean value for heat transfer coefficient canttained:

hyp rx: _p AP
hy = 0.36(;) (Re) S5 Pro33 (o014 (18) heo =32 f (A=) (D" dx (30)
¢ " The subscriptlo refers to total flow with liquid phase

Whered, is tube bundle equivalent diameter. The pressuRfoperties.
drop is given by: For calculating overall pressure drop, Chisholngsiaion
can also be integrated over the mass quality change
Ds(Np+1)

AP = 05f(d—e)pu2 (19) X . c 1
With: APy = APy [72(1 = x)27 (1+ —t x_%t) .dx (31)
f =179 Re™ %1 (20) Which hy, andAP,, can be determined directly by using single

phase equations for tube side which were desciibpdrt B.
Where D, and N, are shell diameter and number of baffles.

. E.Condensation Case
The heat transfer surface area is given by:

In this study, we assume that condensation occushell
)side of heat exchanger. Following the procedure

A = Ndol = Nrdy(Ny + 1)Ly (21 recommended by Smith we can calculate the heasfamn

Where:
coefficient for condensing fluid in the shell() [7]:
4P A
D, (N, 1) ==L, 22 2
s+ 1) = e ooty ! hse = 1.35 ky ("L 22 “ogTy1/3 132
1
— (™ (Dsy2
N= (4)(pt) (23) For pressure drop calculation Chisholm’s correlatian be
used [27]:
L, is baffle spacing, an#, is tube pitch. Flow velocity for
shell side can be calculated by: @7 =1+ (Y2 —1)(x — x2)0815 4 4137 (33)
L — (24) .

(p—t)(”t‘do)Lb Where ¢?, and Y? are, respectively, the two-phase
D.Evaporation Case qulfgi/s-"er and Chisholm’s parameter, which are defi as
In this work it is assumed that the evaporationuoegdn '

tube side of all heat exchangers. In the case pdrzation the @P/ ) (@P /o)
. . . 2 _ dz 2 — go
following relationship can be expected to hold [25] o7, e @P/o7) (34)
h AP
2= ()" (25)  Again the subscriptdo and go refer to total flow with

h AP,
: : liquid phase properties and total flow with gas ggha

hy, andAP,, are heat transfer coefficient and pressure drdproperties, respectively(dP/dz)g, and (9P/dz),, can be
for two phase flow. The exponent, n is relatechto Reynolds determined by using single phase equations forl sk in
number exponent in heat transfer correlation, bj #me part C. By an integral over the mass quality charpe

Reynolds number exponent in friction factor equatip following expression for pressure drop with sheltles
condensation can be obtained:

n=-"2 (26)
2-y AP = (D L [2[1+ (r2 = 1) (x — x3)°815 4+ x1%7]. dx (35)
Two-phase pressure drop is obtained from the emuati

developed by Chisholm [26]: V.OPTIMIZATION PROCEDUREUSING GA

Finding a geometry leading to the lowest cost plaps

BPep g4 €41 27) important role in optimization of AHP heat exchargyeBy

APy xee o Xy considering tube inside diameted;), tube outer diameter

(d,), tube length I, shell diameter[{;) and baffle spacing

Where: (Lp) and tube pitch ;) as GA variables for each heat
C= (::—;)1/2 + (Z—gl)l/2 (28) exchanger, we perform the optimization to find thimimum
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Total annual cost (TAC). Following criteria must &atisfied
during the optimization:

0Z2m<D;<2m

0.014m < d, <0.05m

3<-<15 (36)

02<tr oy
2sprs

N
AP, < APy oy

APs < APgmax

The required data are presented in tableéo VI. We

suppose

that during phase changes (condensation or
evaporation), the temperature is constant. Alse,uhknown

temperatures are reported in data table€g &sT.

TABLE 1l
REQUIRED STREAM DATA OF SHX
SHX
Shell Tube
Mass(kg/s 149.¢ 152.¢
P(bar) 1.2 1.2
R(k/mfw) 0.00018 0.00018
Inlet
Phase L L
T(°c) T 101.¢
p(kg/nt) 1565 1682
Cp(J/kg k) 1956 1621
u (CP) 1 1
K(W/m k) 0.38 0.37
Outlet
Phase L L
T(OC) T2 Ts
p (kg/n?) 1696 1557
Cp(J/kg k) 1600 1900
u (CP) 1 1
K(W/m k) 0.36 0.39

SHX = solution heat exchanger, P = inlet streansqree,
R = fouling resistancd; = temperaturgy = density, Cp = heat capacity,
u = viscositv. K = thermal conductiv

TABLE Il
REQUIRED STREAM DATA OF GENERATOR
Generator
Shell Tube

Mass(kg/s) 4.3 152.45
P(bar 12 1.2
R(k/mfw) 0.00018 0.00018
Inlet
Phase \% L
T(°c) 254.2 Ta
p (kg/nT) 5.1 1557
Cp(J/kg k) 2044 1900
u (CP) 0.02 1
K(W/m k) 0.04 0.39
Outlet Two phase
Phase L L \%
T(OC) 188 Ts Ts
p (kg/n?) 878 1565  0.57
Cp(J/kg k) 4453 1956 1944
u (CP) 0.1 1 0.02
K(W/m k) 0.67 0.38 0.032

TABLE IV
REQUIRED STREAM DATA OF CONDENSER
Condenser
Shell Tube
Mass(kg/s) 2.78 10.92
P(bar) 1.2 1
R(k/mfw) 0.00018 0.00018
Inlet Two phase
Phase \% L \%
T(°c) 104.8 99.6 99.6
p (kg/nT) 0.57 958.4 0.59
Cp(Jrkg k) 1944 4217 1908
w (CP) 0.02 0.3 0.01
K(W/m k) 0.032 0.68 0.024
Outlet Two phase
Phase L L \%
T(°c) 104.¢ 99.€ 99.¢
p (kg/nT) 954.6 958.4 0.59
Cp(J/kg k) 4224 4217 1908
w (CP 0.z 0.2 0.01
K(W/m k) 0.68 0.68 0.024
TABLE V
REQUIRED STREAM DATA OF EVAPORATOR
Evaporator
Shell Tube
Mass(kg/s) 7.25 2.78
P(bar 0.1 0.07
R(k/mfw) 0.00018 0.00018
Inlet
Phase \% L
T(°c) 45.8 40.2
p (kg/nt) 0.07 992.2
Cp(J/kg k) 1877 4178
u (CP) 0.01 0.6
K(W/m k) 0.02 0.63
Outlet Two phase
Phase L \% \%
T(°c) 458 458 40.2
p (kg/nm) 990 0.07 0.05
Cp(J/kg k 417¢ 1877 187¢
u (CP) 0.5 0.01 0.01
K(W/m k) 0.63 0.02 0.02
TABLE VI
REQUIRED STREAM DATA OF ABSORBER
Absorber
Shell Tube
Mass(kg/s) 152.45 10.92
P(bar) 0.07 0.07
R(k/mfw) 0.00018 0.00018
Inlet Two phase
Phase L \% L
T(OC) Te Te 93.5
p (kg/nT) 1699 0.04 963
Cp(J/kg k) 1601 1897 4207
u (CP) 1 0.01 0.3
K(W/m k) 0.36 0.025 0.67
Outlet Two phase
Phase L L \%
T(°c) T7 99.6 99.6
p (kg/nT) 1682 958 0.59
Cp(J/kg k) 1619 4217 1908
u (CP) 1 0.3 0.01
K(W/m k) 0.37 0.68 0.024
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The number of adjustable variables is 30. An ihitia
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population in each generation is taken as 100 aosisover
probability and mutation probabilities are choseé¢ 0.7 and
0.1 respectively.

The results of optimal design found by the GA are
presented in table V.

(1]

TABLE VII
OPTIMAL HEAT EXCHANGER GEOMETRIESFOUND BY GA

SHX Gen Cond Evap Abs 2]
di(mm) 11 10.¢ 19.¢ 17.2 227
do(mm) 14.4 14.1 236 20.1 27.4
Pt(mm) 216 21.15 35.4 30.15 41.1 3]
Lb(m) 0.43: 0.77 0.497 0.967 0.99¢
Ds(m) 0.864 1.54 0.994 1.935 1.991
Nt 1256 4142 618 3222 1842 [4]
L(m) 5.897 4.62 43¢ 5.80¢ 6.26¢
Area (nf) 236.97 44519 40071  1.73x16 2.96x16 [5]
APs (pa) 207x10 1.43x1§ 1.72x1d  1.38x16  1.01x18
AP (pa) 1.49x1¢  6.19x16 9x1C 591.15 1.1x1d (6]
hs (W/n’k)  2.45x1¢  764.4: 635.8¢ 909.] 470.¢
ht(W/nfk)  3.45x13 2.48x16 6.3x1d  1.62x10  8.09x18
U (W/ k) 843.9 449.25 499.11 637.1 371.61

[7]

TAC ($/year) 383998

SHX = solution heat exchanger, Gen = GeneratordGo&ondenser, Evap

= Evaporator, Abs = Absorber, mm = millimeter, mmeter, di = Tube
inside diameter, do = Tube outside diameter, PuubeTpitch, Lb = Baffle
spacing, Ds = shell diameter, Nt = Number of tulhes,tube lengthAPs =
shell side pressure dropPt = tube side pressure drop, hs = shell side heat
transfer coefficient, ht = tube side heat transfefficient, U = overall heat
transfer coefficien

[9]

K=}

[11]

The unknown temperatures were found after optimumz]
design, which can be seen in table VIII:

TABLE VIl

STREAM TEMPERATURESFOUND BY GA [13]
Temperature °C
[14]
T1=T5 184.6
T2 107.¢
T3=T4 178 [15]
T6 105.51
T7 101.9
[16]
17
VI. CONCLUSION [17]

In this work, the optimum design of an absorpticeath
pump integrated with a pulp and paper industryeisied out,
by considering shell and tube heat exchangersherAHP
components. Six variables related to geometry chdaeat
exchanger are considered to get the best desidn loitest
total annual cost by GA, regarding to the considef¢iP
configuration and desired heat duties. By comparksetween
the cost resulted by GA (383998 $/year) and theresalted
from general simulation by Aspen Plus software tefo
optimization (471163 $/year), the TAC is decredsgd8%.

(18]

[19]

[20]
[21]
[22]

[23]
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