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Abstract—In this paper, we deal with the Steiner tree problem 

(STP) on a graph in which a fuzzy number, instead of a real number, 
is assigned to each edge. We propose a modification of the shortest 
paths approximation based on the fuzzy shortest paths (FSP) 
evaluations. Since a fuzzy min operation using the extension 
principle leads to nondominated solutions, we propose another 
approach to solving the FSP using Cheng's centroid point fuzzy 
ranking method. 

 
Keywords—Steiner tree, single shortest path problem, fuzzy 

ranking, binary heap, priority queue.  

I. INTRODUCTION 
HE Steiner tree problem in graphs (or Network Steiner 
tree problem, NSTP) [12], [17] is concerned with 

connecting a subset of vertices at a minimal cost. More 
precisely, given an undirected connected graph G=(V,E) with 
vertex set V, edge set E, nonnegative weights associated with 
the edges, and a subset B of V (called terminals or customer 
vertices), the problem is to find a subgraph T that connects the 
vertices in B so that the sum of the weights of the edges in T is 
minimised. It is obvious that the solution is always a tree and 
it is called a Steiner minimum tree for B in G. 

Applications of the NSTP are frequently found in the layout 
of connection structures in networks and circuit design [6], 
[11], [13]. Their common feature is that of connecting 
together a set of terminals (communications sites or circuits 
components) by a network of the minimal total length. 

If |B|=2, then the problem reduces to the shortest path 
problem and can be solved by Dijkstra's algorithm. In the case 
of B=V, the NSTP reduces to the minimum spanning tree 
(MST) problem and can be solved by Jarník's (Prim's), 
Borůvka's and Kruskal's algorithms. All these algorithms are 
polynomial. However, in the general case, the NSTP is NP-
complete [18] and therefore cannot be solved exactly for 
larger instances so that heuristic or approximation methods 
must be used. Normally, a Steiner minimum tree is not a mere 
minimum spanning tree, it can also span some nonterminals, 
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called Steiner vertices. 
In the graphical representation, vertices and edges can 

correspond to locations and connections between locations, 
respectively. The weights (lengths or costs) of edges can 
express geographical distances of the corresponding vertices 
or transportation costs expended (or times spent) to move 
between their end vertices. While geographical distances can 
be stated deterministically, costs or times can fluctuate with 
traffic conditions, payload and so on. In the last two cases, 
deterministic values for representing the edge weights cannot 
be used. A typical way of expressing these uncertainties in the 
edge weights is to utilize fuzzy numbers based on fuzzy set 
theory. In this case, we must define an order relation between 
fuzzy numbers, because the fuzzy variant of the problem 
evaluates "fuzzy min" operations. As many approaches for the 
comparison of fuzzy numbers do not guarantee that fuzzy 
numbers are totally ordered, they lead to a number of 
nondominated paths (or Pareto Optimal paths). However, the 
number of nondominated trees derived from a large network 
can be too numerous, which makes it difficult for a decision 
maker to choose a preferable tree. 

In this paper, we propose a different approach based on 
Cheng's fuzzy ranking method [9] that makes it possible to 
solve the fuzzy Steiner minimum tree (FSMT) in a way 
similar to that of the crisp version of the problem.  

II. FUZZY SET BASICS 
Suppose that X = {x} is a universe, i.e. the set of all 

possible (feasible, relevant) elements to be considered. Then a 
fuzzy subset (or a fuzzy set, for short) A in X is defined as a set 
of ordered pairs {(x, μA(x))}, where x∈X and μA : X → [0,1] is 
the membership function of A;  μA(x) ∈ [0,1] is the grade of 
membership of x in A, from 0 for full nonbelongingness to 1 
for full belongingness through all intermediate values [5]. 

It is convenient to denote a fuzzy set defined in a finite 
universe, say A in  X = {x1, … , xn} as  A = μA(x1)/x1 + … + 
μA(xn)/xn where “μA(xi)/xi” (called a singleton) is a “grade of 
membership/element” pair and “+” is used in the set-
theoretical sense. 

The α-cut of a fuzzy set A in X is defined as an ordinary set 
Aα ⊆ X such that   
 Aα = {x∈X | μA(x) ≥ α}, ∀α ∈[0,1]. (1) 

Similarly, the α-level cut of a fuzzy set A in X, denoted by 
Aα

 , is the crisp subset of X that contains all of the elements of 
X with exactly the given degree of membership α:  
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 Aα = {x∈X | μA(x) = α}, ∀α ∈[0,1].  (2) 
The level set of A, denoted LA , is a subset of [0,1] 

containing the values α that determine distinct α-cuts:  
 LA = {α ∈[0,1] | μA(x) = α  for some x∈X } (3) 

III. LEVEL GRAPHS 
Let G be a graph with known vertices and edges, but 

unknown weights (or distances) on the edges. Let each weight 
wi be a fuzzy convex number. Thus each α-level cut wi

α will 
consist of two elements wi

α− = min wi
α and wi

α+ = max wi
α (not 

necessarily distinct, if α=1). Now let Gα be the set of crisp 
graphs with edge i having the weight wi

α− or wi
α+. Hence, Gα 

consists of at most 2|E| crisp graphs. For α=0 we have wi
α+ = 

sup(supp wi) and wi
α− = inf (supp wi). 

Let Πab be the set of crisp paths from vertex a to vertex b. 
Define  
 Σα ={P∈Π | P is a shortest path of some graph in Gα }  (4) 
and the fuzzy set of shortest paths for the fuzzy graph G to be 
the fuzzy set Σ on Π with membership function  

 { }
(0,1]

( ) max |P P α
Σ

α
η α Σ

∈
= ∈  (5) 

By [3] then this fuzzy set of shortest paths can be collapsed 
into a fuzzy shortest path, where each edge ei has a 
membership in the fuzzy set Σ’: 
 { }'

,
( ) max ( )  for 1, ,

ie P P Π
i P i EΣ Σμ η

∈ ∈
= = K  (6) 

Unfortunately, due to 2|E| crisp graphs, this approach is not 
efficient. 

IV. FUZZY RANKING 
Let us assume that the weights of the edges be given by 

linear trapezoidal or  triangular  fuzzy numbers. 
 

 
Fig. 1 Fuzzy numbers 

 
Mathematically, a linear trapezoidal fuzzy number A can be 

represented by a quadruple (a1, a2, a3, a4) and its membership 
function μA is given by 
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Similarly, a linear triangular fuzzy number A can be 
represented by a triple (a1, a2, a3) and its membership function 
μA is given by 

 

1

1
1 2

2 1

2

3
2 3

2 3

3

0 , if 0

, if

( ) 1 , if

, if

0 , if

A

x a
x a a x a

a a
x x a

x a
a x a

a a
x a

μ

≤ ≤⎧
⎪ −⎪ ≤ ≤
⎪ −
⎪= =⎨
⎪ −⎪ ≤ ≤

−⎪
⎪ ≥⎩

 (8) 

In the sequel we can restrict our considerations to triangular 
fuzzy numbers without loss of generality.  

The addition of these fuzzy numbers can be derived using 
Zadeh's extension principle and it is determined as follows: 
   A ⊕ B= (a1, a2, a3) ⊕ (b1, b2, b3) = 
            = (a1+ b1, a2+ b2, a3+ b3) (9) 

This operation always results in a triangular fuzzy number. 
In the shortest paths computations we must also evaluate 
minimum operations. This means that it is necessary to have a 
method of ranking or comparing fuzzy numbers. 

An ordering relation ≤ of fuzzy numbers can be defined, 
e.g., as follows: 
 A ≤ B ⇔  (a1≤ b1) ∧ (a2≤ b2) ∧ (a3≤ b3)  (10) 

However, this relation is not a complete ordering relation, 
as fuzzy numbers A, B satisfying  (∃ i,j ∈{1,2,3}): (ai<bi) ∧ (aj 
>bj) are not comparable by ≤. 

Let us consider a fuzzy min operation defined like the fuzzy 
addition in the following way: 
 min (A,B)=(min(a1, b1), min(a2, b2), min(a3, b3)) (11) 

It is evident that, for noncomparable fuzzy numbers A, B, 
this fuzzy min operation results in a fuzzy number different 
from both of them. For example, for A=(4,9,12) and 
B=(6,8,13), we get from equation (11) a fuzzy min (4,8,12) 
which differs from A and B. 

The previous remarks demonstrate the difficulties with 
comparisons of fuzzy numbers. For this reason, the ranking or 
ordering methods of fuzzy quantities have been proposed by 
many authors. Most of them were summarized in [8], [24], 
[25]. Zadeh [27] shows that fuzzy graphs may be viewed as a 
generalisation of the calculi of crisp graphs. Blue et al. [3] 
give a taxonomy of graph fuzziness that distinguishes five 
basic types combining fuzzy or crisp vertex sets with fuzzy or 
crisp edge sets and fuzzy weights and fuzzy connectivity. The 
paper also introduces an approach to finding the shortest path 
based on level graphs, see Section III. Further methods can be 
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found, e.g., in [1], [2], [4], [7], [14], [16], [19], [21], [22], 
[23], [26]. However, all these approaches are rather theoretical 
and do not address the implementation point of view that will 
be in the center of our considerations. Unfortunately, none of 
these methods is commonly accepted. 

In this paper, we use for simplicity the fuzzy ranking 
method described in [9], modified for the case of triangular 
fuzzy numbers. This method uses inverse functions  

1 2: [0,1] [ , ]L
Ag a a→  and 2 3: [0,1] [ , ]R

Ag a a→  derived from 

functions 1 2: [ , ] [0,1]L
Af a a →  and 2 3:[ , ] [0,1]R

Af a a → , 
respectively.  

From 1

2 1

x ay
a a

−
=

−
 and 3

2 3

x ay
a a

−
=

−
we can easily derive that  

 1 2 1 3 2 3( ) , ( )L R
A Ag a a a y g a a a y= + − = + −  (12) 

The ranking function is defined as the distance between the 
centroid point (x0, y0) and the origin, i.e. 

 2 2
0 0( ) ( ) ( )R A x y= +  (13) 

where 
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and Supp A is the support of A. 
Fuzzy numbers A, B are then ranked by their ranking 

function values R(A) and R(B). 

V. SHORTEST PATHS APPROXIMATION 
The shortest paths approximation [12] for solving the 

Steiner tree problem in graphs is an analogue of Jarník's 
algorithm for finding a minimum spanning tree. It can be 
described in a pseudopascal code as follows:  

 
input : connected undirected graph G=(V,E), 
  a positive edge cost weight function, 
  set of terminals B⊆V 
output :  Steiner tree T for B 
select arbitrary terminal in B and denote it x1  
T:={x1}; 
k:=1; 
while k<|B| do 
 begin determine a terminal xk+1 ∉T closest to T 
  T:=T ∪{xk+1}; 
  T:=T ∪{a shortest path joining T and xk+1; 
  k:=k+1 
 end; 
{T is an approximation of the Steiner minimum tree} 

Fig. 2 demonstrates this algorithm for a simple graph with 3 
terminals (denoted by squares).  

 
Fig. 2 Shortest paths approximation 

 
In general, the solution can be improved by two additional 
steps: 
1. Determine a fuzzy minimum spanning tree for the 

subnetwork of G induced by the vertices in T. 
2. Delete from this minimum spanning tree nonterminals of 

degree 1 (one at a time) and edges incident with them. The 
resulting tree is the (suboptimal) solution. 

VI. FUZZY SHORTEST PATH PROBLEM 
Finding the shortest path from a specified source (or an 

origin) to a sink (or a destination) is a fundamental problem in 
transportation, routing, and communications applications. 
Alternatively, the problem can be formulated as finding the 
shortest paths from a source to all other locations 
(communication sites). The computational problem is called 
the single source shortest path problem (SPP for short). 

Before we discuss the algorithm for the fuzzy SPP, we will 
briefly summarize the data structures used in it. 

The most important data structure substantially determining 
the efficiency is the priority queue [20]. The priority queue 
supports these operations: 

Insert(Q,u,key) - insert u with the key value key in Q; 
ExtractMin(Q) - extract the item with the minimum key value 
in Q, and DecreaseKey(Q,u,new_key) - decrease the value of 
u's key value to new_key. 

The priority queue can be easily implemented by a binary 
heap. This is a binary tree with vertices numbered by integers 
and satisfying these conditions:  
(1) Each vertex of a binary heap that is not included in the 

last two levels has two successors.  
(2) In the last level, all vertices are placed from the left. This 

means that, passing vertices in the last but one level from 
left to right, only some of them (or none) may have two 
successors. In the latter case, at most one vertex may exist 
with one successor and all other vertices of this level are 
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leaves.  
(3) The number of each vertex is not higher than the numbers 

of its successors. 
The root of the binary heap is numbered by 1, other vertices 

at lower levels from left to right are assigned consecutive 
integers starting from 2. 

The binary tree can be represented by a one-dimensional 
array. It can be proved that, for the defined numbering of the 
binary heap vertices, the j-th element in the i-th level of a 
binary heap corresponds to position 2i−1+j−1 of the array; left 
and right successors of vertex i have positions 2i and 2i+1, 
respectively, and its predecessor has position ⎣i/2⎦ (that is 
position i div 2 in the Pascal notation. 

We will skip detailed descriptions of Insert, ExtractMin and 
DecreaseKey operations because they can be found in all 
books dealing with algorithms and data structures (e.g. 
[10],[15], [18]) only noting that the time complexity of all of 
them is O(log n) where n is the number of vertices. 

Dijkstra's algorithm for the "deterministic" SPP finds 
shortest paths from a source s to all other vertices. Now we 
will generalise it for the case of fuzzy edge lengths. 

Let d[v] be the fuzzy number corresponding to the length of 
the shortest path from s to v. Initially, d[s]=(0,0,0) and all 
other d[v] values are set to (∞,∞,∞). The algorithm is based on 
gradual improvements of the shortest paths distance from s to 
the other vertices. Let us consider an edge (u,v) whose weight 
is w(u,v) and suppose that we have already computed current 
estimates of d[u], d[v]. If R(d[u]⊕w(u,v))<R(d[v]), then 
d[u]⊕w(u,v) becomes a new estimate of d[v]. The process by 
which an estimate is updated is called relaxation. The shortest 
way back to the source is through u by updating the 
predecessor pointer. If we repeat the relaxation for all edges 
then d[v] values converge to the shortest paths of vertices v to 
the source. Let S be a set of vertices for which we know the 
final value d[v]. Initially, S is empty. The question is, how do 
we know which vertex of V−S to add next to S? The algorithm 
uses a greedy strategy, i.e. it takes the vertex for which d[u] is 
a minimum, in other words, it takes the unprocessed vertex 
that is closest (by our estimate) to s. 

In order to perform this selection efficiently, we store the 
vertices of V−S in a priority queue (binary heap), where the 
key value of each vertex u is d[u]. Information on which 
vertices are in S (they have final value d[v]) is stored in the 
determined array of Boolean variables. 

Here is the algorithm. 
Input:  connected weighted graph G=(V,E)  
 with fuzzy edge lengths w(e), e∈E, 

 s - source (root); 
output: d[u]; 
auxiliary variables: 

   Adj[u] - set of neighbours of vertex u. 
for ∀u∈V do 
 begin d[u]:=(0, ∞,∞); 
  determined[u]:=False; 
 pred[u] := nil 

 end; 
d[s] := (0,0,0); 
Q := priority_queue(V);   { push all vertices into Q  
 ordered by d[u] } 
while NonEmpty(Q) do 
 begin  u := ExtractMin(Q); 
 for ∀v∈Adj[u] do 
 if R(d[u]⊕w(u,v))<R(d[v]) 
 then begin d[v] := d[u]⊕w(u,v); 
 DecreaseKey(Q,v, d[v]); 
 pred[v] := u 
 end; 
 determined[u]:=True; 
 end; { Fuzzy Dijkstra SPP algorithm } 
 { pointers in the pred array define the inverted tree of 
 the shortest paths pointing back to s } 

VII. ANALYSIS OF THE ALGORITHM 
In this section, we analyse the time complexity of the 

proposed algorithm for the fuzzy network Steiner tree 
problem. 
Theorem 1 The proposed algorithm runs in O(|B| |E| log |V|) 
time. 
Proof. Since the time complexity of the algorithm is given by 
|B|×(time complexity of the fuzzy SPP algorithm) we can 
focus on the FSSP. Let O(TR) be the time of the centroid point 
evaluation. To analyse the algorithm, we account for the time 
spent on each vertex as it is extracted from the priority queue. 
It takes O(log |V|) to extract this vertex from the queue. For 
each incident edge, we spend potentially O(log |V|) time 
decreasing the key of the neighbouring vertex. Thus the time 
is O(log |V|+TR deg(u) log |V|). The other steps of the update 
take constant time. So the overall running time is 

( , ) (log | | deg( ) log | |)

(1 deg( )) log | | log | | (1 deg( ))

log | | (| | .2 | |) ((| | | |) log | |)

R
u V

R R
u V u V

R

T V E V T u V

T u V V T u

V V T E O V E V

∈

∈ ∈

= + =

= + = + =

= + = +

∑

∑ ∑  

Since G is connected, |V| is asymptotically no greater than 
|E|, so this is O(|E| log |V|). 
• 

VIII. CONCLUSION AND FUTURE WORK 
In this paper, the problem of finding the network Steiner 

minimum tree was studied. In contrast to traditional 
approaches, we assumed that the weights of edges were given 
by linear triangular fuzzy numbers and proposed a fuzzy 
modification of the shortest paths approximation with an 
emphasis on efficient implementation of the shortest path 
subroutine using the priority queue. For comparisons of fuzzy 
numbers, Cheng's centroid point fuzzy ranking method was 
used. 

In the future, we intend to investigate a different approach 
based on a reformulation of the problem where the Steiner tree 
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problem in graphs is to find S⊆V so that the spanning tree of 
the subgraph of G induced by B∪S has a minimum total 
weight. 

The solutions in the search space are then restricted to 
binary strings where a 1 or 0 corresponds to whether or not a 
vertex from V−B is included in the Steiner tree. Because of the 
exponentially growing size of the search space, we will use 
metaheuristics (such as genetic algorithms and simulated 
annealing) for finding an approximation of the solution. 
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