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Blind Source Separation for Convoluted Signals
Based on Properties of Acoustic Transfer Function

in Real Environments
Takaaki Ishibashi

Abstract—Frequency domain independent component analysis has
a scaling indeterminacy and a permutation problem. The scaling
indeterminacy can be solved by use of a decomposed spectrum. For
the permutation problem, we have proposed the rules in terms of gain
ratio and phase difference derived from the decomposed spectra and
the source’s coarse directions.

The present paper experimentally clarifies that the gain ratio and
the phase difference work effectively in a real environment but their
performance depends on frequency bands, a microphone-space and
a source-microphone distance. From these facts it is seen that it is
difficult to attain a perfect solution for the permutation problem in a
real environment only by either the gain ratio or the phase difference.

For the perfect solution, this paper gives a solution to the problems
in a real environment. The proposed method is simple, the amount of
calculation is small. And the method has high correction performance
without depending on the frequency bands and distances from source
signals to microphones. Furthermore, it can be applied under the real
environment. From several experiments in a real room, it clarifies
that the proposed method has been verified.

Keywords—blind source separation, frequency domain indepen-
dent component analysys, permutation correction, scale adjustment,
target extraction.

I. INTRODUCTION

MANY noise reduction methods using ICA (indepen-
dent component analysis) [1-5] have been proposed.

ICA can separate unknown sources from their mixtures with-
out information on the transfer functions, provided that the
sources are statistically independent. For the instantaneous
mixtures, the original sources can be completely recovered
in the time domain except for indeterminacy of scaling and
permutation.

In a real environment, the signals observed at microphones
are not instantaneous mixtures but are convoluted version
of the sound sources. On account of this, there have been
reported many trials to separate the convoluted mixtures in
the frequency domain.

However, in the frequency domain ICA, the indeterminacy
of scaling and permutation appears at every frequency. In order
to recover the sources properly, these indeterminacies must
be essentially solved before making an inverse transformation
from the frequency to the time domain.

In order to solve the problem, several methods have been
proposed. Scaling indeterminacy, i.e. amplitude and phase in-
determinacy can be solved by use of decomposed spectrum [5].
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We have derived that the decomposed spectrum is uniquely
expressed as a product of a source spectrum and a transfer
function from a source to a microphone [6].

For the permutation problem, there have been tried a method
using similarities between separate spectra [5], a method
taking advantage of directivity of array-microphones [7]. The
authors have proposed some rules in terms of the gain ratio and
the phase difference derived from the decomposed spectra and
the source’s coarse directions [6]. These correction methods
have problems; its calculation is not simple and it does not
function well at such frequencies that the sound component is
very small to be susceptible to ambient noises.

In the present paper, we newly define the gain and phase
differences between two acoustic transfer functions from a
single source to two microphones. These differences are easily
calculated in terms of the decomposed spectra and are also
useful quantities to resolve the permutation problem. Their
characteristics are fully examined in a real environment. It is
clarified that the characteristics depend on frequency bands, a
microphone-space and a source-microphone distance, and that
these facts are also true for permutation correction rules.

For the perfect solution of the permutation problem, the
paper gives a solution to the problems in a real environment.
The proposed method is simple, the amount of calculation
is small. And the method has high correction performance
without depending on the frequency bands and distances from
source signals to microphones. Furthermore, it can be applied
under the real environment. From several experiments in a real
room, it clarifies that the proposed method has been verified.

II. BLIND SOURCE SEPARATION

A. Independent Component Analysis in Frequency Domain

The source signals si(t) (i = 1, 2) are denoted by

s(t) = [s1(t), s2(t)]
T (1)

under the assumption that each component si(t) is statistically
independent of each other. The observed mixtures xj(t) (j =
1, 2) are represented by

x(t) = [x1(t), x2(t)]
T . (2)

Consider the case that two statistically independent sound
sources are observed by two microphones as

x(t) = G(t) ∗ s(t) (3)
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where ∗ denotes the convolutional operator and G(t) a matrix
whose elements are transfer functions from the sources to the
microphones.

The mixtures are transformed into the short time spectra by
the discrete Fourier transform:

xj(ω, k) =
∑

t

e−
√−1ωtxj(t)w(t− kτ) (4)

where ω(= 0, 2π/M, · · · , 2π(M−1)/M) denotes a frequency
bin, M the number of samples in a frame, k the frame number,
τ the frame shift, w(t) a window function.

In the frequency domain, the spectra x(ω, k) of the con-
volved mixtures are expressed as a product of the source
spectra s(ω, k) and the frequency transfer function G(ω).

x(ω, k) = G(ω)s(ω, k) (5)

In order to estimate the unknown sources, the separating ma-
trix H(ω) is estimated by frequency domain ICA algorithm [1-
5]. The separated spectra u(ω, k) = [u1(ω, k), u2(ω, k)]

T can
be obtained as

u(ω, k) = H(ω)x(ω, k). (6)

It seems to be possible that the separated signal uî(t) (̂i =
1, 2) for the sound source si(t) can be obtain from the
separated spectra uî(ω, k) by simply applying the inverse
transform to time domain as

uî(t) =
1

2π

1

W (t)

∑

k

∑

ω

e
√−1ω(t−kτ)uî(ω, k) (7)

where W (t) =
∑

k w(t− kτ).
However, the separated spectra uî(ω, k) have the problem

with permutation and scaling indeterminacy. The order î of the
separated spectrum uî(ω, k) is not necessarily consistent with i
of the source spectrum si(ω, k), and the scale of uî(ω, k) is not
consistent with that of si(ω, k). Therefore, the indeterminacy
of permutation, amplitude and phase must be settled to get a
meaningful signal uî(t) before inversely transforming uî(ω, k)
from the frequency domain to the time domain.

B. A Solution for Scaling Indeterminacy

In order to solve the scaling indeterminacy, a decomposed
spectrum vî(ω, k) = [vî1(ω, k), vî2(ω, k)]

T (̂i = 1, 2) is
introduced follows [5].

v1(ω, k) = H−1(ω)[u1(ω, k), 0]
T (8)

v2(ω, k) = H−1(ω)[0, u2(ω, k)]
T (9)

We have derived that the decomposed spectrum vîj(ω, k)
is uniquely determined as a product of the source spec-
trum si(ω, k) and the transfer function gji(ω), although their
combination differ depending on whether permutation occur
or not [6]. This fact means that the scaling factor of the
decomposed spectrum is the transfer function itself and the
decomposed spectrum has no scaling indeterminacy. Table I
shows the correspondence between the decomposed spectrum
and the sources.

TABLE I
DECOMPOSED SPECTRA IN PERMUTATION AND THOSE IN NO-PERMTATION

g11s1 g21s1 g12s2 g22s2
No-permutation (̂i = i) v11 v12 v21 v22
Permutation (̂i �= i) v21 v22 v11 v12

TABLE II
DECISION RULE FOR PERMUTATION

No-permutation (̂i = i) |r1(ω)| > |r2(ω)| � r1(ω) > � r2(ω)

Permutation (̂i �= i) |r1(ω)| < |r2(ω)| � r1(ω) < � r2(ω)

C. A Solution for Permutation

It assumes that one source is closer to the first microphone
and another source is closer to the second microphone. From
this assumption, the gain and the phase inequalities on the
transfer function are derived.

|gii(ω)| > |gji(ω)| (10)
� gii(ω) > � gji(ω) (11)

It is found from Table I that of the source si(ω, k) there
exist two candidate estimates vî,j=1(ω, k) = gj=1,i(ω)si(ω, k)
and vî,j=2(ω, k) = gj=2,i(ω)si(ω, k). Here, we adopt
vî,j=i(ω, k) = gj=i,i(ω)si(ω, k) as the estimate of si(ω, k)
because the decomposed spectra observed at the nearer mi-
crophone (j = i) are larger in power and are less disturbed
by ambient noise than those observed at the other microphone
(j �= i).

The ratio rî(ω) between two decomposed spectra is defined.

rî(ω) =
1

K

K−1∑

k=0

vî1(ω, k)

vî2(ω, k)
(12)

This ratio leads to basec two permutation decision rules in
terms of |rî(ω)| and � rî(ω) as shown Table II. From these
decision rules, further, two type of permutation correction
methods are derived: one is based on the gain inequality, and
the other the phase inequality.

[Rule1 : gain-based method]

yi(ω, k) =

{
vî=i,j=i(ω, k) if |r1(ω)|> |r2(ω)|
vî�=i,j=i(ω, k) if |r1(ω)|< |r2(ω)| (13)

[Rule2 : phase-based method]

yi(ω, k) =

{
vî=i,j=i(ω, k) if � r1(ω)> � r2(ω)
vî�=i,j=i(ω, k) if � r1(ω)< � r2(ω)

(14)

The amount of calculation in either of these correction meth-
ods is much less than that in the method based on the power
of decomposed spectra [6].

After the above permutation correction, the source spectra
yi(ω, k) is given by

yi(ω, k) = gii(ω)si(ω, k). (15)

This implies that yi(ω, k) can be an estimate of si(ω, k).
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Sound Source 1

θ1

s1(t)

l1

Microphone 1 Microphone 2
10 cm

Fig. 1. Placement of one sound source and two microphones

TABLE III
RATIO WHERE EQS. (10) AND (11) HOLDS IN REAL ENVIRONMENT

Source location 10 cm 30 cm
Gain inequality 99.88 % 98.50 %
Phase inequality 97.84 % 99.64 %

III. PROPERTIES OF ACOUSTIC TRANSFER FUNCTION

A. Frequency properties of acoustic transfer function ratio

Under the condition that only s1(ω, k) is active while
s2(ω, k) = 0, the mixtures are described by x1(ω, k) =
g11(ω, k)s1(ω) and x2(ω, k) = g21(ω, k)s1(ω). The ratio of
mixtures rx(ω, k) = x1(ω, k)/x2(ω, k) is found to be equal
to g11(ω)/g21(ω), i.e., the ratio of the transfer functions from
source 1 to microphone 1 and microphone 2. Therefore it can
be measured by the ratio rx(ω, k) whether the inequalities in
Eqs. (10) and (11) hold. The quantities |rx(ω)| and � rx(ω)
respectively mean a gain ratio and a phase difference between
g11(ω) and g21(ω).

Several experiments on the gain ratio and the phase dif-
ference were carried out in a room (L7.3 m × W6.5 m ×
H2.9 m). The room reverberation time was 500 ms and the
ambient noise was 48 dB. Fig.1 shows the configuration of
a source and two microphones. The source distance l1 from
microphone 1 was set at 10 cm and 30 cm with a fixed angle
θ1 = 10◦. The two microphones with 10 cm spacing were
condenser microphones with band width 200-5000 Hz.

At every l1, 32 data sets (8 humans × 4 words [8]) were
observed. The mixture signals were sampled at a rate of 8000
Hz with 16 bit resolution. The sampled data were windowed
by the Hamming window with a frame length 16 ms and a
frame period 8 ms.

Table III shows the ratios where the inequalities of Eqs.
(10) and (11) hold. From these results, the inequalities can be
confirmed to hold almost surely.

Figures 2 and 3 are the plots of the gain ratio |rx(ω)| at
l1=10 and 30 cm. In these plots, the exceptions to rx(ω) > 1
are found at middle and high frequencies. The reason for this
can be considered as follows: in general a speech sound energy
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Fig. 2. Frequency properties of the gain ratio at l1 = 10 cm
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Fig. 3. Frequency properties of the gain ratio at l1 = 30 cm

is large at lower frequencies but small at high frequencies, and
its energy decreases with its propagation proceeding. Thus
measurement of gain ratio becomes susceptible to ambient
noises at high frequencies. The number of exceptions is larger
in Fig.3 than in Fig.2. This can be conseder to be because the
magnitude of gain ratio approaches to unity with the source
distance l1 becoming longer and is susceptible to ambient
noises; in addition to this, the influence of reverberation
should be taken into consideration when the source distance
l1 becoming longer.

The exceptions to � rx(ω) > 0 are found at low frequencies
in Figs. 4 and 5, respectively , the plot of the phase difference
� rx(ω) at l1=10 and 30 cm. The reason for this can be
considered as follows: The phase difference is calculated by
dividing the time difference of sound arrival to the two micro-
phones by the wave length. Thus � rx(ω) for the same time
difference takes a smaller value in low frequencies than in high
frequencies. Thus the phase difference becomes indiscernible
in lower frequencies and is susceptible to ambient noises.
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Fig. 4. Frequency properties of the phase difference at l1 = 10 cm
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Fig. 5. Frequency properties of the phase difference at l1 = 30 cm

The exceptions at high frequencies over about 3200 Hz in
Fig.4 are ascribed to the spatial aliasing. Under the assumption
that the maximum frequency is 3400 Hz and the sound velocity
is 340 m/s, the aliasing is derived to occurs if the difference
between the two distances from the sound source to two
microphones is longer than 5 cm. The difference is 5.32 cm
when l1 = 10 cm and 3.23 cm when l1 = 30 cm. Thus in
the placement of Fig.1, the aliasing occurs at frequency over
3195.5 Hz when l1 = 10 cm while never occurs when l1 = 30
cm.

From these results, it is concluded that the gain inequality
of Eq.(10) holds rather in low frequencies while the phase
inequality Eq.(11) holds rather in high frequencies unless the
spacial aliasing occurs.

B. Properties of gain-based and phase-based correction meth-
ods

In order to evaluate the frequency characteristics of the
the gain-based and phase-based methods, several experiments

Sound Source 1 Sound Source 2

θ1 θ2

s1(t) s2(t)

l1 l2

Microphone 1 Microphone 2
10 cm

Fig. 6. Placement of two sound sources and two microphones
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Fig. 7. Correction rates (l1, l2) = (10, 30)

were carried out. As shown in Fig.6, source 1 distance l1 from
microphone 1 was set at l1 cm with θ1 = 10◦ and source 2
distance l1 from microphone 2 was set at l2 cm with θ2 = 10◦.
The other conditions are the same as in the above.

Over a loudspeaker located at source 2, we play a roaring
train noise recorded at a station premises [9]; departure and
arrival announcements and passengers’ conversations were
also included in the noise. The noise level was in average
82.1 dB at a distance of l2=30 cm and 76.3 db at a distance
of l2=60 cm from the loudspeaker. Under these conditions,
4 words were uttered by 4 male and 4 female speakers at
the position of (l1 cm, l2 cm)=(10,30), (10,60), (30,60) and
(30,100). In total, 128 data sets were obtained.

The experimental results are shown in Figs. 7-10. In the
figures, the horizontal axis denotes the frequency and the
vertical axis the permutation correction rates. A comparison of
the results in Figs. 7 and 8 show that both the gain-based and
the phase-based methods give higher correction rates with the
noise source distance l2 to the microphones becoming longer.
This fact is almost true in Figs. 9 and 10.
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Fig. 8. Correction rates (l1, l2) = (10, 60)
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Fig. 9. Correction rates (l1, l2) = (30, 60)

From all the figures it is found that the correction rates
by the gain-based method is higher in low frequencies than
in high frequencies. This can be considered to be because a
speech sound concentrates its energy in low frequencies and
thus because the sound components in low frequencies are not
susceptible to ambient noise as compared with those in high
frequencies.

In low frequencies, the phase-based method does not gives
poor results compared with the gain-based one and in partic-
ular does not function normally at frequencies less than 500
Hz. The reason for this can be considered as follows. The
phase difference is calculated by dividing the time difference
of sound arrival to the two microphones by the wave length.
Even if the time difference is the same, the phase difference is
evaluated smaller in low frequencies than in high frequencies.
Thus the phase difference is more susceptible to ambient noise
in lower frequencies than in high frequencies.

From a comparison of Figs. 7 and 8 to Figs. 9 and 10, it is
found that at frequencies over 1800 Hz the gain-based method
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Fig. 10. Correction rates (l1, l2) = (30, 100)

is more robust at l1=10 cm than at l1=30 cm. This can be
ascribed to a decrease in sound energy with the propagation
distance. As seen in Figs. 7 and 8, the correction rates due
to the phase-based method drop suddenly at high frequencies
over 2500 Hz in the case of l1=10 cm. This is ascribed to
the special aliasing. In the case of l1=30cm, the aliasing never
occurs. So the phase-based method gives almost perfect results
as shown in Figs. 9 and 10.

C. An Integrated Permutation Correction Method

From the above facts, it is concluded that the gain-based
and the phase-based methods should be used according to fre-
quency bands; because their frequency characteristics depend
on the microphone-space and the source distance from the
microphones. In this section, we propose a new permutation
correction method based on the frequency characteristics.

In the case where the spacial aliasing doesn’t occur, the
gain-based method as Eq.(13) is functional on the low fre-
quency bands, the phase-based method as Eq.(14) works
well on the high frequency bands. Therefore, an integrated
permutation correction method is given by

yi(ω,k)=

⎧
⎪⎪⎨

⎪⎪⎩

vî=i,j=i(ω,k) if |r1(ω)|> |r2(ω)|, f<f0
vî�=i,j=i(ω,k) if |r1(ω)|< |r2(ω)|, f<f0
vî=i,j=i(ω,k) if � r1(ω)> � r2(ω), f0≤f

vî�=i,j=i(ω,k) if � r1(ω)< � r2(ω), f0≤f

(16)

where f0 denotes the boundary frequency. In this experimental
condition, f0 only has to set the frequency from about 1000
Hz to 1500 Hz.

D. Experimental Results in Real Room

In order to verify our proposals, several experiments were
carried out in same laboratory room as III-B. f0 was set to
1800 Hz. Table IV shows the permutation correction rates and
estimated SN ratio [10]. The power-based method is corrected
about 90% but the correction rate depends on the distance
from the sources to the microphones. The proposed method
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TABLE IV
PERMUTATION CORRECTION RATES AND SNR AGAINST STATION PREMISE

NOISES ROARED FROM A LOUD SPEAKER %

Correction rate % SNR dB
(l11,l22) (30,60) (30,100) (30,60) (30,100)
FastICA 88.61 87.62 6.31 7.11
Similarity 93.87 95.20 15.17 15.45
Power 88.60 90.75 16.42 16.88
Rule 1 94.04 95.51 17.30 17.66
Rule 2 98.13 98.58 17.78 17.84
Proposed 99.98 99.99 18.20 18.29
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Fig. 11. Experimental results when a female speaker uttered (l11=10 cm)
under station premise noises from a loud speaker (l22=30 cm): (a) Mixture
signals recorded by microphone 1 and 2 respectively. (b) Restored signals by
FastICA. (c) Restored signals by the proposed method.

can solve almost perfectly in the all conditions. Furthermore,
the permutation in the time domain does not occur using by
the proposed method. In other words, the separated signal
y1(t) is estimated the source s1(t) and y2(t) is estimated
s2(t). It is clarified that the proposed method can not only
the permutation correction but also the target extraction.

Fig.11 shows the source estimates yi(t)(i = 1, 2) recovered
in the time domain. From the waveforms, it is found that
there exist less cross talk in Fig.11(c) by the proposal while in
Fig.11(b) by FastICA there exist much cross talk because of
the unresolved permutation described above. It is also found
that the waveforms in Fig.11(c) are properly scaled while
those in Fig.11(b) not. These facts were also confrmed by
articulation tests.

IV. CONCLUSIONS

From the experiments in a real environment, it is found that
the gain and the phase of the acoustic transfer function are
dependent on three factors, namely, the frequency bands, the
microphone-space and the source-microphone distance. In a
real application of blind source separation, the distances from
sources to microphones are unknown. For better performance,
therefore, we should design the permutation correction, espe-
cially taking the frequency bands and the microphone-space
into consideration. This paper propose a new permutation cor-
rection method for frequency domain ICA based on properties
of acoustic transfer functions. The proposed method has been
verified from several experiments in a real room.
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