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Statistical description of the four-state Markov aith

Abstract—In this work, a characterization and modeling ofassuming time-homogeneity, is presented. Theofteti@eket

packet loss of a Voice over Internet Protocol (JodBmmunication

is developed. The distributions of the number ofsazutive received
and lost packets (namely gap and burst) are modited the

transition probabilities of two-state and four-etatmodel.

Measurements show that both models describe addguhe burst
distribution, but the decay of gap distribution fasn-homogeneous
losses is better fit by the four-state model. Thespective

probabilities of transition between states for eaudbdel were

estimated with a proposed algorithm from a set ohitored VolP

calls in order to obtain representative minimum,ximam and

average values for both models.

receipt and loss rates are quantified. Respectipdength and
burst length (measured in number of packets lastived)
distributions are also described and a comparispmeans of
the square root of the mean squared error (SMSE) of gap and
burst length distributions, of two-state and fotats models is
also performed.

Il. MARKOV CHAINS

LetS =S,,S,,...,S, be them states of an m-state Markov
chain and lep;; be the probability of the chain to pass from

Keywords—Packet loss, gap and burst distribution, Markowthe stateS; to the states;, i.e.,p;; = PX; = x;|Xi—1 = x;-1).

chain, VolP measurements.

I. INTRODUCTION

N this work, modeling of &/ocice over Internet Protocol

(VolP) communication through a wide area network®\y
is developed and simulation based on this modet¢iformed.
The effects of correlated delay and loss in theusege of

packets on a voice communication are studied. AnR(X, ., = x,.1|X, = %) = P(X, = x| Xp-1 = Xp_1)-

Having the Markov property means that, given thespnt
state, future states are independent of the paséssti.e.,
P(Xn41 = Xnp11Xn = 20, Xnoq = Xnq, ) =

P(Xp+1 = Xp41lXn = x,,). The Markov chains used in this
work also are time-homogeneous, which means that th
probabilities of transition between states are tamsover
time,i.e.,

All

parameters of the proposed models are obtained fraftites communicate (are reachable from) each ottteich

measurements of these VolP calls.

Consecutive packet receipts and losses are nanpedagal
bursts, respectively[1]. Due to the time-correlatetupancy
of the network, packet losses commonly occur instsurAt
small time scales, i.e., a few seconds or minutessts occur
with approximately the same distribution, and a -state

makes the chain irreducible. Also, the chain isriapic, i.e.,
stateS; can be reached from itself in any number of steps
(n=1223,..).

The probabilities of transitions between states d¢®n
represented by @ransition matrix. The elements of the one-
stepm x m transition matrixl’ areT;; = p;;. To obtain ther-

Markov chain can reproduce this phenomenon. NORgep transition matrix it is necessary to multiphe matrix

homogeneous bursty behavior becomes noticeablargerl
scales and in this case the two-state Markov chain
insufficient, thus a more general model is necesSare four-
state Markov chain is applied then in order to wept(or
simulate) the widely known bursty,
behavior of the characteristics of network traffichis
approach allows us to represent and simulate tpes®ds
with low and high loss rate that alternate in segee
according to certain probability.

The knowledge of the packet loss rate (PLR) andstbur

length distribution is useful to quantify the qgtmliof the
communication in the sense of certain metrics,, engean
opinion score (MOS).
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non-homogeneous

itselfn times[2], i.e.,

T,=T" 1)

As the number of stepsi) increases, the probability of
transition to the stat® depends less of the initial state. i.e., as
n tends toco, the matrixT,, converges to a matrix with the

next form:

S1 S Sm
S S S.
To=lmT,=|" 7 v @)
n—-oo . .
S1 S Sm
such that
Si+s;++s,=1 (3)
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In (3), s; represents the namekady probability of states;.
The steady-state transition matfiy can be obtained then by
solving (3) and (4krror! Reference source not found]:

[s1 S2 Sm]T =[$1 Sz Sm] (4)

Assuming that the chain is irreducible and apedpthe
Matrix T, is defined and unique.

I1l.  TwoO- AND FOUR-STATE MODELS

The two-state Markov chain is shown in Fig. 1. Stgt
represents packet loss anf,, packet receipt. Two
substitutions ff,; = 1 — p;, andp,, = 1 —p,;) are made in
order to represent the chain with the lowest numbfr
parameters. The steady-state probability of théncteabe in
the states;, namely the packet loss rate, is given byEBpr!
Reference source not found.

P21

S =— 5
! P12 + P21 ®)

and clearlys, = 1 —s;.

P21

Fig. 1: Two-state Markov chain. White and shadgles represent
correct and erroneous states, respectively.

The burst length and gap length distributiofis(¥) and
fq(k), respectively) can be expressed in termg,gfandp,,,
as expressed by (6) and (7):

fo(k) =pia(1 = pi)< 7t (6)

fg(k) =p(1- 15’21)1(_1 (7)

which have also respective averagd$,(k)} = 1/p,, and
E{f;(k)} = 1/ps;. It is easy to proof (6), a8y, f» (k) =1
andf, (k + 1) = f,(k) - (1 — p,,); and similarly for (7).

The four-state Markov chain is shown in Fig. 2. sitig
arrows indicate zero probability. Statés and S; (shady
circles) represent packet losses (erronedfysgndS, (white
circles), packet receipt (correct).

Six parameters pgy, P12, Pass P34, D23, P32 € (0,1)) are
necessary to define all these probabilities. Withimss of
generality, probabilities of transitions betweenreot states,
as well as transitions between erroneous ones, haen
assigned to zero.

low losses high losses
Al AL
s i~ Y
P12l 1-Par-P2s |P1
1-pip

Fig. 2: Four-state Markov chain. White and shadgies represent
correct and erroneous states, respectively.

The four steady-state probabilities of this cheie:

1
$1 = . " ;
P12 | P12 "P23 | P12 " P23 " D34 (8)
14512 4 +
P21 P21 Ps2 P21 P32t Das
_ 1 9)
52 T 14 P21y P2z P23 Pas
P12 P32 P32 Pa3
. 1 (10)
3T p p. P21 " P32
14634 4632 4 21 032
Paz P23 P12 " P23
1 (11)
S4

= DPa3 | P32 "Pa3 | P21 " P32 " Pa3
1+5048 4 +
P34 P23 P34 P12 ° P23 " P3a

The packet loss rate, i.e., the probability of dhain to
be either ins; orinSs, is then:
r=5;+5; (12)
The average burst length)(is calculated as the quotient of
the probability of loss and the probability of tsétion from a
lossless state to a loss state or vice versa ()., and
t... be the respective number of transitions from carrec
states to error states and from error states tceciostates.
Their absolute differencet(_,, — t._.|) is at mostl and it
can be considere@ asn tends tow, i.e., the transitions from
error state to correct state and vice versa havealeq

probability (6, (P21 + D23) + 54 (Pa3) = 51(P12) + 53(p3a +
P32)) and then the average burst lendihis:

S; + 53

B =
S2(D21 + D23) + 54(Daz)

(13)

Similarly, the average gap length is:
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Sz + 54 (14) steady-state solution, and {€f;, 7;);i = 1, ..., m} be its pairs
Sy (Po1 + P23) + S4(Pa3) of eigenvalues and eigenvectors (iBv; = A;7;), such that
A; > A; for i <j. This matrixT can be decomposed into the

The authors ofError! Reference source not foundl  special form
derived the gap length distribution for a two-statedel, in
which, as opposite to the two-state of Fig. 1, dssand T = ppp-1 (17)
receipts are allowed in the two states. The distiom of burst - T
length of the four-state Markov chain of Fig. 2oltained,
similarly as in Error! Reference source not found], as
follows:

Let f, (k) denote the probability that the burst lengttkis
C, (k), the probability that the burst lengthkisor greater and
the k" transmission is from stafg andC, (b), the probability
that the burst length i& or greater and® transmission is
from stateS; andC, (k), the probability that the burst length is
k or greater such that,(k) = C;(k) + C;(k) and f, (k) =
C,(k) — Cy(k+1). Clearly C,(k) =X, f,(0). Also, as
transitions between statey and S; have zero probability,
Ci(k+1) = C (k) - (1= piz) = C(1) - (1 = p1p)¥ and
C3(k+1) = C3(k) - (1 —p3s —P32) = C(1) - (1 — p3q —
p32)*. Then to calculatg, (k) it is necessary to obtaify (1)
and C;(1), whose respective values ar€ (1) =s,-
P21/[52(P21 + P23) + 54 - Paz] and C5(1) = (53 - P2z + 54
Pa3)/[52(P21 + D23) + 54 * Pas)

As the minimum burst length id, C,(1) =, (1) +

g_z

whereP is a matrix composed of the eigenvector§ ab is
the diagonal matrix constructed from the correspund
eigenvalues and~! is the inverse off. ThenT, can be
calculated easily as

3

=PD"P"} (18)

As all elements of the diagonal of the matBixare lower
thanl exceptD, ,, then

T, =PD*P™' = PDP! (19)
where the only non-zero elementfis D, ; = 1.
This method is also useful when obtaining shorater

approximations, i.eT,, for smalln.

V. MODELING LOSSSEQUENCES

C;(1) = 1. Then, the distribution of the burst length is: The traces studied in this work are those corredipgnto
Sets 3 and 4, described inError! Reference source not
£, (k) = €, (1) - Q, (k) + C5(1) - Qs (k) (15) found.] andError! Reference source not found]. There are
48 traces in total. Each one represents the packetpteand

where Q) = (1=pi)* " = (L —pyp)* =py, - 0SS Of arl-hour VoIP call .
(1 - ppy)k? and Qs(k) = (1 — pag — pay)~1 — An empirical algorithm is used to estimate the peggers of

the Markov chain. For the two state Markov mod¢lYebe

the sequence that represent packet receipts asdsloge.,
Y, = 0 if packett was received and; =1 if it was lost.

Packets are sent with a constant rate, e.g., apackent each
20ms.

(1 =P34 = P32)" = (D34 + P32) - (1 = P3a —p32)* . As
expressed by (15);, (k) is the sum of two geometric series
with respective rate$ — p,, and1 — p3, — ps3,; this implies
that f, (k) is a decreasing function &f, i.e., greater bursts
have lower probabilities than shorter ones.

A similar procedure can be followed to obtain th@&g A Two-state Case

length distribution £, (k)), which is: In this case the values g@f, andp,, are estimated as

follows: p;; = t._./n, andp,; = te_./ny,- Wheret,._, and

fal) = G (1) - Q2 (k) + €4 (1) - Qu(k) (16) ¢,. are the respective number of transitions from emirr
states to error states and from error states teciostates, and
Where C2(1) = (sy - P12 +53-P32)/[s1° P12 +S3°  n, andn, are the respective number of received and lost
(P32 + P3a)l, C4(1) = (53 P34)/[51 - P12 + 53~ (P32 + packets.

, ) =(1- _ k-1 __ 1— _ k —
P34)] Q.(k) = ( P21 k_liz3) ( D21 — P23) B. Four-state Case:
(P21 + P23) + (1 — P21 — P23) and Qk)=>0- . . )

Paz) 1 — (1= Paz)¥ = pas - (1 — pyz)*~1. Also note that In this case the values of the sequeKcare divided into

C,(D) +C,(1) =1. regions of two types: the first with lower Iossqawhose first
and last values are zeros) and the second withehigks rate
IV. NUMERICAL APPROXIMATION OF THEMATRIX OF (whose first and last values are ones) than cettaishold,
PROBABILITIES e.g., 1%. Then, from the first regionp,, and p,; are
estimated the same way than in a two-state modeilegly,
P43 andps, are estimated from the second region. Finally, let
k X R . P tisto2ng D€ the number of transitions from the first region
this case, a numerical approximation is more slétabhich is the second:t,,g..s, the number of transitions frorgi the
described as follows: . . . . _second to the firsty,,;, the number of received packets in the
Let T be am xm transition matrix, which has a UNIque grst region (zeros) and,, 4, the number of lost packets in the

Obtaining analytical expressions for the elemeftg di.e.,
s1, S»...) can be difficult when the number of states igéa In
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values (near zero), but in the case of the gap theng

tona—ist/M2na- AlSO, the burst and gap histograms can bdistribution, which presents slower decay, the state model

obtained from the sequenke
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Fig. 3: Burst length distribution of a VolP commeation. Two-state
and four-state models represent it adequately
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Fig. 4: Gap length distribution of a VolP commurtica. Four-state
model fits better this distribution than two-statedel

VI. COMPARISON OFTWO- AND FOUR-STATE MODELS

An example with one of the traces measured, obdafireen
a VolP communication with codec G.711 and samptinge
of 20ms, is shown in Fig. 3 and Fig. 4.

1.02

0.98 /
I’
a
o
+ 0.94
5
(-]

0.9

0.86

0.88 0.9 0.92 0.94 0.96 0.98 1 1.02
Burst CDF (reference)
—measured =--two-state —four-state

Fig. 5: PP-plot of the respective two-state and-&iate burst
histograms
In the traces under study it is found that, althotige two-
state model is adequate for the burst length Higion (see
Fig. 5), the four-state model performs better whardeling
the gap length distribution, as shown in Fig. 6isTib because
the burst length distribution approaches rapidlywéoy low

does not fit the measured distribution due to a-fiexible
one-parameter formula (see (7)).

For each trace that represents a loss sequence, the

parameters of both two-state and four-state modeks
obtained.

The estimated statistics of the two-state and $&are
transition probabilities are shown, respectivetyTable | and
Table 1.
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0.00
0 0.2 0.4 0.6 0.8 1
Gap CDF (reference)
—measured --two-state —four-state

Fig. 6: PP-plot of the respective two-state and-&iate gap

histograms
TABLE |
STATISTICS FOR TWO-STATE MODEL
P21 P12
MIN 0.000322 0.595744
MAX 0.038605 0.934703
MEAN 0.013923 0.852838
STD. DEV. 0.012234 0.074697
TABLE Il
STATISTICS FOR FOUR-STATE MODEL
P21 P12 I Pas P34 P23 P32
MIN 0.00018¢§ 0.963631%0.01550\ 0.0967740.0000160.00089
MAX 0.0020531.0000000.2727270.9314640.0025510.361111
MEAN [0.0007930.9989970.05421%0.6887470.0006020.092536
STD. DEV. |0.0005270.0054240.0370930.2598450.0006090.106311

Fig. 7 and Fig. 8 show the SMSE between the bergth
and gap length distributions and their respective-state and
four-state models. The four-state model fits thstritiution
better than two-state model for most traces. Iresashere
SMSE is large (e.g., greater th@®01 for the four-state gap
length distribution of Fig. 8) the packet lossasvl(e.g., lower
than 0.23%), then the gap length distribution cannot be
adequately sampled, a larger number of samplesdessary
in these cases. Note that each one of these tr@ygessents an
1-hour call. In shorter periods, where non-burstysks are
present, these can be modeled adequately by tusstzdel.

VII.

In this work, packet receipt and loss are modelediscrete
finite-state Markov chains. The packet loss raseket receipt
rate and the distributions of burst length and aqth are
described in terms of the Markov chain parametegs, the

CONCLUSION
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probabilities of transition between states. Alduaris for
estimating the probabilities of transition for bd#o-state and
four-state models, which are shown in Fig. 1 angl Bi are
presented.

n

SMSE

SMSE

0.12
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Trace

—two-state -e-four-state

ig. 7: SMSE of two-state and four-state burstdgsam for all traces

0.004
0.003
0.002
0.001
0.000
1 11 21 31 41
Trace

—two-state -e-four-state

Fig. 8: SMSE of two-state and four-state gap histogfor all traces

For modeling bursts and gaps of short communicsfiery.

calls with a duration of a few minutes, the twotstmodel is
sufficient; but for longer periods, the four-state@del fits
better. The performance of both models was evaluate

means of the SMSE of the burst length and gap tengt

distributions, showing that although the two-statedel fits
adequately the burst length distribution, it canfudiow the
slow decay of the gap length distribution of meamants.

The traces for which the SMSE of the four-state ehodhs
higher (e.g., greater than001) had very low loss rates (less
than0.23%), so the gap length distribution was not adeqyatel

sampled.
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