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Abstract—In this work, we present a comparison between 
different techniques of image compression. First, the image is 
divided in blocks which are organized according to a certain scan. 
Later, several compression techniques are applied, combined or 
alone. Such techniques are: wavelets (Haar's basis), Karhunen-Loève 
Transform, etc. Simulations show that the combined versions are the 
best, with minor Mean Squared Error (MSE), and higher Peak Signal 
to Noise Ratio (PSNR) and better image quality, even in the presence 
of noise. 

Keywords—Haar's basis, Image compression, Karhunen-Loève 
Transform, Morton's scan, row-rafter scan. 

I. INTRODUCTION

ODERN image compression techniques often involve 
Discrete Wavelet Transform (DWT) [1-18] with 

different scans for the wavelets subbands [19-26] and 
Karhunen-Loève Transform (KLT) [27-29]. While DWT is 
applied to image compression [8-11,13-16], KLT is applied in 
image decorrelation [30-34], that is to say, KLT is used inside 
compression techniques of several images with a high degree 
of mutual correlation, for example, frames of medical images 
[35], video [36, 37], and multi [30, 32-34] and hyperspectral 
imagery [38-40]. 

Many efforts have been made in the recent years in order to 
compress efficiently such data sets. The challenge is to have a 
data representation which takes into account at the same time 
both the advantages and disadvantages of KLT [29], for a 
most efficient compression based on an optimal decorrelation. 

Several authors have tried to combine the DWT with the 
KLT but with questionable success [1], with particular interest 
to  multispectral imagery [30, 32, 34].

In all cases, the KLT is used to decorrelate in the spectral 
domain. All images are first decomposed into blocks, and each 
block uses its own KLT instead of one single matrix for the 
whole image. In this paper, we use the KLT for a 
decorrelation between sub-blocks resulting of the applications 
of a DWT with different scans, that is to say, in the wavelet 
domain. 

We introduce in this paper an appropriate sequence, 
decorrelating first the data in the spatial domain using the 
DWT (Haar’s basis) and afterwards in wavelet domain, using 
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the KLT, allows us a more efficient (and robust, in presence 
of noise) compression scheme. 

The resulting compression scheme is a lossy image 
compression. This type of compression system does not retain 
the exact image pixel to pixel. Instead it takes advantage of 
limitations in the human eye to approximate the image so that 
it is visually the same as the original. These methods can 
achieve vastly superior compression rates than lossless 
methods, but they must be used sensibly [41]. 

Lossy compression techniques generally only work well 
with real-life photography; they often give disastrous results 
with other types of images such as line art, or text. Putting an 
image through several compression-decompression cycles will 
cause the image to deteriorate beyond acceptable standards. 
So a lossy compression should only be used after all 
processing has been done, it should not be used as an 
intermediate storage format. Further note that while the 
reconstructed image looks the same as the original, this is 
according to the human eye. If a computer has to process the 
image in a recognition system, it may be completely thrown 
off by the changes [41]. 

On the other hands, consider the generic transform coder in 
Fig.1 consisting of a 2-D transform, quantizer, and entropy 
coder. We see here that loss occurs during quantization and 
after the transform. Therefore, in order to conduct our 
analysis,
we must repeat the transform to return to the stage where loss 
occurs and examine the effect of quantization on transform 
coefficients [42]. 

Fig. 1 Generic transform coding for digital images

In this work, additional losses are incorporated, because, 
after of KLT applications a pruning of decorrelated sub-
blocks is applied before the quantization, with a statistical 
criterion [28]. 

The Bidimensional Discrete Wavelet Transform and the 
method to reduce noise and to compress by wavelet 
thresholding is outlined in Section II. Scans are outlined in 
Section III. KLT is outlined in Section IV. Combinations are 
outline in Section V. In Section VI, we discuss briefly the 
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more appropriate metrics for compression. In Section VII, the 
experimental results using the proposed algorithm are 
presented. Finally, Section VIII provides a conclusion of the 
paper.

II. BIDIMENSIONAL DISCRETE WAVELET TRANSFORM

The Bidimensional Discrete Wavelet Transform (DWT-2D) 
[6], [7], [8]-[16], [43]-[56] corresponds to multiresolution 
approximation expressions. In practice, mutiresolution 
analysis is carried out using 4 channel filter banks (for each 
level of decomposition) composed of a low-pass and a high-
pass filter and each filter bank is then sampled at a half rate 
(1/2 down sampling) of the previous frequency. By repeating 
this procedure, it is possible to obtain wavelet transform of 
any order. The down sampling procedure keeps the scaling 
parameter constant (equal to ½) throughout successive 
wavelet transforms so that is benefits for simple computer 
implemen-tation. In the case of an image, the filtering is 
implemented in a separable way be filtering the lines and 
columns. 

Note that [6], [7] the DWT of an image consists of four 
frequency channels for each level of decomposition. For 
example, for i-level of decomposition we have:  
LL n,i: Noisy Coefficients of Approximation.  
LH n,i: Noisy Coefficients of Vertical Detail, 
HL n,i: Noisy Coefficients of Horizontal Detail, and  
HH n,i: Noisy Coefficients of Diagonal Detail.  

The LL part at each scale is decomposed recursively, as 
illustrated in Fig. 2 [6], [7]. 

Fig. 2 Data preparation of the image. Recursive decomposition  
of LL parts 

To achieve space-scale adaptive noise reduction, we need to 
prepare the 1-D coefficient data stream which contains the 
space-scale information of 2-D images. This is somewhat 
similar to the “zigzag” arrangement of the DCT (Discrete 
Cosine Transform) coefficients in image coding applications 
[46]. In this data preparation step, the DWT-2D coefficients 

are rearranged as a 1-D coefficient series in spatial order so 
that the adjacent samples represent the same local areas in the 
original image [48].  

Fig.3 shows the interior of the DWT-2D with the four 
subbands of the transformed image [55], which will be used in 
Fig.4. Each output of Fig. 3 represents a subband of splitting 
process of the 2-D coefficient matrix corresponding to Fig. 2. 

A. Wavelet Noise Thresholding 
The wavelet coefficients calculated by a wavelet transform 

represent change in the image at a particular resolution. By 
looking at the image in various resolutions it should be 
possible to filter out noise, at least in theory. However, the 
definition of noise is a difficult one. 

Fig. 3 Two dimensional DWT.  A decomposition step. 
Usual splitting of the subbands 

In fact, "one person's noise is another's signal". In part this 
depends on the resolution one is looking at. One algorithm to 
remove Gaussian white noise is summarized by D.L. Donoho 
and I.M. Johnstone [2], [3], and synthesized in Fig. 4. 

Fig. 4 Thresholding Techniques 
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The algorithm is: 
1)  Calculate a wavelet transform and order the coefficients   

by increasing frequency. This will result in an array  
containing the image average plus a set of coefficients of 
length 1, 2, 4, 8, etc. The noise threshold will be calculated 
on the highest frequency coefficient spectrum (this is the 
largest spectrum). 

2) Calculate the median absolute deviation (mad) on the 
largest coefficient spectrum. The median is calculated 
from the absolute value of the coefficients. The equation 
for the median absolute deviation is shown below: 

0.6745

Cmedian in
mad

)(| |,                                                   (1) 

where Cn,i may be LHn,i , HLn,i , or HHn,i for i-level of 
decomposition. The factor 0.6745 in the denominator   
rescales the numerator so that mad  is also a suitable   
estimator for the standard deviation for Gaussian white 
noise [5], [46], [47]. 

3) For calculating the noise threshold we have used a 
modified version of the equation that has been discussed 
in papers by D.L. Donoho and I.M. Johnstone. The 
equation is: 

][N2logmad                                                      (2) 

where N is the number of pixels in the subimage, i.e., HL, 
LH or HH. 

4) Apply a thresholding algorithm to the coefficients. There 
are two popular versions: 

4.1. Hard thresholding. Hard thresholding sets any coeffi-
cient less than or equal to the threshold to zero, see Fig. 
5(a).

Fig. 5(a) Soft-Thresholfing 

where x may be LHn,i , HLn,i , or HHn,i , y may be HHd,i :
Denoised Coefficients of Diagonal Detail,  
HL d,i : Denoised Coefficients of Horizontal Detail,  
LH d,i : Denoised Coefficients of Vertical Detail,  
for i-level of decomposition. 
The respective code is: 

for row = 1:N  
  for column = 1:N
    if |Cn,i[row][column]| <= ,
      Cn,i[row][column] = 0.0; 
    end 
  end 
end

4.2. Soft thresholding. Soft thresholding sets any    
coefficient less than or equal to the threshold to zero, see 
Fig. 5(b). The threshold is subtracted from any 
coefficient that is greater than the threshold. This moves 
the image coefficients toward zero. 

Fig. 5 (b): Hard-Thresholfing 

The respective code is: 
for row = 1:N  
  for column = 1:N
    if |Cn,i[row][column]| <= ,
      Cn,i[row][column] = 0.0;  
    else
      Cn,i[row][column] = Cn,i[row][column] - ;
    end 
  end 
end

III. SCANS

Fig.6 shows four different types of spatial scanning 
methods [57, 58].  In this paper we use (a) and (d) scans. 

Fig. 6 Different space scanning methods. a) Row (Raster) order,      
b) Row prime order, c) Peano-Hilbert order, d) Morton (Z) order 
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In Fig.6 each numbering cell represent a sub-block (inside 
wavelet domain) which may be spatially ordered (in upward 
order) in a three dimensional matrix before KLT, see Fig.7.

Fig. 7: Building of 3D-matrix with sub-blocks in upward order 

As can be seen from Fig.6, pixels, which have to be treated 
or not with a DWT, are concentrated in blocks. Block clusters 
of 2×2, 4×4, 8×8 … pixels, can be easily extracted, since 
pixels in these blocks are transmitted one after another (row 
ordering does not posses this valuable feature because pixels 
are transmitted serially row after row). This feature can be 
handy for spatial image processing, such as resolution 
reduction. In order to reduce image resolution by a factor of 
two, the mean of four pixels (a 2×2 block) has to be 
calculated. With these orderings (Morton and Row-rafter), it 
can be done in a simple, straightforward way, without 
requiring multiple storage elements. This calculation can be 
expanded to blocks of sizes 4×4, 8×8 etc.

IV. KARHUNEN-LOEVE TRANSFORM (KLT)
The KLT begin with the covariance matrix of the vectors x

generated between values of pixel with similar allocation in all 
arranged sub-blocks of 3D-matrix, as show in Fig.8.  

Fig. 8 Formation of a vector from corresponding pixels in six      sub-
blocks

The covariance matrix results, 

Cx = E{(x-mx)(x-mx)T}                                                      (3) 

with: 

x = (x1, x2, …. , xn) T, where x is one of the correlated  
         original vector set , “T” indicates transpose and

n is the number of sub-blocks. 
mx = E{x} is the mean vector, and where E{•} is the
         expected value of the argument, and the subscript  
         denotes that m is associated with the population of x
         vectors.

In the appropriate mathematical form: 

csbrsb

k
kcsbrsbx xm

*

1
*
1                                                         (4) 

where:
rsb is the sub-block row number  
csb is the sub-block column number  

On the other hands, 

csbrsb

k

T
xkxkcsbrsbx mxmxC

*

1
*
1 ))((                         (5) 

Therefore, KLT will be, 

y = VT (x-mx)                                                                    (6) 

with: 
y = (y1, y 2, …. , y n) T, where y is one of the decorrelated  
       transformed vector set 
V is a matrix whose columns are the eigenvectors of Cx .

When applying the calculus of eigenvectors, two matrices 
arise, V y Cy , being Cy a diagonal matrix, where the elements 
on its main diagonal are de eigenvalues of Cx .

If we wish to calculate the covariance matrix of vectors y,
results 

Cy = E{(y-my)(y-my)T} = E{yyT}                                      (7) 

Because, my is a null vector. Besides, Cy is a diagonal 
matrix. Depending on the correlation degree between the 
original sub-blocks, KLT will be more or less efficient 
decorrelating them. Such efficiency depends on how the 
elements of the main diagonal of the covariance matrix Cy fall 
in value, from right to left. The faster they fall in value, the 
KLT will be more efficient decorrelating them. As an 
example, based on Fig.9, which represents to Lena of 512-by-
512 pixels, and if we work with sub-blocks of 64-by-64 
pixels, as we must see in Fig.10(a), we obtain the eigenvalues 
of Fig.10(b). However, if by a determined method we are 
starting from the a set of sub-blocks as those shown in 
Fig.10(c), then we will obtain the eigenvalues of Fig.10(d). 
The second case is highly more efficient than the first one. 
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Fig. 9 Lena of 512-by-512 pixels, with 8 bits-per-pixel (bpp)

(a) (c)

(b) (d)

Fig. 10 Two different cases for efficiency evaluation, where: (a) original set of sub-blocks of 64-by-64 pixels,  
(b) they represents their eigenvalues, (c) efficient set of sub-blocks of 64-by-64 pixels, and (d) they represents their eigenvalues 
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The Fig.10(c)-(d) represents a set of sub-blocks much more 
efficient than Fig.10(a)-(b), because, the sub-blocks of the 
Fig.10(c)-(d) are more correlated morphologically. In 
Fig.10(c) is evident than each sub-block represent a little 
version of Lena. In Fig.10(d) the last 2 sub-blocks account for 
about 95% of the total variance, while in Fig.10(a) the last 46 
sub-blocks account for about 95% of the total variance. 
Therefore, Fig.10(a) is a inefficient set, while Fig.10(c) is 
highly efficient. This is the reason that makes the KLT as 
efficient in multi and hyperspectral imagery and very 
inefficient in images alone (monoframe) [1, 28-30, 32-34, 38-
41]. A method prior to KLT (for monoframe images) which 
resulted in a high correlation of sub-blocks to make the KLT 
more efficient and will be very welcome. 

On the other hands, the inverse KLT will be, 

x = V y + mx                                                                          (8) 

A complete lossy image compression algorithm based on 
KLT may be: 

CODEC:
1. Image sub-blocking with elected scan and construction  
    of three dimensional matrix. 
2. KLT to resulting sub-blocks 
3. Pruning of sub-blocks based on percentage of resulting  
    covariance matrix 
4. Quantization 
5. Entropy encoding 

To channel or storage 

DECODEC:
6. Entropy decoding 
9. Complete with zeros the sub-blocks pruned 
8. Inverse KLT 
9. Reconstruction of bidimensional matrix from the new  
    sub-blocks set with inverse scan and image  
    reassembling. 

V. COMBINATIONS

Based on the last section, the proposed solutions to achieve 
the goal are as follows: 

First CODEC 
1. Recursive Haar application to each sub-block
    depending on the final sub-blocks size 
2. Morton’s scan 
3. Construction of three dimensional matrix 
4. KLT 
5. Pruning 
6. Quantization 
7. Entropy encoding 

Second CODEC 
1. Recursive Haar application to each sub-block
    depending on the final sub-blocks size 
2. Row rafter scan 
3. Construction of three dimensional matrix 
4. KLT 
5. Pruning 
6. Quantization 
7. Entropy encoding 

However, starting in both codecs, What the meaning of 
“Recursive Haar application to each sub-block depending on 
the final sub-blocks size”? If we call J to the mentioned three 
dimensional matrix (see Line 3 of both CODECs), and based 
on Fig.11 for the first level both scans match. 

Fig. 11 Morton’s and row rafter scanning

But, for the second level of Haar applications the used scan 
generates two different three dimensional matrices J. See 
Fig.12 for Morton’s scan and Fig.13 for row rafter scan. 

Fig. 12 Morton’s scanning

The key of both scans and the subsequent formation of the J 
matrix are its subscript. While, the superscript of LL, LH, HL 
and HH Haar’s sub-bands represent the level of application of 
the DWT. 

Finally, the difference between the two will be (with and 
without noise) through simulations of Section VII. 
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Fig. 13 Row rafter scanning

VI. METRICS

A. Data Compression Ratio (CR) 
Data compression ratio, also known as compression power, 

is a computer-science term used to quantify the reduction in 
data-representation size produced by a data compression 
algorithm. The data compression ratio is analogous to the 
physical compression ratio used to measure physical 
compression of substances, and is defined in the same way, as 
the ratio between the uncompressed size and the compressed
size [59]: 

SizeCompressed
SizeedUncompress

CR                                                     (9) 

Thus a representation that compresses a 10MB file to 2MB 
has a compression ratio of 10/2 = 5, often notated as an 
explicit ratio, 5:1 (read "five to one"), or as an implicit ratio, 
5X. Note that this formulation applies equally for 
compression, where the uncompressed size is that of the 
original; and for decompression, where the uncompressed size 
is that of the reproduction. 

B. Peak Signal-To-Noise Ratio (PSNR) 
    The phrase peak signal-to-noise ratio, often abbreviated 
PSNR, is an engineering term for the ratio between the 
maximum possible power of a signal and the power of 
corrupting noise that affects the fidelity of its representation. 
Because many signals have a very wide dynamic range, PSNR 
is usually expressed in terms of the logarithmic     decibel 
scale.

The PSNR is most commonly used as a measure of quality 
of reconstruction in image compression, etc [59]. It is most 
easily defined via the mean squared error (MSE) which for 
two NR×NC (rows-by-columns) monochrome images I and Id
, where the second one of the images is con-sidered a 
denoised approximation of the other is defined as: 

1

0

1

0

2
),(),(

1 NR

nr

NC

ncNRxNC
ncnrdIncnrIMSE       (10) 

The PSNR is defined as [59]: 

)(
10

log20)
2

(
10

log10
MSE

IMAX

MSE
IMAX

PSNR              (11) 

Here, MAXI is the maximum pixel value of the image. 
When the pixels are represented using 8 bits per sample, this 
is 256. More generally, when samples are represented using 
linear pulse code modulation (PCM) with B bits per sample, 
maximum possible value of MAXI is 2B-1.

For color images with three red-green-blue (RGB) values 
per pixel, the definition of PSNR is the same except the MSE 
is the sum over all squared value differences divided by image 
size and by three [59]. 

Typical values for the PSNR in lossy image and video 
compression are between 30 and 50 dB, where higher is 
better. 

VII. COMPUTERS SIMULATIONS

The simulations are organized in four experiments. In all 
cases where we used DWT (Haar's basis), we used soft-
thresholding for high sub-bands coefficients shrinkage. In 
each experiment, we are going to compare seven different 
compression techniques: 

1. DWT according to the Section II.  
2. DWT plus Morton's scan.  
3. DWT plus row-rafter scan.  
4. Morton's scan plus KLT. 
5. Row-rafter scan plus KLT. 
6. DWT plus Morton's scan plus KLT. 
7. DWT plus row-rafter scan plus KLT. 

All experiments include calculations of MSE and PSNR. 

A.   Experiment 1: 
Main characteristics: 

1. Image = Lena 
2. Color = gray 
3. Size = 512-by-512 pixels 
4. Bits-per-pixel = 8 
5. Maximum compression rate = 4:1 
6. Sub-blocks size = 64-by-64 pixels for compression  
                                  techniques 4, 5, 6 and 7.
                              = 256-by-256 pixels for compression  
                                  techniques 2 and 3. 
7. Level of decomposition for DWT alone = 1 
8. Noisy = no  

Fig.14 shows the seven techniques with original image, 
while, Fig.15 shows the sub-blocks set of the compression 
techniques 4, 5, 6 and 7 with their respective eigenvalues 
distributions. Table I shoes the metrics (MSE, PSNR and CR) 
for Fig.14. 
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 (a)  (b)

 (c)  (d)

 (e)  (f)

 (g)  (h)

Fig. 14 Comparisson of compression techniques: (a) original, (b) Haar, (c) Haar + Morton's scan, (d) Haar + row-rafter scan, 
(e) Morton's scan + KLT, (f) row-rafter scan + KLT, (g) Haar + Morton's scan + KLT, and (h) Haar + row-rafter scan + KLT 
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 (a) (b)

 (c) (d)

 (e) (f)

 (g) (h)

Fig. 15 Comparisson of efficiency: (a) sub-blocks set for Morton's scan + KLT, (b) eigenvalues distribution for Morton's scan + KLT,                            
(c) sub-blocks set for row-rafter scan + KLT, (d) eigenvalues distribution for row-rafter scan + KLT, (e) sub-blocks set for Haar + Morton's 

scan + KLT, (f) eigenvalues distribution for Haar + Morton's scan + KLT, (g) sub-blocks set for Haar + row-rafter scan + KLT, and
(h) eigenvalues distribution for Haar + row-rafter scan + KLT
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 (a)  (b)

 (c)  (d)

 (e)  (f)

 (g)  (h)

Fig.16 Comparisson of compression techniques: (a) original, (b) Haar, (c) Haar + Morton's scan, (d) Haar + row-rafter scan, 
(e) Morton's scan + KLT, (f) row-rafter scan + KLT, (g) Haar + Morton's scan + KLT, and (h) Haar + row-rafter scan + KLT 
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 (a)  (b)

 (c) (d)

 (e) (f)

 (g) (h)

Fig. 17 Comparisson of efficiency: (a) sub-blocks set for Morton's scan + KLT, (b) eigenvalues distribution for Morton's scan + KLT,                            
(c) sub-blocks set for row-rafter scan + KLT, (d) eigenvalues distribution for row-rafter scan + KLT, (e) sub-blocks set for Haar + Morton's 

scan + KLT, (f) eigenvalues distribution for Haar + Morton's scan + KLT, (g) sub-blocks set for Haar + row-rafter scan + KLT, and
(h) eigenvalues distribution for Haar + row-rafter scan + KLT
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 (a)  (b)

 (c)  (d)

 (e)  (f)

 (g)  (h)

Fig.18 Comparisson of compression techniques: (a) original, (b) Haar, (c) Haar + Morton's scan, (d) Haar + row-rafter scan, 
(e) Morton's scan + KLT, (f) row-rafter scan + KLT, (g) Haar + Morton's scan + KLT, and (h) Haar + row-rafter scan + KLT 
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 (a)  (b)

 (c) (d)

 (e) (f)

 (g) (h)

Fig.19 Comparisson of efficiency: (a) sub-blocks set for Morton's scan + KLT, (b) eigenvalues distribution for Morton's scan + KLT,                            
(c) sub-blocks set for row-rafter scan + KLT, (d) eigenvalues distribution for row-rafter scan + KLT, (e) sub-blocks set for Haar + Morton's 

scan + KLT, (f) eigenvalues distribution for Haar + Morton's scan + KLT, (g) sub-blocks set for Haar + row-rafter scan + KLT, and
(h) eigenvalues distribution for Haar + row-rafter scan + KLT
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 (a)  (b)

 (c)  (d)

 (e)  (f)

 (g)  (h)

Fig. 20 Comparisson of compression techniques: (a) original, (b) Haar, (c) Haar + Morton's scan, (d) Haar + row-rafter scan, 
(e) Morton's scan + KLT, (f) row-rafter scan + KLT, (g) Haar + Morton's scan + KLT, and (h) Haar + row-rafter scan + KLT 
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 (a)  (b)

 (c) (d)

 (e) (f)

 (g) (h)

Fig. 21 Comparisson of efficiency: (a) sub-blocks set for Morton's scan + KLT, (b) eigenvalues distribution for Morton's scan + KLT,                            
(c) sub-blocks set for row-rafter scan + KLT, (d) eigenvalues distribution for row-rafter scan + KLT, (e) sub-blocks set for Haar + Morton's 

scan + KLT, (f) eigenvalues distribution for Haar + Morton's scan + KLT, (g) sub-blocks set for Haar + row-rafter scan + KLT, and
(h) eigenvalues distribution for Haar + row-rafter scan + KLT



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:11, 2009

2712

TABLE I
EXPERIMENT 1: LENA, CR = 4:1

Technique CR MSE PSNR 
Haar 3.8790 26.9291 33.8286 

Haar+Morton 3.8790 26.9291 33.8286 
Haar+row-rafter 3.8790 26.9291 33.8286 

Morton+KLT 3.9347 138.3011 26.7225 
Row-rafter+KLT 3.9347 138.3011 26.7225 

Haar+Morton+KLT 3.9347 13.5447 36.8131 
Haar+row-rafter+KLT 3.9347 13.5447 36.8131 

B.   Experiment 2: 
Main characteristics: 

1. Image = Camera 
2. Color = gray 
3. Size = 512-by-512 pixels 
4. Bits-per-pixel = 8 
5. Maximum compression rate = 4:1 
6. Sub-blocks size = 64-by-64 pixels for compression  
                                  techniques 4, 5, 6 and 7.
                              = 256-by-256 pixels for compression  
                                  techniques 2 and 3. 
7. Level of decomposition for DWT alone = 1 
8. Noisy = type SALT and pepper, mean = 0, and variante =  
                  0.02

Fig.16 shows the seven techniques with original image, 
while, Fig.17 shows the sub-blocks set of the compression 
techniques 4, 5, 6 and 7 with their respective eigenvalues 
distributions. Table II shoes the metrics (MSE, PSNR and CR) 
for Fig.16.

TABLE II
EXPERIMENT 2: CAMERA, CR = 4:1

Technique CR MSE PSNR 
Haar 3.4853 173.7846 25.7307 

Haar+Morton 3.4811 170.8111 25.8056 
Haar+row-rafter 3.4740 170.0747 25.8244 

Morton+KLT 3.9347 491.1751 21.2184 
Row-rafter+KLT 3.9347 487.7782 21.2486 

Haar+Morton+KLT 3.9347 308.9114 23.2325 
Haar+row-rafter+KLT 3.9347 310.5899 23.2089 

C.   Experiment 3: 
Main characteristics: 

1. Image = Baboon 
2. Color = gray 
3. Size = 512-by-512 pixels 
4. Bits-per-pixel = 8 
5. Maximum compression rate = 16:1 
6. Sub-blocks size = 64-by-64 pixels for compression  
                                  techniques 4, 5, 6 and 7.
                              = 128-by-128 pixels for compression  
                                  techniques 2 and 3. 
7. Level of decomposition for DWT alone = 2 
8. Noisy = no  

Fig.18 shows the seven techniques with original image, 
while, Fig.19 shows the sub-blocks set of the compression 
techniques 4, 5, 6 and 7 with their respective eigenvalues 
distributions. Table III shoes the metrics (MSE, PSNR and 
CR) for Fig.18.

TABLE III
EXPERIMENT 3: BABOON, CR = 16:1

Technique CR MSE PSNR 
Haar 15.6336 526.0533 20.9205 

Haar+Morton 15.4103 524.7629 20.9312 
Haar+row-rafter 15.4103 524.7629 20.9312 

Morton+KLT 15.6935 818.7159 18.9995 
Row-rafter+KLT 15.6935 818.7159 18.9995 

Haar+Morton+KLT 15.6935 489.8204 21.2304 
Haar+row-rafter+KLT 15.6935 489.8204 21.2304 

D.   Experiment 4: 
Main characteristics: 

1. Image = Girl 
2. Color = gray 
3. Size = 512-by-512 pixels 
4. Bits-per-pixel = 8 
5. Maximum compression rate = 16:1 
6. Sub-blocks size = 64-by-64 pixels for compression  
                                  techniques 4, 5, 6 and 7.
                              = 128-by-128 pixels for compression  
                                  techniques 2 and 3. 
7. Level of decomposition for DWT alone = 2 
8. Noisy = type SALT and pepper, mean = 0, and variante =  
                  0.02

Fig.20 shows the seven techniques with original image, 
while, Fig.12 shows the sub-blocks set of the compression 
techniques 4, 5, 6 and 7 with their respective eigenvalues 
distributions. Table IV shoes the metrics (MSE, PSNR and 
CR) for Fig.20.

TABLE IV
EXPERIMENT 4: GIRL, CR = 16:1

Technique CR MSE PSNR 
Haar 10.2376 308.1543 23.2431 

Haar+Morton 14.8238 467.2525 21.4353 
Haar+row-rafter 14.8439 464.3150 21.4627 

Morton+KLT 15.6935 886.9586 18.6518 
Row-rafter+KLT 15.6935 881.5347 18.6784 

Haar+Morton+KLT 15.6935 443.9665 21.6573 
Haar+row-rafter+KLT 15.6935 460.9388 21.4944 

Finally, all techniques (denoising and compression) were 
implemented in MATLAB® (Mathworks, Natick, MA) [60] 
on a PC with an Intel® Core(TM) QUAD CPU Q6600 2.40 
GHz processors and 4 GB RAM. 

VIII. CONCLUSION

A first and relevant clarification is as follows, in theory, 
KLT ordered their eigenvalues from highest to lowest [28]. 
However, as we explained in the previous section, we use 
MATLAB® in all our simulations, in particular the built-in 
function "eigen". Formally, we use it as follows [V,Cy] = 
eigen(Cx), to obtain matrices V and Cy. Where Cy is a 
diagonal matrix, where in its main diagonal has the 
eigenvalues of Cx . Such eigenvalues are ordered from lowest 
to highest [60]. 

This does not change anything in the calculations, if the 
consistent order is respected for all the variables involved in  
the problem context. 
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As shown in the Figures 15, 17, 19 and 21, although KLT is 
optimum, it is inefficient in the sub-blocks decorrelation, in 
the cases where such sub-blocks are morphologically 
differents. The experimental evidence shows that previous 
DWT supplies KLT of the necessary morphological affinity, 
see Figures 14, 16, 18 and 20. 

Experiment 1: 
Haar, Haar+Morton and Haar+row-rafter have identical metric 
values. Morton+KLT and row-rafter+KLT have identical 
metric values. Haar+Morton+KLT and Haar+row-rafter+KLT 
have identical metric values too. 

Experiment 2: 
The noise causes different metric values in all. However, 
Morton+KLT, row-rafter+KLT, Haar+Morton+KLT and 
Haar+row-rafter+KLT have similar real CR. 

Experiment 3: 
Similar situation to Experiment 1.  
In Morton+KLT and row-rafter+KLT the block effect is 
obvious, and they have a very bad look-and-feel, that is to say, 
image quality. 

Experiment 4: 
Similar situation to Experiment 2.  
In Morton+KLT and row-rafter+KLT the block effect is 
obvious too, with similar consequences. 

In the four experiments Haar+Morton+KLT is better than 
Morton+KLT, and Haar+row-rafter+KLT is better than row-
rafter+KLT.

On the other hands, without noise the scan type results 
trivial.  

As discussed earlier, the KLT is theoretically the optimum 
method to spectrally decorrelate a set of sub-blocks image. 
However, it is computationally expensive. Future research 
should be geared to the use of lower-cost computational 
approaches [61-63]. 
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