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Abstract—In this paper, we propose a new modular approach 

called neuroglial consisting of two neural networks slow and fast 
which emulates a biological reality recently discovered. The 
implementation is based on complex multi-time scale systems; 
validation is performed on the model of the asynchronous machine. 
We applied the geometric approach based on the Gerschgorin circles 
for the decoupling of fast and slow variables, and the method of 
singular perturbations for the development of reductions models. 

This new architecture allows for smaller networks with less 
complexity and better performance in terms of mean square error and 
convergence than the single network model. 

 
Keywords—Gerschgorin’s Circles, Neuroglial Network, Multi 

time scales systems, Singular perturbation method. 

I. INTRODUCTION 
INCE the artificial neural networks try to emulate the 
brain, researchers have continued to focus their attention 

on the importance of neurons in the nervous system. However 
in recent decades, the importance of glial system was observed 
and it is believed that the glial system is involved in the 
nervous system processes information in a much more 
supported than before [1] and how these glial cells also 
communicate, forming a separate parallel network to the 
neural network. Also information is treated in two time scales.  

 For this we developed a close architecture of biological 
reality called Neuroglial two networks of different speeds. The 
Development of this architecture is to better organize using the 
powerful concept of modularity.  

The implementation is based on complex multi-time scale 
systems. Modeling, identification, analysis and control of such 
systems networks of single neural network in unique time 
scale can be difficult. 

 This complexity makes learning more difficult and, slow 
convergence. An alternative, to learn better without 
complicating neurons, is to use the new approach Neuroglial 
with two networks. 

 Indeed, for the application of this approach, we conducted 
a phase decomposition of the system into slow and fast 
subsystems. The decomposition method chosen is the singular 
perturbations method [2]. 

The first problem that appears when you want to decouple 
the variables lies in the identification of fast and slow 
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variables. This is done by the geometric method: 
Gerschgorin’s circles [3]. Our contribution is the validation of 
the neuroglial approach to reductions models of asynchronous 
machine.  

II. SINGULAR PERTURBED METHOD 
Singularly perturbed systems analyzed by this technique 

must have a special form called standard: 
Suppose that the model BUAXX +=  distribution  
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Which 22221 ,, BAA  are very large in modulus compared to 
those 11211 ,, BAA . So normalization can be done by introducing 

a parameterε  , with: 21
*
21 AA ε=  22

*
22 AA ε= , 2

*
2 BB ε=  and 

the model appears in a form singularly perturbed : 
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The introduction of a small parameterε  is considered as a 

parasite. Slow reduced model is obtained by considering 
.0=ε   
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which , , ,s s s sx z u y  represent the slow components of variables 

, , ,x z u y . 
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And fast model is obtained by introducing: 

 

sf zzz −=  

( ) ( )

( )
( )

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

+=

=

+=

−
021

1
2200

2

222

xAAztz

zCy

uBzA
d
dz

f

ff

ff
f

τ

ττ
τ

 

III. GEOMETRICAL IDENTIFICATION OF DYNAMIC 
To determine the dynamic elements that are fast (or slow), 

we use Gerschgorin’s circles technique. 
After transformations affecting the state matrix, the latter 

comes in diagonally dominant form and whose eigenvalues 
correspond to the different time scales. The necessary 
conditions and sufficient are set for this technique to be 
applied correctly. 

A. Theorem 1 
Each eigenvalue of the square matrix A  is located in at 

least one circle ,iC  centered in iia  and having radii: lii RR =
or cii RR =  [3], [4]:  
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B. Theorem 2  
If we have two sets I and K , with φ=KI ∩  and 

{ },,....1 nKI =∪  with: ,),( KIji ×∈∀  circles ( )iiii RaC ,  and 

( )kkkk RaC ,  check: ( )Kikkii RRaa +≥−  Ii ∈∀   and Kk∈∀ . 
Then the matrix A  has two separate sets of eigenvalues. If 

iia
 
is greater than expected kka  ix variables,  are so 

fast and kx variables, Kk ∈  are slow [3], [4]. 

C. Change the Size of Radius  
Let )1,....,1,,1,...,1( kk diagS α= , nk ,,2,1 ……=  
Change’s base XSX k='  shows a new state matrix [4].  
Radii kR1  and ckR  become respectively kkR α1  and kckR α .  
If the operation is repeated several times, the transformation 

is obtained: 
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If there are two disjoint circles, the permutation matrix is 

found:  
 

⎩
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 D. Move Centers of Circles  
Sometimes it is necessary to improve the separation of 

dynamic with introducing movement of circles. This 
movement is characterized by the following transformation 
[4]: ijlnl JBIT .+= .  

Only the elements of the line i  and the column j  change, 

the centers of circles i  and j are displaced from iia  and jja  

to jilii aBa +  and jiljj aBa +
 
respectively. 

Choice lB  can be made so that:   
 

0)( 2 =−−+= jiliijjlijij aBaaBaX  
 
If several circles intersect, the terms ( ),...2,1=lBl  are 

calculated by the same method, the final transformation is: 
 

⎩
⎨
⎧

=

=
−1TATA

XTX   ∏=T lT  

 
If two groups of circles are disjoint, the permutation matrix 

is found: 
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IV. MODULARITY 
 The design of the new neuroglial approach requires 

executing the four following steps:  

A The Decomposition  
Two vertical decompositions are executed. A 

decomposition is performed on the input space and another 
decomposition is performed on the variables of the model [5].  

B The Organization of the Architecture  
A parallel decomposition is applied in our approach: 

1. Cooperation 
There are two ways to establish a cooperative relationship 

between the modules, AND and OR decomposition [6]. AND 
decomposition is used when solving a task involves resolving 
all sub-tasks and an OR decomposition when solving a task is 
to solve a sub task. 

C. Nature of Learning  
Independent learning is used [7]: 
The learning of a module is performed independently when 

the other modules involved and do not affect during the 

Ii ∈
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Fig. 2 Gerschgorin’s circles 

 
In this application, the model learning is a function of two 

inputs: sinusoidal voltages vsα and vsβ output is the couple Cem. 
The decomposition of the input variables: The input variables 
are decomposed to the slow variables and fast variables. This 
decomposition is performed using the wavelet. 

In order to have an optimal error, a better convergence and 
reduced neural configuration, a comparative study of 
performance is made between the model of single neural 
network and modular model with two networks slow and fast 
networks. 

To evaluate the results, the mean square error MSE has 
been used:  
 

( )2

1

1
2

m

d e
i

y y
=

−∑  

dy : The desired output 

ey : The estimated output  

VI. RESULT AND DISCUSSION 

A. Learning Single Network 
The minimum architecture allows convergence of the 

network is composed of several layers: an input layer with ten 
neuron, a hidden layer itself contains ten neurons and output 
layer that contains one neuron. Presenting 400 examples to the 
network, we obtain the convergence after 5000 iterations for 
the couple, thus giving the result shown in. 

 

 
Fig. 3 Evolution MSE of single network 

 
Thus obtained after 5000 iterations a minimum squared 

error 0.000174207. By increasing the number of iterations in 
order to achieve the parameters of a neural network, one can 
give better performance. We note, according to the results of 
Fig. 3 that the convergence is slow, because of the size of the 
MLP network.  

B. Modular Learning 
To overcome the problems of complexity and convergence, 

both for better performance with reduced size, the solution 
presented is the use of the new modular architecture we will 
use two smaller networks, a fast network and a slow network. 
Several steps are used to simulate these models. 

1. Learning Slow Network 
Architecture with two layers: an input layer with 4 neurons 

and an output layer with a single neuron. The algorithm has 
converged thus giving the following result 

 

 
Fig. 4 Evolution of the MSE slow network with 400 examples and 

after 100 iterations 

  Eigen values 
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SE
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Fig. 4 shows the high convergence rate of learning. The 
minimum value, which is in the range of 7.23E-32, occurs just 
after (100 iterations). 

 2. Learning Fast Network 
With the same architecture as the slow network, gave the 

following result. 
 

 
Fig. 5 Evolution of the MSE fast network with 400 examples and 

after 100 iterations 
 

On note that the error stabilizes at a value of: 1.082E-27. 
Some 100 iterations are sufficient to learn the fastest model. 
The algorithm converged quickly and perfectly.  

C. Combination and Comparison 

e es efc c c= +  

 
The estimated slow couple will be associated with the 

estimated fast couple to form the estimated global couple of 
the machine. Thus the estimated global error is the sum of 
estimation errors of the slow model and those of the fast 
model.  

The error is in the order of 27-1.08932E. 
These results demonstrate the great benefits offered by the 

modular model with respect to the single network model. This 
concerning one hand the speed of convergence and the mean 
square error and on the other hand, the complexity is greatly 
reduced (size reduced architecture). The performance of the 
global model depends on the performance of the slow reduced 
model and that the fast reduced model.  

VII. CONCLUSION 
The equations of asynchronous machines are nonlinear and 

strongly coupled. However, these models can be seen on 
several time scales (electrical, electromagnetic and mechanical 
dynamics, except for the thermal time scale). 

The asynchronous machine is a strongly coupled non-linear 
model and has different dynamics. Modeling, identification, 
analysis of such systems networks of single neurons in a 
single time scale can be difficult. This complexity makes 
learning more difficult, slow convergence. 

To reduce complexity and to facilitate the analysis and 
development of control strategies of these machines, we 
propose to use the new approach neuroglial with two 
networks, decoupling the system into two subsystems the fast 
and other slow using singular perturbations technique.  

To conclude the modular model neuroglial offers better 
performance in terms of convergence speed, computational 
complexity and mean square error. This demonstrates that 
such an architecture is best suited to complex systems with 
two time scales 

Finally, we are still at the stage of trial and error to get a 
better configuration of a neural network can optimally solve a 
specific problem. It is hoped that in the near future 
developments in this field of research will better understand 
the complexity of the human brain and by that very fact permit 
us to discover new possibilities of using artificial neural 
networks. 

In the future, several lines of research can be pursued, 
including: 
– Modeling and control systems multi-time scales using the 

approach 
– Modeling analysis and control in the field of robotics 

which have different dynamics.  
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