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Abstract—In this work, a characterization and modeling of 

packet loss of a Voice over Internet Protocol (VoIP) communication 
is developed. The distributions of the number of consecutive received 
and lost packets (namely gap and burst) are modeled from the 
transition probabilities of two-state and four-state model. 
Measurements show that both models describe adequately the burst 
distribution, but the decay of gap distribution for non-homogeneous 
losses is better fit by the four-state model. The respective 
probabilities of transition between states for each model were 
estimated with a proposed algorithm from a set of monitored VoIP 
calls in order to obtain representative minimum, maximum and 
average values for both models. 
 

Keywords—Packet loss, gap and burst distribution, Markov 
chain, VoIP measurements.  

I. INTRODUCTION 

N this work, modeling of a Voice over Internet Protocol 
(VoIP) communication through a wide area network (WAN) 

is developed and simulation based on this model is performed. 
The effects of correlated delay and loss in the sequence of 
packets on a voice communication are studied. And 
parameters of the proposed models are obtained from 
measurements of these VoIP calls. 

Consecutive packet receipts and losses are named gaps and 
bursts, respectively[1]. Due to the time-correlated occupancy 
of the network, packet losses commonly occur in bursts. At 
small time scales, i.e., a few seconds or minutes, bursts occur 
with approximately the same distribution, and a two-state 
Markov chain can reproduce this phenomenon. Non-
homogeneous bursty behavior becomes noticeable at larger 
scales and in this case the two-state Markov chain is 
insufficient, thus a more general model is necessary. The four-
state Markov chain is applied then in order to capture (or 
simulate) the widely known bursty, non-homogeneous 
behavior of the characteristics of network traffic. This 
approach allows us to represent and simulate those periods 
with low and high loss rate that alternate in sequence 
according to certain probability. 

The knowledge of the packet loss rate (PLR) and burst 
length distribution is useful to quantify the quality of the 
communication in the sense of certain metrics, e.g., mean 
opinion score (MOS). 
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Statistical description of the four-state Markov chain, 
assuming time-homogeneity, is presented. Theoretical packet 
receipt and loss rates are quantified. Respective gap length and 
burst length (measured in number of packets lost/received) 
distributions are also described and a comparison, by means of 
the square root of the mean squared error (SMSE) of gap and 
burst length distributions, of two-state and four-state models is 
also performed. 

II. MARKOV CHAINS 

Let � � ��, ��, … , �� be the � states of an m-state Markov 
chain and let 	
� be the probability of the chain to pass from 
the state �
 to the state ��, i.e., 	
� � �
�
 � �
|�
�� � �
���. 
Having the Markov property means that, given the present 
state, future states are independent of the past states, i.e., �
���� � ����|�� � �� , ���� � ����, … � ��
���� � ����|�� � ���. The Markov chains used in this 
work also are time-homogeneous, which means that the 
probabilities of transition between states are constant over 
time,i.e., �
���� � ����|�� � ��� � �
�� � ��|���� � �����. All 
states communicate (are reachable from) each other, which 
makes the chain irreducible. Also, the chain is aperiodic, i.e., 
state �
 can be reached from itself in any number of steps 
(� � 1,2,3, …). 

The probabilities of transitions between states can be 
represented by a transition matrix. The elements of the one-
step � � � transition matrix � are �
� � 	
�. To obtain the �-
step transition matrix it is necessary to multiply the matrix 
itself � times[2], i.e., 

 �� � ��. (1) 
 
As the number of steps (�) increases, the probability of 

transition to the state �
 depends less of the initial state. i.e., as � tends to ∞, the matrix �� converges to a matrix with the 
next form: 

 

�� � lim� � �� � !"� "� # "�"� "� # "�$ $ % $"� "� # "�
& (2) 

 
such that "� ' "� ' # ' "� � 1 (3) 
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In (3), "
 represents the named steady probability of state �
. 
The steady-state transition matrix �� can be obtained then by 
solving (3) and (4) Error! Reference source not found.]: 

 ("� "� … "�)� � ("� "� … "�) (4) 
 
Assuming that the chain is irreducible and aperiodic, the 

Matrix �� is defined and unique. 

III.  TWO- AND FOUR-STATE MODELS 

The two-state Markov chain is shown in Fig. 1. State �� 
represents packet loss and ��, packet receipt. Two 
substitutions (	�� � 1 * 	�� and 	�� � 1 * 	��) are made in 
order to represent the chain with the lowest number of 
parameters. The steady-state probability of the chain to be in 
the state ��, namely the packet loss rate, is given by (5) Error! 
Reference source not found.]: 

 "� � 	��	�� ' 	�� (5) 

 
and clearly "� � 1 * "�. 
 

 
Fig. 1: Two-state Markov chain. White and shady circles represent 

correct and erroneous states, respectively. 
 
The burst length and gap length distributions (+,
-� and +.
-�, respectively) can be expressed in terms of 	�� and 	��, 

as expressed by (6) and (7): 
 +,
-�  � 	��
1 * 	���0�� (6) 

 +.
-�  � 	��
1 * 	���0�� (7) 
 
which have also respective averages 12+,
-�3 � 1/	�� and 15+.
-�6 � 1/	��. It is easy to proof (6), as ∑ +,
-��08� � 1 

and +,
- ' 1� � +,
-� · 
1 * 	���; and similarly for (7). 
The four-state Markov chain is shown in Fig. 2. Missing 

arrows indicate zero probability. States �� and �: (shady 
circles) represent packet losses (erroneous); �� and �; (white 
circles), packet receipt (correct). 

Six parameters (	��, 	��, 	;:, 	:;, 	�: , 	:� < 
0,1�) are 
necessary to define all these probabilities. Without loss of 
generality, probabilities of transitions between correct states, 
as well as transitions between erroneous ones, have been 
assigned to zero. 

 
 

 
Fig. 2: Four-state Markov chain. White and shady circles represent 

correct and erroneous states, respectively. 
 
 The four steady-state probabilities of this chain are: 

 "� � 11 ' 	��	��  ' 	�� · 	�:	�� · �:� ' 	�� · 	�: · 	:;	�� · 	:� · 	;:
 (8) 

"�  � 11 ' 	��	�� ' 	�:	:� ' 	�: · 	:;	:� · 	;:
 

(9) 

": � 11 ' 	:;	;: ' 	:�	�: ' 	�� · 	:�	�� · 	�:
 

(10) 

"; � 11 ' 	;:	:; ' 	:� · 	;:	�: · 	:; ' 	�� · 	:� · 	;:	�� · 	�: · 	:;
 

(11) 

 
 The packet loss rate, i.e., the probability of the chain to 

be either in �� or in �:, is then: 
 > � "� ' ":    (12) 
 
The average burst length (?) is calculated as the quotient of 

the probability of loss and the probability of transition from a 
lossless state to a loss state or vice versa (13). Let @A B and @B A  be the respective number of transitions from correct 
states to error states and from error states to correct states. 
Their absolute difference (|@A B * @B A|) is at most 1 and it 
can be considered 0 as � tends to ∞, i.e., the transitions from 
error state to correct state and vice versa have equal 
probability ("�
	�� ' 	�:� ' ";
	;:� � "�
	��� ' ":
	:; '	:��) and then the average burst length (?C) is: 

 ?C � "� ' ":"�
	�� ' 	�:� ' ";
	;:� (13) 

 
Similarly, the average gap length is: 
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DE � "� ' ";"�
	�� ' 	�:� ' ";
	;:� (14) 

 
The authors of Error! Reference source not found.] 

derived the gap length distribution for a two-state model, in 
which, as opposite to the two-state of Fig. 1, losses and 
receipts are allowed in the two states. The distribution of burst 
length of the four-state Markov chain of Fig. 2 is obtained, 
similarly as in Error! Reference source not found.], as 
follows: 

Let +,
-� denote the probability that the burst length is -; F�
-�, the probability that the burst length is - or greater and 
the -GH transmission is from state �� and F:
?�, the probability 
that the burst length is - or greater and -GH transmission is 
from state �: and F,
-�, the probability that the burst length is - or greater such that F,
-� � F�
-� ' F:
-� and +,
-� �F,
-� * F,
- ' 1�. Clearly F,
-� � ∑ +,
I�∞
80 . Also, as 
transitions between states �� and �: have zero probability, F�
- ' 1� � F�
-� · 
1 * 	��� � F�
1� · 
1 * 	���0 and F:
- ' 1� � F:
-� · 
1 * 	:; * 	:�� � F:
1� · 
1 * 	:; *	:��0. Then to calculate +,
-� it is necessary to obtain F�
1� 
and F:
1�, whose respective values are F�
1� � "� ·	��/("�
	�� ' 	�:� ' "; · 	;:) and F:
1� � 
"� · 	�: ' "; ·	;:�/("�
	�� ' 	�:� ' "; · 	;:) 

As the minimum burst length is 1, F,
1� � F�
1� 'F:
1� � 1. Then, the distribution of the burst length is: 
 +,
-� � F�
1� · J�
-� ' F:
1� · J:
-� (15) 
 
where J�
-� � 
1 * 	���0�� * 
1 * 	���0 � 	�� ·
1 * 	���0�� and J:
-� � 
1 * 	:; * 	:��0�� *
1 * 	:; * 	:��0 � 
	:; ' 	:�� · 
1 * 	:; * 	:��0��. As 

expressed by (15), +,
-� is the sum of two geometric series 
with respective rates 1 * 	�� and 1 * 	:; * 	:�; this implies 
that +,
-� is a decreasing function of -, i.e., greater bursts 
have lower probabilities than shorter ones. 

A similar procedure can be followed to obtain the gap 
length distribution (+.
-�), which is: 

 +.
-� � F�
1� · J�
-� ' F;
1� · J;
-� (16) 
 
Where F�
1� � 
"� · 	�� ' ": · 	:��/("� · 	�� ' ": ·
	:� ' 	:;�), F;
1� � 
": · 	:;�/("� · 	�� ' ": · 
	:� '	:;�) , J�
-� � 
1 * 	�� * 	�:�0�� * 
1 * 	�� * 	�:�0 �
	�� ' 	�:� · 
1 * 	�� * 	�:�0�� and J;
-� � 
1 *	;:�0�� * 
1 * 	;:�0 � 	;: · 
1 * 	;:�0��. Also note that F�
1� ' F;
1� � 1. 

IV.  NUMERICAL APPROXIMATION OF THE MATRIX OF 

PROBABILITIES 

Obtaining analytical expressions for the elements of �∞ (i.e., "�, "�…) can be difficult when the number of states is large. In 
this case, a numerical approximation is more suitable, which is 
described as follows: 

Let � be a � � � transition matrix, which has a unique 

steady-state solution, and let 2
K
 , LE
�; I � 1, … , �3 be its pairs 
of eigenvalues and eigenvectors (i.e., �LE
 � K
LE
), such that K
 N K� for I O P. This matrix � can be decomposed into the 
special form 

 � � �Q��� (17) 
 
where � is a matrix composed of the eigenvectors of �, Q is 

the diagonal matrix constructed from the corresponding 
eigenvalues and ��� is the inverse of �. Then �� can be 
calculated easily as 

 �� � �Q���� (18) 
 
As all elements of the diagonal of the matrix Q are lower 

than 1 except Q�,�, then 
 �∞ � �Q∞��� � �Q′��� (19) 
 
where the only non-zero element of Q′ is Q�,� � 1. 
This method is also useful when obtaining short-term 

approximations, i.e., �� for small �. 

V. MODELING LOSS SEQUENCES 

The traces studied in this work are those corresponding to 
Sets 3 and 4, described in Error! Reference source not 
found.] and Error! Reference source not found.]. There are 48 traces in total. Each one represents the packet receipt and 
loss of an 1-hour VoIP call. 

An empirical algorithm is used to estimate the parameters of 
the Markov chain. For the two state Markov model let TG be 
the sequence that represent packet receipts and losses, i.e., TG � 0 if packet @ was received and TG � 1 if it was lost. 
Packets are sent with a constant rate, e.g., a packet is sent each 20�". 

A. Two-state Case  

In this case the values of 	�� and 	�� are estimated as 
follows: 	�� � @A B/�� and 	�� � @B A/�U. Where @A B and @B A are the respective number of transitions from correct 
states to error states and from error states to correct states, and �U and �� are the respective number of received and lost 
packets. 

B. Four-state Case: 

In this case the values of the sequence TG are divided into 
regions of two types: the first with lower loss rate (whose first 
and last values are zeros) and the second with higher loss rate 
(whose first and last values are ones) than certain threshold, 
e.g., 1%. Then, from the first region, 	�� and 	�� are 
estimated the same way than in a two-state model. Similarly, 	;: and 	:; are estimated from the second region. Finally, let @�WG ��X be the number of transitions from the first region to 
the second; @��X �WG, the number of transitions from the 
second to the first; ��WG, the number of received packets in the 
first region (zeros) and ���X, the number of lost packets in the 
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second region (ones), then 	�: � @�WG ��X/��WG  and 	:� �@��X �WG/���X . Also, the burst and gap histograms can be 
obtained from the sequence TG. 
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Fig. 3: Burst length distribution of a VoIP communication. Two-state 
and four-state models represent it adequately 

 

 
Fig. 4: Gap length distribution of a VoIP communication. Four-state 

model fits better this distribution than two-state model 

VI. COMPARISON OF TWO- AND FOUR-STATE MODELS 

An example with one of the traces measured, obtained from 
a VoIP communication with codec G.711 and sampling time 
of 20�", is shown in Fig. 3 and Fig. 4. 

 
Fig. 5: PP-plot of the respective two-state and four-state burst 

histograms 
In the traces under study it is found that, although the two-

state model is adequate for the burst length distribution (see 
Fig. 5), the four-state model performs better when modeling 
the gap length distribution, as shown in Fig. 6. This is because 
the burst length distribution approaches rapidly to very low 

values (near zero), but in the case of the gap length 
distribution, which presents slower decay, the two-state model 
does not fit the measured distribution due to its non-flexible 
one-parameter formula (see (7)). 

For each trace that represents a loss sequence, the 
parameters of both two-state and four-state models are 
obtained. 

The estimated statistics of the two-state and four-state 
transition probabilities are shown, respectively, in Table I and 
Table II. 

 
Fig. 6: PP-plot of the respective two-state and four-state gap 

histograms 
 

TABLE I 
STATISTICS FOR TWO-STATE MODEL 

 p21 p12 
MIN 0.000322 0.595744 
MAX 0.038605 0.934703 

MEAN 0.013923 0.852838 
STD. DEV. 0.012234 0.074697 

 
TABLE II 

STATISTICS FOR FOUR-STATE MODEL 
 p21 p12 p43 p34 p23 p32 

MIN 0.000188 0.963636 0.015503 0.096774 0.000016 0.000890 

MAX 0.002053 1.000000 0.272727 0.931464 0.002551 0.361111 
MEAN 0.000793 0.998997 0.054215 0.688747 0.000602 0.092536 

STD. DEV. 0.000527 0.005424 0.037093 0.259845 0.000609 0.106315 

 
Fig. 7 and Fig. 8 show the SMSE between the burst length 

and gap length distributions and their respective two-state and 
four-state models. The four-state model fits the distribution 
better than two-state model for most traces. In cases where 
SMSE is large (e.g., greater than 0.001 for the four-state gap 
length distribution of Fig. 8) the packet loss is low (e.g., lower 
than 0.23%), then the gap length distribution cannot be 
adequately sampled, a larger number of samples is necessary 
in these cases. Note that each one of these traces represents an 1-hour call. In shorter periods, where non-bursty losses are 
present, these can be modeled adequately by two-state model. 

VII.  CONCLUSION 

In this work, packet receipt and loss are modeled by discrete 
finite-state Markov chains. The packet loss rate, packet receipt 
rate and the distributions of burst length and gap length are 
described in terms of the Markov chain parameters, i.e., the 
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probabilities of transition between states. Algorithms for 
estimating the probabilities of transition for both two-state and 
four-state models, which are shown in Fig. 1 and Fig. 2, are 
presented. 
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Fig. 7: SMSE of two-state and four-state burst histogram for all traces 
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Fig. 8: SMSE of two-state and four-state gap histogram for all traces 

 
For modeling bursts and gaps of short communications, e.g. 

calls with a duration of a few minutes, the two-state model is 
sufficient; but for longer periods, the four-states model fits 
better. The performance of both models was evaluated by 
means of the SMSE of the burst length and gap length 
distributions, showing that although the two-state model fits 
adequately the burst length distribution, it cannot follow the 
slow decay of the gap length distribution of measurements. 

The traces for which the SMSE of the four-state model was 
higher (e.g., greater than 0.001) had very low loss rates (less 
than 0.23%), so the gap length distribution was not adequately 
sampled. 
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