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Abstract—Nonlinear response behaviour of a cracked RC beam 

under harmonic excitation is analysed to investigate various 
instability phenomena like, bifurcation, jump phenomena etc. The 
nonlinearity of the system arises due to opening and closing of the 
cracks in the RC beam and is modelled as a cubic polynomial. In 
order to trace different branches at the bifurcation point on the 
response curve (amplitude versus frequency of excitation plot), an 
arc length continuation technique along with the incremental 
harmonic balance (IHBC) method is employed. The stability of the 
solution is investigated by the Floquet theory using Hsu’s scheme. 
The periodic solutions obtained by the IHBC method are compared 
with these obtained by the numerical integration of the equation of 
motion. Characteristics of solutions fold bifurcation, jump 
phenomena and from stable to unstable zones are identified.  
 

Keywords—Incremental harmonic balance; Arc-length 
continuation; Bifurcation; Jump phenomena. 

I. INTRODUCTION 
IVIL engineering structures are generally subjected to 
primarily natural loads such as Earthquake, Wind Blast 
and man-made loads impact, vehicle movement, 

operating equipments etc. The study is mainly focused on the 
inelastic structural behaviour caused by yielding of 
reinforcement, crushing of concrete, debonding, etc. [1,2]. 
(Davenne et al. 2003; Mo 1994). Generally, the dynamic 
analysis concrete structures are carried out considering they 
are linear elastic and no tension cracks develop at working 
loads. In reality, since concrete has low tensile resistance, the 
cracks develop even at servicing loading level. The damages 
become more pronounced, if the applied loads are further 
increased and as a result behaviour of concrete beams is best 
studied considering them nonlinear and inelastic. The concrete 
structures may also exhibit quasi static behaviour under the 
action of applied loads. Such concrete structures may also be 
treated as nonlinear elastic assuming material linearity and 
small displacements. If no further crack occurs under loads, 
the concrete structures with cracks resemble to mechanical 
systems due to opening and closing of the cracks. As a result, 
damaged structures may often show nonlinear characteristics 
under dynamic loads and using these characteristics of 
nonlinear dynamics, procedures for damage identification in 
the RC concrete structures have been developed. [3,4]. In the 
present study, nonlinear response behaviour of a cracked RC 
beam under harmonic excitation is analysed to investigate 
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various instability phenomena like, bifurcation, jump 
phenomena etc. The cracked RC beam is modeled as a SDOF 
system. The nonlinearity of the system arises due to opening 
and closing of the cracks in the RC beam and is modelled as a 
cubic polynomial. 

The dynamic behaviour of such cracked concrete structures 
has not yet been thoroughly studied. To study the dynamic 
behaviour, in the past, as in the problems resembling the 
nonlinear mechanical systems, either the problem is linearized 
and analysed to obtain highly approximate response diagram 
[5] or the harmonic balance method [6] was used to obtain the 
response diagram, but it was observed that it is highly 
approximate while obtaining the response assuming one or 
two dominant frequencies of the solutions. The main difficulty 
of the method is that a set of nonlinear algebraic equations in 
terms of the Fourier coefficients need to be reformulated each 
time the number of harmonics is changed. In recent years, this 
drawback was greatly removed by applying arc-length 
continuation technique along with incremental harmonic 
balance method [7] for such type of problems. With this back 
ground, nonlinear response behaviour of a cracked RC beam 
under harmonic excitation is analysed to investigate various 
instability phenomena that may exist in the system using 
incremental harmonic balance method with arc length 
continuation technique (IHBC). The cracked RC beam has 
stiffness nonlinearity and therefore, expected to show a 
variety of instability phenomena. The nonlinearity of the 
restoring force is represented by a cubic polynomial. The 
forcing function on the cracked RC beam is monoharmonic 
excitation and stability of the periodic motion is investigated 
by Floquet theory. The present study is motivated by the need 
for a better semianalytical prediction of complex periodic via 
IHB, as previous theoretical analysis focused on weakly 
nonlinear regimes (via both multiple-scales asymptotics and a 
straight forward harmonic balance analysis). Further, although 
there have been a few applications of the incremental 
harmonic balance method with arc-length continuation 
technique for studying the stability problems, the efficiency of 
the method has not been thoroughly investigated in identifying 
different types of instability phenomena that exist in nonlinear 
mechanical systems such as cracked RC beam. Nevertheless, 
the objective of the study is to demonstrate how efficiently 
IHBC can be used to treat nonlinearity present in the system 
and also to investigate latent instability phenomena present in 
the problem under study. 

 
II. MATHEMATICAL MODEL 

The dynamical system considered is a simplified model of 
the cracked RC beam (Fig.1) system as considered by Chen et 
al.[6] The cracked RC beam is simply supported and modelled 

Atul Krishna Banik 

Nonlinear Dynamics of Cracked RC Beams 
under Harmonic Excitation 

C



International Journal of Architectural, Civil and Construction Sciences

ISSN: 2415-1734

Vol:5, No:3, 2011

152

 

 

as a single degree of freedom nonlinear system under 
monoharmonic excitation at mid span only. The equation of 
motion of the system is written as 

3
0" ' sin( )my cy ky y P tβ ω+ + − =                             (1) 

where ' /y dy dt=  and 
2 2" /y d y dt=  

where / 2m Lρ= is the modal mass of the fundamental 

mode, 2 ,nc mξω=  
2
nk mω= and β  is the parameter 

representing the nonlinearity of the cracked RC beam.  

 

                   

                                  

 

                                                                                                               

 

    

 

Fig. 1 RC Beam under midspan dynamic load (Dimensions in mm) 
 

III. RESPONSE ANALYSIS IN FREQUENCY DOMAIN USING IHB  

Oscillations of nonlinear dynamical systems with N degrees 
of freedom, subjected to periodic excitation can be described 
by a system of nonlinear ordinary differential equations 

2
1( ,..., ; ,..., ; , ) ( ), ( 1,..., )i i N i N ix f x x x x q     i Nω ω λ τ+ = =&& & &  (2) 

where dimensionless time  tτ ω=  is introduced as an 

independent variable and /x dx dτ=& , 
2 2/x d x dτ=&& . 

1( ,..., ; ,..., ; , )i N i Nf x x x x ω λ& &  denotes nonlinear functions 
of dependent variables xi and corresponding first derivatives 

1 , ( 1,..., ),i
i

dxx i N
dtω

= =&
 the exciting frequency ω and the 

variable parameter λ. Nonlinear system can be excited by 
general functions, expressed in terms of truncated Fourier 
series 

0
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Clearly, when the calculation of the resonance curve is of 
interest, only one term representation is assumed. Therefore, 

( ) sin( )i iq g mτ τ=                (4) 

is chosen in Eq. (2), where m is an integer, 
{1,2,...}.m∈ Note that for subharmonic resonances of order 

m, value of m is appropriately adjusted [8]. 

As first step in the IHB method, the Newton-Raphson iterative 
process is introduced. Assuming that some initial solution or 
initial guess determining the initial state 

00 0 0 0, , , , ;   ( 1,..., )ix x g i Nω λ =&
 is known and try to get a 

neighbouring solution 

0 0 00 0 ( 1,..., )i i i i i i i i ix x x  x x x       g g g   i Nω ω ω λ λ λ= +Δ = +Δ = +Δ = +Δ = +Δ =& & &
 (5) 

by adding small increments , , , ,i i ix x gω λΔ Δ Δ Δ Δ& to the 
initial solution. 

Substituting these terms in Eq. (4) and expanding it by 
Taylor’s series about the initial state, the linearized 
incremental equations are obtained as 
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  (6) 

neglecting all higher order terms of small increments. 

By collecting initial values and increments in vector forms 

[ ]
0 00 1 1,..., ,...,

T T
N Nx x x x⎡ ⎤= Δ = Δ Δ⎣ ⎦X    X

    (7a) 

[ ]
01 1,..., ,...,

T T
N Ng g    g g⎡ ⎤= = Δ Δ⎣ ⎦0G ΔG

    (7b) 

0 01 ,...,
T

Nf f⎡ ⎤= ⎣ ⎦0F
              (7c) 

Defining matrices C and K with corresponding elements 
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and vectors Q , P  and R  with appropriate components 

0
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0 0 0

2
0sin( ) ( )i i i ig m x fτ ω= − +R &&

        (9c) 

linearized incremental equations can be written in the 
convenient matrix form as 

( )2
0 0 02ω ω ω+ + = − + ΔΔX CΔX KΔX R X Q&& & &&

sin( )mλ τ− Δ +P ΔG              (10) 

Matrix Eq. (10) is linear with variable coefficients and can be 
solved by Galerkin procedure, which is the second step in the 
IHB method. The steady-state solution of Eq. (10) is periodic 
and can be represented by  

( )0

0 0
, ,

0

cos( ) sin( )
K

i i n i n
n

x a n b nτ τ
=

= +∑
      (11a) 
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Eqs. (11a), and (11b) can be written in the matrix form as 

0 0i ix = Ta
                  (12a) 

, ( )i ix   i  1, ..., NΔ = =TΔa          (12b) 

Where 

[ ]1,cos ,...,cos( ); 0,sin ,...,sin( )K  Kτ τ τ τ=T
 (13a) 

0

0 0 0 0 0 0
,0 ,1 , ,0 ,1 1,, ,..., ; , ,...,

T

i i i i K i i Ka a a  b b b⎡ ⎤= ⎣ ⎦a
    (13b) 

,0 ,1 , ,0 ,1 1,, ,..., ; , ,...,
T
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 (13c) 

Additionally, the matrix Y  and vectors 0A , ΔA are 
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which are used in the interpretation of vectors 0X  and ΔX  
as 

0 0=X YA                  (15a) 

=ΔX YΔA                  (15b) 

Applying the Galerkin procedure for one period 
2 2

2
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 (16) 

the linear matrix equation for unknown vector of harmonic 
incrementsΔΑ is obtained 

ω λ= + Δ + Δ +kΔΑ r q p sΔG          (17) 

with matrix k , s  and vectors r , q  and p are given 

2
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2

0

sin( )T m d
π

τ τ= ∫s Y
             (18e) 

where k (Eq. 17) is the Jacobian matrix obtained from a set 
of  N × (2K+1) equations for the unknown coefficients vector 
ΔA . 

In the above equations, the vector double and triple product 
of displacements are obtained from the expressions given in 
the appendix [20] and matrices k  and s  and vectors r , q  
and p are calculated using Eqs. (20a), (20e) and (20b), (20c) 
and (20d) respectively. 

Finally, the matrix Eq. (17) is solved at each time step using 
Newton-Raphson iterative process. The IHB method with a 
variable parameter is ideally suited to parametric continuation 
for obtaining the response diagrams of nonlinear systems 
(IHBC). After obtaining the solution for the particular value 
of a parameter, the solution for another value of parameter 
perturbed from the old one can be obtained by iterations using 
the previous solution as an approximation. The main aim of 
the path following and parametric continuation is to 
effectively trace the bifurcation sequence as a parameter of the 
system is varied. In this study, an arc-length procedure [7] is 
adopted for the parametric continuation. 
 
Application of IHBC for response analysis of two 
point mooring system 

The simplified model of the cracked RC beam is considered 
and the equation of motion of the nonlinear system is written 
as 

3
0" ' sin( )mx cx kx x P tβ ω+ + − =        (19) 

where ' /x dx dt=  and 
2 2'' /x d x dt=  forcing function 

P0sin(ωt) has period T=2π/ω. The Eq. (19) is rewritten as 
3( ') 2 ( ') ( ') ( ') sin( ')stx t x t x t x t X rtξ μ+ + − =&& &

  (20) 

where 
2 2/ ', / ' , / , / , 'n nx dx dt x d x dt k r t tμ β ω ω ω= = = = =& &&

 
and Xst =P0/k. The quantity Xst denotes the pseudo-static 
displacement under the peak load P0. 

The first step for application of IHB method is to transform 
the equation of motion into non-dimensional form. 
Considering Eq. (19) and introducing non-dimensional form 

rtτ = , the equation of motion is transformed to 
2 3( ) 2 ( ) ( ) ( ) sin( )str x rx x x Xτ ξ τ τ μ τ τ+ + − =&& &  (21) 

where /x dx dτ=&  and 
2 2/x d x dτ=&& . 

The application of the IHBC method in this case starts from 
linearizing the Eq. (21), which is rewritten in a compact form 

( , , , , , ) 0stf x x x X r τ =&& &             (22) 

The periodic solution of this equation is assumed in the form 
of a truncated Fourier series as explained in the preceding 

section. The assumed solution x0 being approximate 0x x+ Δ  
would be more accurate solution of Eq. (22). Expanding Eq. 
(22) in Taylor series about the initial state, the linearized 
equations in terms of the increments can be written 
corresponding to Eq. (22). 
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 (23) 

Where R is the correction term, which will vanish when x0(τ) 
is an exact solution and Q is the unbalanced force term due to 
unit frequency shifting. Since, the frequency response 

behaviour of the equation of motion is of interest, stXΔ  are 
set to zero. For the present problem, R is expressed as 

0 0

2 3
0 1 0 0 1 0 2 0[ sin( )]str x c r x k x k x X τ= − + + + −R && &

  (24) 

and the variable coefficients 
, ,f f f

x x x
∂ ∂ ∂
∂ ∂ ∂&& &  and Q  are 

obtained as 

2f r
x

∂
=

∂&&                    (25a) 

2f r
x

ξ∂
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∂&                   (25b) 

21 3f x
x

μ∂
= −

∂                 (25c) 

2 2f rx xξ
ω

∂
= = +

∂
Q && &

            (25d) 

Substituting Eqs. (24, 25a-25b) in Eq. (23), Galerkin’s 
procedure is performed with Δans and Δbns as generalised 
coordinates. Typical elements of matrices k and s and vectors 
r, q and p are obtained using Eqs. (18a), (18e) and (18b), (18c) 
and (18d) by applying the knowledge of trigonometric sum, 
product rule and their integrals. Solutions of Eq. (21) are used 
to provide the amplitude vs frequency plots. The continuation 
technique is used to obtain response plot automatically over 
the frequency range of interest from a known solution at the 
starting frequency. The accuracy (or goodness of the method) 
is tested by comparing the results of IHBC with those of NI 
wherever possible. A tolerance limit for the residual given by 
Eq. (24) for the converged solution is specified (generally 
taken as 10-4 times the amplitude of excitation). 

IV. PATH FOLLOWING AND PARAMETRIC CONTINUATION 

The IHB method with a variable parameter is ideally suited 
to parametric continuation for obtaining the response 
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diagrams of nonlinear systems. After obtaining the solution 
for the particular value of a parameter, the solution for another 
value of parameter perturbed from the old one can be obtained 
by iterations using the previous solution as an approximation. 
The main aim of the path following and parametric 
continuation is to effectively trace the bifurcation sequence as 
a parameter of the system is varied. In this study, an arc-length 
procedure [7] is adopted for the parametric continuation. 

V. STABILITY ANALYSIS OF PERIODIC SOLUTIONS 

When the steady state solution is computed by using IHB 
method, usually the stability of the obtained solution is of 
great interest. The stability of the periodic solutions is 
investigated by the Floquet Theory. This is done by perturbing 
the state variables about the steady state solution, which 
results in a system of linearized equations with periodically 
varying coefficients. The stability of the periodic solutions of 
the original system of nonlinear equations is determined by 
the eigenvalues of the monodromy matrix which transforms 
the state vector of the linearized equations at one instant of 
time to another instant one period ahead. If the absolute values 
of all eigenvalues of the monodromy matrix are less than unity 
then the periodic solution is stable. If at least one of the 
eigenvalues has a magnitude greater than one, then the 
periodic solution is unstable. The way the eigenvalues leave 
the unit circle determines the nature of bifurcations. The 
monodromy matrix is obtained by a matrix exponentiation 
procedure outlined by Friedmann et al. [10]. 

VI.  NUMERICAL STUDY 

The simplified model of the cracked RC beam in Fig. 1 is 
considered and the equation of motion of the nonlinear 
system, defined by equation (19) is solved for different 
frequency ratio r  with different parameters taken as µ 
=0.6299,1.2598 and 1.8896, Xst=0.0126 mm ξ=2%.The 
amplitude vs frequency plot of the system for the frequencies 
ratio r  range of higher end of 1.2 rad/sec to lower end of 0.8 
rad/sec. It is seen from the figures that IHBC traces all stable 
and unstable period one solutions (instability of the solutions 
is verified by Floquet’s theory) and show a number of 
interesting phenomena. Tthe nondimensional ratio (X/ Xst ) 
amplitude of responses goes up to 25.58 (Fig. 2) and then, 
decreases as the frequency ratio is varied from to 0.8 rad/sec. 
Within this frequency ranges, the solutions obtained are only 
period one stable solutions. The figure shows that the effect of 
nonlineary does not influence the deflection curve for a value 
of µ =0.6299 and the deflection curve resemble as if the 
system is predominantly linear. .Fig. 3 shows that 
nondimensional ratio (X/ Xst ) amplitude of responses goes up 
to 26.20 (Fig. 3) and then, decreases as the frequency ratio is 
varied from to 0.8 rad/sec. Here in this frequency ranges, the 
solutions obtained are both period one stable and unstable 
solutions. It is evident that as the nonlinearity increases, the 
unstable solutions appear from the peak value of 26.20 and 
continues up to 17.45. Beyond this, branch of stable solution 
continues upto frequency ratio 0.8 rad /sec. For other values µ 
the deflection curve is more skewed to the right and sharp 
bent in the solution branch is observed in the Fig. 4 and Fig. 5 

as the value of µ resulting stronger nonlinearity due to strong 
nonlinearly. The skewed deflection curves with bent in the 
solution branches are accompanied by fold bifurcation and 
jump phenomena. Also another characteristic of nonlinear 
system is that there exist multiple solutions in the same 
frequency ratio level. The unstable solution branch is 
sandwiched between two stable branches. This is important 
for the fact that even with low amplitude of excitation, at a 
frequency ratio a cracked RC beam may suddenly vibrate with 
higher amplitude ratio and sometimes may lead to collapse. 
For the same value of µ=1.8896, the sensitivity analysis is 
carried out (Fig. 6) for different damping ratios (ξ=1.5%, 2%, 
3% and 4%). and it may be observed that as the damping ratio 
increases, sharpness in the bent of the solution branches 
decreases as damping suppresses amplitude ratio. 

VII. CONCLUSION 

Nonlinear response behaviour of a cracked RC beam is 
investigated under harmonic excitation. The nonlinearity of 
the system is characterized by a cubic polynomial and is due 
to opening and closing of the cracks in the RC beam. An 
incremental harmonic balance method with arc length 
continuation technique (IHBC) is employed to trace different 
types of solutions. The stability of the solutions is examined 
by Floquet theory. From the numerical solutions, following 
conclusions are drawn. 

IHBC is capable of tracing all types of period one etc 
together with folds and bifurcations in amplitude Vs 
frequency plots. 

The nonlinear cracked RC beam shows the co-existence of 
a variety of solutions for response like period 1 stable and 
unstable solutions at the same frequency. 

As the nonlinearity increases, the deflection curves skewed 
more and more to the left with sharp bent of the solution 
branches. 

The jump phenomena are also observed for strongly 
nonlinear cracked RC beam characterized by cubic 
polynomial. 
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Fig. 2 Variation of Amplitude Ratio with Frequency Ratio 

(μ=0.6299) 

 

 
Fig. 3 Variation of Amplitude Ratio with Frequency Ratio 

(μ=1.2598) 

 

 

 
Fig. 4 Variation of Amplitude Ratio with Frequency Ratio 

(μ=1.8896) 

 
Fig. 5 Variation of Amplitude Ratio with Frequency Ratio 

(μ=2.5195) 

 
Fig. 6 Sensitivity Analysis (Amplitute ratio v/s Frequency 

ratio, μ=1.8896 and ξ = 1.5, 2%,3%,4%) 


