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On convergence of affine thin plate bending element
Rado Flajs and Miran Saje

Abstract—In the present paper the displacement-based non-
conforming quadrilateral affine thin plate bending finite element
ARPQ4 is presented, derived directly from non-conforming quadri-
lateral thin plate bending finite element RPQ4 proposed by Wanji
and Cheung [19]. It is found, however, that element RPQ4 is only
conditionally unisolvent. The new element is shown to be inherently
unisolvent. This convenient property results in the element ARPQ4
being more robust and thus better suited for computations than its
predecessor. The convergence is proved and the rate of convergence
estimated. The mathematically rigorous proof of convergence pre-
sented in the paper is based on Stummel’s generalized patch test and
the consideration of the element approximability condition, which are
both necessary and sufficient for convergence.

Keywords—quadrilateral thin plate bending element, convergence,
generalized patch test

I. INTRODUCTION

D ISPLACEMENT-based thin plate bending finite ele-
ments are often employed in practical structural design

to model plate-like structures. Yet their theoretical formulation
is difficult because of the C1-continuity requirement across
finite element boudaries, which is hard to achieve. A possible
solution of this difficulty is the introduction of weaker C1-
continuity requirements, resulting in a non-conforming plate
bending element. Unfortunately, such a non-conforming ele-
ment need not be automatically convergent and its convergence
should be theoretically proved.

An example of an innovative non-conforming quadrilateral
thin plate bending finite element is element RPQ4, proposed
by Wanji and Cheung [19]. They employed a refined non-
conforming displacement field improved by the introduction
of the averaged constraint conditions of the inter-element
continuity, termed the ‘weak continuity conditions’ [19]. By
performing extensive numerical comparisons for a number of
different plate elements, the authors [19] draw the conclusion
that the element possesses high accuracy. They also checked
that element RPQ4 passes Irons’ numerical patch test [3], [16],
[18], [20], [22]. It is well known [12]–[15], however, that
Irons’ numerical patch test is neither necessary nor sufficient
condition for convergence.

According to Ciarlet [7] each finite element should satisy
the unisolvence condition. The essential drawback of element
RPQ4 is that the element may not satisfy this condition. This
may endanger the applicability of element RPQ4 for randomly
designed and/or very dense element meshes. The unisolvence
problem of element RPQ4 is in the present paper solved with a
proposed new affine non-conforming thin plate element termed
‘ARPQ4’, which is derived directly from the original element
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RPQ4 by introducing an affine transformation as described in
[10]. Such an element appears to be inherently unisolvent.

One of the objectives of the present paper is thus to present
a rigorous mathematical proof that necessary and sufficient
conditions for convergence of ARPQ4 element are satisfied
indeed. Our derivation of the proof is based on Stummel’s
generalized patch test [14] and the approximability condition
[7], [14], but is somewhat unusual [11] in order to incorporate
the specific type of the weak continuity conditions employed
in [19]. As also discussed by Wanji [20], the generalized patch
test is difficult to apply to a broad class of elements and should
normally be performed on each particular element. A rare
example of the convergence analysis according to Stummel’s
generalized patch test of a whole class of non-conforming
simplex elements is presented by Wang [18]. His findings
cannot be directly used for element ARPQ4, however, which
is due to a different element geometry and specific type of
the weak continuity conditions. See [21] for the approach in
this direction. In addition to the convergence proof, the error
estimates are also derived using partially the methodology of
Shi [11], Flajs et al. [9] and the inequalities derived by Brenner
and Scott [4].

Both convergence and error estimates as derived for element
ARPQ4 also hold true for its predecessor RPQ4, provided that
it is unisolvent. The modified element ARPQ4 is found not
only to be unconditionally unisolvent but, consequently, also
more robust and stable when compared to the original element
RPQ4.

The outline of the paper is as follows. In Sec. II-A,
element RPQ4 is briefly presented and Ciarlet’s mathematical
definition [7] of finite element is set up. In Sec. III the affine
finite element ARPQ4 is defined with the derived unisolvence
condition proof. The boundary problem to be solved is defined
in Sec. IV. The error is estimated in Sec. V, for each,
the consistency and the approximability terms. Numerical
examples are presented and discussed in Sec. VI. The paper
ends with Conclusions.

II. THIN PLATE FINITE ELEMENT RPQ4
Finite element RPQ4 is a non-conforming thin plate bend-

ing quadrilateral element (Fig. 1), developed directly in the
Cartesian coordinates and characterized by the satisfaction
of the so called ‘weak continuity of displacements on the
interelement boundaries’. The ideas behind the formulation
and the technical derivation of the stiffness matrix are fully
described in Wanji and Cheung [19] and will, thus, not be
repeated here. In what follows we somewhat generalize the
geometry of the element and assume that the shape of the
element should be convex.

In order to prove convergence and estimate the error of
finite element RPQ4, we have to recast the original equations
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Fig. 1. Quadrilateral thin plate bending finite element RPQ4 [19].

of Wanji and Cheung [19] into the form appropriate for our
convergence analysis. For this purpose the following notations
are introduced:

∂1• :=
∂•
∂x

, ∂2• :=
∂•
∂y

, ∂ij• :=
∂2•

∂xi ∂xj
, 1 ≤ i, j ≤ 2,

∂μ• :=
∂•
∂μ

, ∂τ• =
∂•
∂τ

, ∂α• ≡ ∂(α1,α2)• :=
∂(α1+α2)•
∂xα1∂yα2

,

X :=
[
1 x y x2 xy y2 x3 x2y xy2 y3 x3y xy3

]T
,

q :=
[
. . . wh(ai) ∂1wh(ai) ∂2wh(ai) . . .

]T
, 1 ≤ i ≤ 4

A :=

⎡⎢⎣An(a1)
...

An(a4)

⎤⎥⎦ , An((x, y)) :=

⎡⎣ XT

∂1X
T

∂2X
T

⎤⎦ . (1)

The derivatives in the above equations are understood in the
generalized sense, see [1]. X is the non-conforming interpo-
lation basis of the element, and q its vector of nodal degrees
of freedom qi, i = 1 . . . 12; a1, . . . ,a4 are the position vectors
of the nodal points. Let the origin of the Cartesian coordinate
system (x, y), in Figs. 1, 2, 3 denoted by (x1, x2), be the
geometric center T of the quadrilateral Q. The components of
the outer normal of its border ∂Q in x and y directions are
denoted by μ1 and μ2, respectively (Fig. 1). The area of the
quadrilateral is denoted by |Q|. Let wh|Q denote the non-
conforming displacement approximation described by basis
X , and vh|Q the Wanji and Cheung refined non-conforming
displacement approximation on Q given by [19]

vh|Q := wh|Q + λ1
x2

2
+ λ2

y2

2
+ λ3

xy

2
= wh|Q + ΛQ

= XT A−1 q + ΛQ.

(2)

Constants λ1, λ2 and λ3 are determined from the weak
continuity conditions [19] resulting in⎡⎣λ1

λ2

λ3

⎤⎦ =
1

|Q|
∫
∂Q

⎛⎝∂̃μwh

⎡⎣ μ2
1

μ2
2

2μ1μ2

⎤⎦+ ∂̃τwh

⎡⎣−μ1μ2

μ1μ2

μ2
1 − μ2

2

⎤⎦⎞⎠ ds

− 1

|Q|
∫
Q

⎡⎣ ∂11wh

∂22wh

2 ∂12wh

⎤⎦ dx.

(3)

Functions ∂̃τwh and ∂̃μwh denote a piecewise linear or
parabolic interpolation of the tangential derivative and a
piecewise linear interpolation of the normal derivative on the
border ∂Q, respectively, interpolated solely by the nodal values
qi, i = 1, . . . , 12. With such a choice of constants λ1, λ2 and
λ3, the approximation functions fulfill the weak continuity
conditions as introduced in [19, Eq. (1)]:∫

Q

∂11vh dx−
∫
∂Q

(
∂̃μwh μ

2
1 − ∂̃τwh μ1μ2

)
ds = 0,∫

Q

∂22vh dx−
∫
∂Q

(
∂̃μwh μ

2
2 + ∂̃τwh μ1μ2

)
ds = 0,∫

Q

2 ∂12vh dx −

−
∫
∂Q

(
2 ∂̃μwh μ1μ2 + ∂̃τwh (μ

2
1 − μ2

2)
)
ds = 0.

(4)

The finite element was shown numerically to pass Irons’ patch
test [19].

Remark 2.1: Note that the refined displacement vh is non-
conforming both across the boundaries of the elements and in
the nodal points.

The first step in proving convergence is the introduction of
Ciarlet’s mathematical definition of the finite element [7, p.
78].

A. Finite element (Q,PQ,ΦQ)

Let Vh denote a finite element space, Vh|Q := PQ ⊂
P3(Q) ⊕ L {x3 y, x y3}, u∗

h a finite element approximation
of the weak solution, u∗ the weak solution, v an arbitrary
function and Wm

2 (Q) ≡ Hm(Q) the Sobolev spaces with
norms ‖ · ‖m,2,Q ≡ ‖ · ‖m,Q and subnorms | · |m,2,Q ≡ | · |m,Q

for 0 ≤ m ≤ 4.
With the help of Eqs. (2) and (3) it is easy to show that

∂̃αvh − ∂αvh = ∂̃αwh − ∂αwh, α ∈ {μ, τ}. (5)

The above relations hold true for both linear and parabolic
interpolation of ∂αwh on the element border. Consequently,
we have λi(wh) = λi(vh), 1 ≤ i ≤ 3. We introduce two sets
of linear functionals, ΣQ := {ϕi ≡ ϕQ

i , i = 1, ..., 12} and
ΦQ := {φi ≡ φQ

i , i = 1, ..., 12}, as

ϕ3 i−2(wh) := wh(ai) = q3 i−2 =

= vh(ai)− ΛQ(ai) =: φ3 i−2(vh), 1 ≤ i ≤ 4,

ϕ3 i−1(wh) := ∂1wh(ai) = q3 i−1 =

= ∂1vh(ai)− ∂1ΛQ(ai) =: φ3 i−1(vh), 1 ≤ i ≤ 4,

ϕ3 i(wh) := ∂2wh(ai) = q3 i =

= ∂2vh(ai)− ∂2ΛQ(ai) =: φ3 i(vh), 1 ≤ i ≤ 4.

By Ciarlet’s definition of a finite element [7], the set ΦQ must
be PQ–unisolvent in the following sense: given any real scalars
αi, i = 1, . . . , 12, there exists a unique function p ∈ PQ which
satisfies the conditions

φi(p) = αi, 1 ≤ i ≤ 12 (6)

[7, p. 78].
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Remark 2.2: The proof of unisolvence becomes straightfor-
ward, if the following lemma is proved first. This lemma will
convert the PQ–unisolvence problem of the set ΦQ into the
PQ–unisolvence problem of the set ΣQ, which is equivalent
to requiring the regularity of the interpolation matrix A.

Lemma 2.3: Let the space P ′
Q denote an algebraic dual of

space PQ. The set ΦQ is the base for P ′
Q, if and only if the

set ΣQ is the base for P ′
Q.

Proof: Let the set ΣQ be the base for P ′
Q. Since ϕi(wh) =

φi(vh) = 0 for i = 1, ..., 12, we have wh = 0. Hence we can
conclude from Eqs. (2) and (3) that vh = 0. Lemma 3.1.4
in [4] then guarantees that the set ΦQ is the base. Similarly,
invoking Eq. (5), we can prove that if the set ΦQ is the base,
the set ΣQ is also the base.

Element RPQ4 [19] is inherently prone to singularity of
the interpolation matrix A if convex or non-convex. One
such example of a convex quadrilateral having a singular
interpolation matrix A is the rhombus. Note that in [19] the
possibility of the singularity of the interpolation matrix was
not explicitly mentioned.

In order to exclude the degenerate convex quadrilaterals, we
require

Condition 2.4:
hQ

�Q
≤ c�,

| cos θ| ≤ cθ < 1, for any angle θ from Q

must hold for all Q ∈ Qh [6].
In the convergence proof we will need a constant γ intro-

duced by
Condition 2.5: Let hQ and �Q denote the diameter of

quadrilateral Q and the length of the shortest side on the
border ∂Q, respectively. Suppose that Q is star–shaped with
respect to the ball BQ with radius ρQ := sup{diam(ball S),
S ⊂ Q, ∀x ∈ Q ∀y ∈ S ∀λ ∈ [0, 1] ⇒ (1− λ)x+ λy ∈ Q}.
Then we can define the chunkiness parameter cρ :=

hQ

ρQ
and

parameter c� :=
hQ

�Q
. We assume that some constant γ exists

for which the following inequality holds

max (∪Q∈Qh
max(cρ, c�)) ≤ γ.

Let Nh, Qh, Qh(a) and Q1(a) denote the set of all
vertices, the set of all quadrilaterals, the set of quadrilaterals
with common vertex a and the first quadrilateral from the
set Qh(a), respectively. For a quadrilateral Q with nodes
a1,a2,a3,a4, we rewrite the set of linear functionals as
ΦQ =: {φQ

aj ,k
, j = 1, . . . , 4, k = 1, . . . , 3}. We can now

define the finite element space

Xh :=

⎧⎨⎩vh ∈
∏

Q∈Qh

PQ, ∀a ∈ Nh, ∀Qi, Qj ∈ Qh(a),

∀k, φQi

a,k(vh|Qi
) = φ

Qj

a,k(vh|Qj
)
}

and the related set of linear functionals

Φh := {φa,k = φ
Q1(a)
a,k ,a ∈ Nh, 1 ≤ k ≤ 3}.

Next we employ the dual functions pa,k from Vh for function-
als φa,k, on the open set Ωh = Ω − ∪Q∈Qh

∂Q, and define

the interpolation operator

Ih : v �→
∑

a∈Nh,1≤k≤3

φa,k(v) pa,k.

III. AFFINE THIN PLATE FINITE ELEMENT ARPQ4
A potential singularity of the interpolation matrix is a

serious drawback of element RPQ4. In this section we derive
an improved finite element ARPQ4, marked as ‘an affine
modification of element RPQ4’, which is free of singularity
for any non-degenerate convex quadrilateral. This is achieved
by the introduction of the affine equivalent quadrilaterals [10],
as discussed in the sequel.

A. Reference quadrilateral Q̂
Quadrilateral Q from set Qh is called the affine equivalent

quadrilateral with respect to its reference quadrilateral Q̂ [10],
if it is obtained by the affine mapping

F : x̂ �→ B x̂+ b = x,

where the matrix B, the shift vector b and the node displace-
ment vector d (Fig. 2) take the forms

B =
1

4

[
a1 − a3 − a2 + a4, a1 − a3 + a2 − a4

]
,

b =
1

4
(a1 + a2 + a3 + a4),

d =
1

4
B−1 (a1 + a3 − a2 − a4).

(7)

x̂1

x̂2

x1

x2

d
−d

d

−d

1

1

â1

â2

â3

â4

Q̂

a1 a2

a3

a4

Q affine mapping

Fig. 2. Affine equivalent quadrilaterals.

Lemma 3.1: For the bisection scheme of mesh subdivisions
[11], the norm |d| is of order O(h).

Proof: Let us denote A := 4B and bm := a1 + a3 −
a2 − a4. Then we can write d = A−1 bm. It is easy to see
that |A|

4 is exactly the area |Q| of quadrilateral Q, and |bm|
2 is

the distance between the midpoints of diagonals. The distance
between the midpoints of diagonals of Q ∈ Qh is of order
O(h2) uniformly for all quadrilaterals, if mesh is designed by
the bisection scheme of the mesh subdivision [11]. For such
a kind of a mesh subdivision, the area is of order O(h2), i.e.
|Q| ≥ c(γ)h2. This implies that |d| is of order O(h).

Let us write the components of vector d explicitly. We get
(see Fig. 3)

d1 =
(x1 − x4)(y2 − y3)− (x2 − x3)(y1 − y4)

(x4 − x2)(y1 − y3) + (x1 − x3)(y2 − y4)
=

2 |T023|
2 |Q| ,

d2 =
(x4 − x3)(y1 − y2) + (x1 − x2)(y3 − y4)

(x4 − x2)(y1 − y3) + (x1 − x3)(y2 − y4)
=

−2 |T012|
2 |Q| .

(8)
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If the quadrilateral is a trapezoid or a parallelogram, one or
two components of vector d are zero.

x1

x2

a1 a2

a3

a4

a0

Q

T012

T023

Fig. 3. Convex quadrilateral Q.

B. Function vh and its derivatives

With the notations e1 =
[
1 0

]T
, e2 =

[
0 1

]T
, β =[

β1, . . . , β12

]T
, Dwh(a) =

[
∂wh(a)

∂x
∂wh(a)

∂y

]T
, Dŵh(â) =[

∂ŵh(â)
∂x̂

∂ŵh(â)
∂ŷ

]T
, X̂T =

[
1, . . . , x̂ŷ3

]
,

q̂ =
[
ŵh(â1), . . . ,

∂ŵh(â4)
∂ŷ

]T
and Â =

⎡⎢⎣Ân(â1)
...

Ân(â1)

⎤⎥⎦, where

Ân((x̂, ŷ)) :=

⎡⎣ X̂T

∂1̂X̂
T

∂2̂X̂
T

⎤⎦ ,

we can define, as in [10], the non-conforming displacement
approximation in the affine equivalent quadrilateral Q by

wh(x) := wh(F (x̂)) = (wh ◦ F )(x̂) = ŵh(x̂) =

= X̂T β = X̂T Â−1q̂

and, additionally, the refined non-conforming displacement
approximation [19]

vh(x) := wh(x) +
1

2

[
x2 y2 xy

] [
λ1 λ2 λ3

]T
=

= X̂T Â−1q̂ +
1

2

[
x2 y2 xy

]
(Bc q −B0 q).

Employing the result of Ciarlet [7, p. 86] we can write

∂iwh(x) = Dŵh
T (x̂)B−1 ei, 1 ≤ i ≤ 2,

∂ijwh(x) = eTi (B−1)T D2ŵh(x̂)B
−1 ej , 1 ≤ i, j ≤ 2.

Inserting the above expressions into q̂ gives

q̂ =

⎡⎢⎢⎢⎢⎢⎣
ŵh(â1)
Dŵh(â1)

...
ŵh(â4)
Dŵh(â4)

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
wh(a1)

BT Dwh(a1)
...

wh(a4)
BT Dwh(a4)

⎤⎥⎥⎥⎥⎥⎦ =

=

⎡⎢⎢⎢⎢⎢⎣
1

BT

. . .
1

BT

⎤⎥⎥⎥⎥⎥⎦ q =: BA q.

Thus we have derived

ŵh(x̂) = X̂T Â−1 BA q.

C. Unisolvence proof

After a short calculation we have

|Â| = 220 ((d1 − d2)
2 − 1) · ((d1 + d2)

2 − 1) · (d21 + d22 − 1)·
· ((d21 + d22 − 1)2 + 4 d21 d

2
2

)
,

(9)

which shows that the bisection scheme of mesh subdivision
preserves the regularity of the matrix Â. In fact, the matrix Â
remains nonsingular for every non-degenerate convex quadri-
lateral Q, as clearly observed from Eq. (8) and Fig. 3.

1) Estimate of the determinant of the interpolation matrix
Â: Let us denote the side lengths and the lengths of the
diagonals of a convex quadrilateral with a, b, c, d, p and q,
respectively. From Brethschneider’s formula

|Q| = 1

4

√
4 p2 q2 − (b2 + d2 − a2 − c2)2,

Fig. 3, Eqs. (8) and inequality c� ≥
√
2 we have

|d1|+|d2| = 1− |Q0341|
|Q| ≤ 1− �2Q

√
1− c2θ
|Q| ≤ 1− 2

√
1− c2θ
c2�

,

d21 + d22 ≤ (|d1|+ |d2|)2

≤ 1− 4

√
1− c2θ
c2�

+ 4
1− c2θ
c4�

≤ 1− 4
1− c2θ
c4�

and

1−max((d1 − d2)
2, (d1 + d2)

2, d21 + d22) ≥
≥ 1− (|d1|+ |d2|)2 ≥ 4

1− c2θ
c4�

.

The above inequalities are inserted into Eq. (9) yielding

abs(|Â|) ≥ 210
(

2

c�

)20

(1− c2θ)
5. (10)

The lower bound is attained only in the case of a square mesh.
Using the equations from Sec. V one can easily connect the

constants γ, c� and cθ from Conditions 2.4 and 2.5 respectively
by Eq.

γ = max

(
c�,

1√
1− c2θ

)
.
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D. Derivation of matrices Bc and B0

The choice of the interpolation for wh over the element does
not affect the derivation of matrices Bc and B0. Consequently,
matrices Bc and B0 remain formally as in [19]

Bc q =
1

|Q|
∫
∂Q

⎛⎝∂̃μwh

⎡⎣ μ2
1

μ2
2

2μ1μ2

⎤⎦+ ∂̃τwh

⎡⎣−μ1μ2

μ1μ2

μ2
1 − μ2

2

⎤⎦⎞⎠ ds,

B0 q =
1

|Q|
∫
Q

⎡⎣ ∂11wh

∂22wh

2 ∂12wh

⎤⎦ dx.

Moreover, since matrix Bc depends on q only, it is identical
to the expression for Bc of element RPQ4 [19].

One can construct ARPQ4 finite element (Q,PQ,ΦQ) fol-
lowing the same steps as in Sec. II-A.

IV. BOUNDARY VALUE PROBLEM

We seek the weak solution u∗ for the deflection of the thin
clamped plate subjected to a given surface load f

a(u∗, v) = (f, v), u∗, v ∈ V := H2
0 (Ω),

where

a(u, v) =

∫
Ω

(
νΔuΔv + (1− ν)

2∑
i=1,j=1

∂iju ∂ijv
)
dx,

(f, v) =

∫
Ω

f v dx, f ∈ L2(Ω).

Its non-conforming approximation u∗
h ∈ Vh := X00h :=

{vh ∈ Xh, ∀a ∈ ∂Ω, φa,k(vh) = 0, 1 ≤ k ≤ 3} is obtained
by the solution of the variational equation

ah(u
∗
h, vh) = (f, vh), u∗

h, vh ∈ Vh,

where

ah(uh, vh) =
∑

Q∈Qh

∫
Q

(
νΔuhΔvh+

+ (1− ν)

2∑
i=1,j=1

∂ijuh∂ijvh

)
dx,

(f, vh) =

∫
Ω

f vh dx, f ∈ L2(Ω).

Here, ν ∈ [0, 1
2 ] is Poisson’s coefficient of material.

V. CONVERGENCE AND ERROR ESTIMATE

According to the second Strang Lemma [5]

‖u∗ − u∗
h‖2,h ≤ c

(
inf

vh∈Vh

‖u∗ − vh‖2,h+

+ sup
vh∈Vh

|(f, vh)− ah(u
∗, vh)|

‖vh‖2,h

)
,

the error of the weak non-conforming solution consists of
two parts, i.e. the error of approximation and the error of the
consistency term. In what follows each part will be estimated
separately [9]. The error of the consistency term will be
estimated with the help of Stummel’s generalized patch test
[14].

Let h denote the largest diameter of all quadrilaterals in
quasi-uniform quadriangulation Qh of polygonal domain Ω.
Let c denote a generic constant independent on h, which may
have different values at different places. For each quadrilateral
Q we introduce the quadrilateral Q̂ with the same shape, yet
with the diameter hQ̂ being equal to 1.

A. Error estimate of the consistency term

According to [14], [18] the sequence {Vh}∪H2
0 (Ω) passes

the generalized patch test if and only if

lim
h→0

Tα,i(ψ, vh) := lim
h→0

∑
Q∈Qh

TQ
α,i(ψ, vh) =

= lim
h→0

∑
Q∈Qh

∫
∂Q

ψ ∂αvh μi ds = 0

for all i = 1, 2, all |α| ≤ 1, all bounded sequences
{Vh} and all ψ ∈ C∞(Ω). We employ the operators
P0 : v �→ Q1 v :=

∫
BQ

v(x)φ(x) dx, R0 : v �→ v −Q1 v and
R̂0 : v̂ �→ v̂ − Q̂1 v̂, where we have used the cut-off function
φ (suppφ ∈ BQ,

∫
R2 φ(x) dx = 1) [4, p. 97]. Introducing the

affine mapping FQ : x̂ �→ hQ x̂ one can write v := v̂ ◦ F−1
Q ,

Q1 v := Q̂1v̂ ◦ F−1
Q .

Let us define the border interpolation functions

∂̃1wh := μ1 ∂̃μwh−μ2 ∂̃τwh, ∂̃2wh := μ2 ∂̃μwh+μ1 ∂̃τwh.

We have to estimate the following terms:

T(0,0),i(ψ, vh) = Ti(ψ, vh),

T(1,0),i(ψ, vh) = Ti(P0ψ, ∂1vh − ∂̃1wh) + Ti(ψ, ∂̃1wh)+

+ Ti(R0ψ, ∂1wh − ∂̃1wh + ∂1Λ),

T(0,1),i(ψ, vh) = Ti(P0ψ, ∂2vh − ∂̃2wh) + Ti(ψ, ∂̃2wh)+

+ Ti(R0ψ, ∂2wh − ∂̃2wh + ∂2Λ).
(11)

Using the relations dx = −μ2 ds, dy = μ1 ds, the Green
formula and Eq. (12),[

∂μwh

∂τwh

]
=

[
μ1 μ2

−μ2 μ1

] [
∂1wh

∂2wh

]
,[

∂1wh

∂2wh

]
=

[
μ1 −μ2

μ2 μ1

] [
∂μwh

∂τwh

]
,

(12)

we can rewrite Eqs. (4) as

TQ
1 (1, ∂1vh − ∂̃1wh) :=

∫
∂Q

∂1vhμ1 ds−
∫
∂Q

∂̃1wh μ1 ds = 0,

TQ
2 (1, ∂2vh − ∂̃2wh) :=

∫
∂Q

∂2vhμ2 ds−
∫
∂Q

∂̃2wh μ2 ds = 0,∫
∂Q

(
2 ∂1vhμ2 −

(
∂̃1wh μ2 + ∂̃2wh μ1

))
ds

=: 2TQ
2 (1, ∂1vh − ∂̃1wh)−

∫
∂Q

∂̃τwh ds,∫
∂Q

(
2 ∂2vhμ1 −

(
∂̃1wh μ2 + ∂̃2wh μ1

))
ds

=: 2TQ
1 (1, ∂2vh − ∂̃2wh) +

∫
∂Q

∂̃τwh ds.
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In order to estimate the first and the second terms in the
second and in the third equation, we have to estimate the
term

∫
∂Q

∂̃τwh ds. A short derivation shows that the sum∑
Q∈Qh

∫
∂Q

ψ ∂̃τwh ds vanishes for both linear (LITD) and
parabolic (PITD) interpolations of the tangential derivative.
The difference function ˜∂τwhd between the parabolic and
linear interpolations of the tangential derivative gives∑

Q∈Qh

∫
∂Q

ψ ∂̃τwh ds =
∑

Q∈Qh

∫
∂Q

ψ ˜∂τwhd ds = 0.

Remark 5.1: From relations Ti(1, ∂jvh) = 0, 1 ≤ i, j ≤
2, which hold for all vh ∈ VP0 := {vh ∈ Vh, ∀a ∈
∂(∪Q∈QP

Q), φa,k(vh) = 0, 1 ≤ k ≤ 3}, it immediately
follows ∑

Q∈QP

∫
Q

∂αvh dx = 0 ∀vh ∈ VP0, |α| = 2.

So, according to [18, Lemma 4.1], the element passes Irons’
patch test.

Now we can estimate the first term in both the second and
the third equation of Eqs. (11). We write

T2(P0ψ, ∂1vh − ∂̃1wh) =
∑

Q∈Qh

TQ
2 (P0ψ, ∂1vh − ∂̃1wh)

=
1

2

∑
Q∈Qh

∫
∂Q

P0ψ ∂̃τwh ds

=
1

2

∑
Q∈Qh

∫
∂Q

(ψ −R0ψ) ˜∂τwhd ds

= −1

2

∑
Q∈Qh

∫
∂Q

R0ψ ˜∂τwhd ds

and derive the estimate:

|T2(P0ψ, ∂1vh − ∂̃1wh)| ≤
∑

Q∈Qh

|R0ψ|0,2,∂Q | ˜∂τwhd|0,2,∂Q

≤
∑

Q∈Qh

c(γ)|ψ|1,2,Q h
1
2

Q |wh|3,∞,Q h
5
2

Q

≤
∑

Q∈Qh

c(γ)|ψ|1,2,Q |vh|2,2,Q hQ.

In order to estimate the remaining terms, we first introduce
the node numbering function, N : ai �→ Nai, and function
w̃h:

w̃h|aiaj
:=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

whi + wh
′
iτ + τ2

2L

(
wh

′
j − wh

′
i

)
,
Nai < Naj ,
(LITD),

whj − L (wh
′
i+wh

′
j)

2 +

+wh
′
iτ + τ2

2L

(
wh

′
j − wh

′
i

)
,

Nai > Naj ,
(LITD),

whi + wh
′
iτ−

− τ2

L2

(
2wh

′
i L+ wh

′
j L+ 3whi − 3whj

)
− τ3

L3

(−wh
′
i L− wh

′
j L− 2whi + 2whj

)
,

(PITD),

where L denotes the length of the side aiaj , wh
′
j :=

∂τwh(aj) and whj := wh(aj) for 1 ≤ i, j ≤ 4. The function
w̃h, defined above, has the nice property ∂τ w̃h = ∂̃τwh. With

the help of the function w̃h we split the first term into the sum
of three terms:

Ti(ψ, vh) = Ti(ψ, w̃h) + Ti(P0ψ,wh − w̃h + Λ)

+ Ti(R0ψ,wh − w̃h + Λ).

Because of conformity of the function w̃h, the first term
vanishes; thus the remaining two terms only need be elaborated
upon:

Ti(P0ψ,wh − w̃h + Λ)

=
∑

Q∈Qh

∫
∂Q

P0ψ (wh − w̃h + ΛQ)μi ds

≤
∑

Q∈Qh

P0ψ h
1
2

Q (|wh − w̃h|0,2,∂Q + |ΛQ|0,2,∂Q)

≤
∑

Q∈Qh

c(γ) |ψ|0,2,Q h
−1
2

Q

(
|wh|3,∞,Q h

7
2

Q +
∑
k

|λk|0,∞,Q h
5
2

Q

)

≤ c(γ)
∑

Q∈Qh

|ψ|0,2,Q h
−1
2

Q |wh|3,∞,Q h
7
2

Q

= c(γ)
∑

Q∈Qh

|ψ|0,2,Q |vh|3,∞,Q h3
Q

≤ c(γ)
∑

Q∈Qh

|ψ|0,2,Q ‖vh‖2,2,Q hQ,

(13)

Ti(R0ψ,wh − w̃h + Λ)

=
∑

Q∈Qh

∫
∂Q

R0ψ (wh − w̃h + ΛQ)μi ds

≤
∑

Q∈Qh

|R0ψ|0,2,∂Q(|wh − w̃h|0,2,∂Q + |ΛQ|0,2,∂Q)

≤
∑

Q∈Qh

c(γ) |ψ|1,2,Q h
1
2

Q

(
|wh|3,∞,Q h

7
2

Q +
∑
k

|λk|0,∞,Q h
5
2

Q

)
≤ c(γ)

∑
Q∈Qh

|ψ|1,2,Q ‖vh‖2,2,Q h2
Q.

(14)

The last terms of the second and the third equations of Eq.
(11) are estimated in a similar way:

Ti(R0ψ, ∂jwh − ∂̃jwh + ∂jΛ)

=
∑

Q∈Qh

∫
∂Q

R0ψ (∂jwh − ∂̃jwh + ∂jΛQ)μi ds

≤
∑

Q∈Qh

|R0ψ|0,2,∂Q
(
|∂jwh − ∂̃jwh|0,2,∂Q + |∂jΛQ|0,2,∂Q

)
≤
∑

Q∈Qh

c(γ) |ψ|1,2,Q h
1
2

Q

(
|wh|3,∞,Q h

5
2

Q +
∑
k

|λk|0,∞,Q h
3
2

Q

)
≤ c(γ)

∑
Q∈Qh

|ψ|1,2,Q ‖vh‖2,2,Q hQ.

(15)

In the second and the third inequalities of Eq. (15), we
have used the Sobolev Imbedding Theorem [1], Friedrichs’
inequality [4], [17] and the inverse inequality [4, Lemma
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4.5.3]. Employing the integration by parts or the equivalent
procedure from [5, p. 376] we can write the error functional
Eh in the form

Eh(u
∗, vh) := (f, vh)− ah(u

∗, vh)

=
∑

Q∈Qh

∫
∂Q

∂νΔu∗ vh + (1− σ)∂ντu
∗∂τvh ds

−
∑

Q∈Qh

∫
∂Q

(
Δu∗ − (1− σ)∂ττu

∗)∂νvh ds.
With the help of the inequalities (13), (14) and (15) we finally
derive the estimate of the error of the consistency term

|Eh(u
∗, vh)| ≤ c h (‖u∗‖3,h + h ‖u∗‖4,h) ‖vh‖2,h (16)

valid for all u∗ ∈ H4(Ω).

B. Estimate of the approximability term

Let us first adapt Definition 4.4.2 and Theorem 4.4.4 from [4]
to obtain the form suitable for the present purposes.

Lemma 5.2: Let (Q,P,Φ) be a finite element satisfying
(i) Q is star-shaped with respect to some ball, such that

|Â| ≥ c(γ), (17)

(ii) P2 ⊂ P ⊂ W 3
∞(Q) and

(iii) Φ ⊂ (C1(Q))′.
Assume p = 2. Then for 0 ≤ i ≤ 2 and v ∈ W 3

2 (Q) we have

|v − Ih v|i,2,Q ≤ Cγ,σ(Q̂)h
3−i
Q |v|3,2,Q,

where Q̂ := { x
hQ

, x ∈ Q}, a constant Cγ,σ(Q̂) is dependent
on parameter γ, introduced in Condition 2.5, and σ(Q̂) is the
operator norm of Îh : W 3

2 (Q̂) → C1(Q̂).
Let us point out that the interpolation operator Îh is well

defined on W 3
2 (Q̂). This follows from the Sobolev Imbedding

Theorems. Our aim is to estimate the norm σ(Q̂) of operator
Îh : W 3

2 (Q̂) → C1(Q̂). For the sake of simplification
of notation, we skip the hat over symbols. Employing the
inequalities

‖Ih u‖3,2,Q ≤
12∑
i=1

|φi(u)| ‖pi‖3,2,Q ≤

≤
12∑
i=1

‖φi‖W 3
2 (Q)′ ‖pi‖3,2,Q ‖u‖3,2,Q

gives

σ(Q) ≤
12∑
i=1

‖φi‖W 3
2 (Q)′ ‖pi‖3,2,Q . (18)

Next we show that the norm σ(Q) is uniformly bounded for
all quadrilaterals Q. As has been shown by Ciarlet [5] and
Adams [1], the identity from W 3

2 (Q) to C1(Q) is uniformly
continuous. First we estimate the norm ‖φi‖W 3

2 (Q)′ :

|φi(v)| ≤ c ‖v‖1,∞,Q ≤ c ‖v‖3,2,Q, 1 ≤ i ≤ 12. (19)

From Eq. (19) it immediately follows that the norms
‖φi‖W 3

2 (Q)′ are bounded from above by the constant c = c(γ).

Eq. (17) assures that the base functions pi are also bounded.
Thus we have

Lemma 5.3: The base functions pi are bounded:

‖pi‖3,2,Q ≤ c(γ), 1 ≤ i ≤ 12. (20)

In order to achieve the ellipticity we must prove
Lemma 5.4: The seminorm v �→ ‖v‖2,h :=(∑
Q∈Qh

|v|22,2,Ω
) 1

2

is a norm.
Proof: We will show that ‖vh‖2,h = 0 implies vh = 0.

From ‖vh‖2,h = 0 it follows that ∂j(vh|Q) is constant
for each Q ∈ Qh and 1 ≤ j ≤ 2. Thus the function
ΛQ = ΛQ(∂αwh − ∂̃αwh) = ΛQ(∂αvh − ∂̃αvh) vanishes and,
consequently, vh|Q = wh|Q for each Q ∈ Qh.

Considering the zero boundary conditions and the continuity
of the directional derivatives ∂jwh yields ∂j(wh|Q) = 0 for
each Q ∈ Qh and 1 ≤ j ≤ 2. Thus the function wh|Q is
constant for each Q ∈ Qh.

Similarly, considering the zero boundary conditions and the
continuity of the functions wh yields wh|Q = 0 for each Q ∈
Qh. This implies that the function vh|Q is zero for each Q ∈
Qh.

Taking into account the second Strang Lemma [5], the error
functional estimate (16), the estimate of the approximability
term (Lemma 5.2), and Eqs. (18), (19) and (20), one can finally
derive the estimate of the error in the energy norm:

‖u∗ − u∗
h‖2,h ≤ c h (‖u∗‖3,h + h ‖u∗‖4,h).

Thus, the error in the energy norm decreases at least linearly
with h for all u∗ ∈ H4(Ω).

Remark 5.5: Combining the steps of the derivations above
with the ideas from [11] we can derive the same error estimate
for weak solutions of other fourth–order V –elliptic boundary
value problems.

VI. NUMERICAL EXAMPLES

The theoretically derived error estimate is also verified
numerically. We study the convergence behaviour of a thin
clamped plate, subjected to the variable surface load f :
(x, y) �→ 8 (10−18 y2+3 (x4+y4+6x2 (−1+2 y2))), defined
on Ω = [−1, 1]× [−1, 1]. Poisson’s ratio is taken to be ν = 1

3 .
The related analytical solution is u∗ = (x2 − 1)2 (y2 − 1)2.
In Sec. VI-A we show that the numerical results confirm the
theoretically predicted linear convergence. In Sec. VI-B we
show that the newly derived element ARPQ4 is more robust
and thus more convenient for practical computations.

A. Rate of convergence

Two different series of meshes (a) and (b) (Fig. 4) and
elements RPQ4 and ARPQ4 with the linear variation of dis-
placement derivative along the sides of the element have been
employed in the convergence analysis. The refined meshes
have been constructed by the bisection dividing scheme [11].
Ten meshes with h ≈ 1.9, . . . , 0.004 have been applied
with the related number of linear equations ranging from
3 (22 − 1)2 = 27 to 3 (210 − 1)2 = 3139 587. The decrease
of the actual error of the solution in the energy norm with



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:6, No:8, 2012

1739

y

x
−1 0.2 1

−0.1

−1

−0.2

1

−0.1

(0.3,0.3)

y

x
−1 0 1

0

−1

0

1

0

(−0.5,0.2)

y

x
−1 0.2 1

−0.1

−1

−0.2

1

−0.1

(a)

y

x
−1−0.5 0 0.5 1

−0.5 0 0.5

−1

−0.5

0

0.5

1

−0.5

0

0.5

(b)

Fig. 4. Initial and the first refined meshes constructed by the bisection
dividing scheme [11].
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Fig. 5. Error in energy norm.

the decrease of h for elements RPQ4 and ARPQ4 is depicted
in Fig. 5 for the range of h’s from h ≈ 1.9 to h ≈ 0.004.
There RPQ4 denotes the original RPQ4 element by Wanji and
Cheung [19] and the ARPQ4 denotes its affine version derived
in the present paper. Observe that the actual error in the energy
norm decreases linearly with h for element ARPQ4 and for
both meshes, exactly as predicted theoretically. The results of
the RPQ4 element for small values of h, which do not fall on
the straight line, are discussed in the next section.

B. Condition number of the structure stiffness matrix

Both theoretical and numerical results for finite element
ARPQ4 show that the accuracy of the solution monotonically
increases, if the number of finite elements grows.

Clearly, with the increasing number of equations the con-
dition number of the structure stiffness matrix increases, too.
The analysis of the present numerical examples has shown
that the condition numbers of the stiffness matrices range
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Fig. 6. Ratios of stiffness matrix condition numbers.

from, roughly, 102 to 1012, if applying the newly proposed
element ARPQ4. The condition numbers of the related RPQ4
stiffness matrices increase much faster, see Fig. 6, where the
ratios of the stiffness matrix condition numbers of elements
ARPQ4 and RPQ4 are presented for each h. There the
condition numbers of elements ARPQ4 and RPQ4 are denoted
by condest(ARPQ4) and condest(RPQ4), respectively. The
condition numbers were estimated by the MATLAB function
condest. As clearly seen from Fig. 6, the condition number
ratios grow from, approx., 1 to 108, which indicates that the
condition numbers of element RPQ4 grow from, approx. , 102

to 1020, where the complete lost of the accuracy of solution
is observed (see Figs. 5). Hence in almost every step of the
bisection dividing algorithm, the condition number of RPQ4
structure stiffness matrix increases roughly by factor 7 or more
regarding to the condition number of the ARPQ4 structure
stiffness matrix. This indicates the important computational
advantage of element ARPQ4 over element RPQ4. Note,
however, that in case of square element meshes, the condition
numbers of structure matrices do not differ.

VII. CONCLUSION

In the present paper we have proved convergence and
estimated the rate of convergence of new non-conforming
affine quadrilateral thin plate bending finite element ARPQ4
derived directly from the finite element RPQ4 proposed by
Wanji and Cheung [19].

Our mathematically rigorous proof of convergence is based
on Stummel’s generalized patch test [14] and the consideration
of the element approximability condition [7], which are both
necessary and sufficient for convergence.

This new element has theoretically the same convergence
characteristics as its predecessor, RPQ4, only that it is uncon-
ditionally unisolvent.

This convenient property of the new element helps to reduce
the condition number of the structure stiffness matrices and
consequently results in the element being more robust and
thus better suited for highly refined finite element meshes.
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