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Abstract—Oil debris signal generated from the inductive oil 

debris monitor (ODM) is useful information for machine condition 
monitoring but is often spoiled by background noise. To improve the 
reliability in machine condition monitoring, the high-fidelity signal 
has to be recovered from the noisy raw data. Considering that the noise 
components with large amplitude often have higher frequency than 
that of the oil debris signal, the integral transform is proposed to 
enhance the detectability of the oil debris signal. To cancel out the 
baseline wander resulting from the integral transform, the empirical 
mode decomposition (EMD) method is employed to identify the trend 
components. An optimal reconstruction strategy including both 
de-trending and de-noising is presented to detect the oil debris signal 
with less distortion. The proposed approach is applied to detect the oil 
debris signal in the raw data collected from an experimental setup. The 
result demonstrates that this approach is able to detect the weak oil 
debris signal with acceptable distortion from noisy raw data.  
 

Keywords—Integral transform, empirical mode decomposition, 
oil debris, signal processing, detection.  

I. INTRODUCTION 
IL debris monitors (ODMs) have been widely used to 
diagnose the healthy conditions of oil-lubricated systems 

[1]. Once a metallic particle in lubricating oils passes through 
the sensor tube, a single period sine-like characteristic signal 
appears at the output of the ODM. The signal phase difference 
between a ferromagnetic and a non-ferromagnetic particle is 
180°. The amplitude of the characteristic signal is proportional 
to the mass of the ferromagnetic particle and to the surface area 
of the non-ferromagnetic one as long as the flow rate is 
approximately constant. Taking both the phase and the 
amplitude into account, the ODM is able to estimate the size 
and the distribution of the wear debris in the lubricating system 
and to accordingly detect the early fault of the machinery 
system [2].An ODM sensor is often installed on the return line 
of the hydraulic circuit to detect the presence of the particle. 
Besides the sensitivity to the metallic particles, the sensor also 
picks up  vibration signals generated by the mechanical system. 
The weak particle signal is often deep covered by the mixture 
of the vibration interference and other random noise and thus 
cannot be observed directly. Much effort has been made to 
detect the weak signal from the severely contaminated ODM 
data. Aiming at improving the responsiveness to early machine 
failures and reducing the false alarms, Fan et al [3] suggested a 
method based on both wavelet transform and kurtosis analysis 
to address these two issues simultaneously. The test results 
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have demonstrated that this method could effectively detect 
very weak particles signals buried in strong background noise 
and eliminate vibration-like spurious signals. Hong and Liang 
[4] proposed a fractional calculus technique consisting of two 
detectors for on-line detection of oil debris. This technique 
does not require any additional filtering or de-noising steps, 
and signal processing can be simplified accordingly. 
Bozchalooi and Liang [5] developed a two-stage de-noising 
scheme including wavelet-based adaptive subband filtering and 
thresholding. Both simulated and experimental data 
demonstrated the enhancement of the ODM performance with 
this scheme. A low-pass filter and empirical mode 
decomposition (EMD) was also suggested by Bozchalooi and 
Liang [6] to extract particle signatures from the output of oil 
debris sensors. The proposed algorithm has been tested using 
both simulated and experimental data and has shown to be 
effective. Though these studies are quite effective in detecting 
of the presence of  particles, they may not be suited for particle 
size estimation cannot be used to reliably estimate the particle 
size largely due to the filtering process that often alter the 
particle signature.For most of signal detection cases, the prior 
knowledge of the signal or the noise is unavailable. Hence the 
authenticity of extracted signal cannot be validated, or at least, 
cannot be validated during the detection process. Fortunately, 
the oil debris signature is unique, featuring sine-like profile, as 
well as sparse, randomly appearing and low frequency signal. 
Considering such prior knowledge of the oil debris signal, we 
propose a joint integral transform and empirical mode 
decomposition (ITEMD) approach to extract fine particle 
signal and to estimate particle size. The paper is organized as 
follows. Section II explains how the oil debris signal can be 
enhanced using integral transform. This is followed by trend 
component identification from the intrinsic mode functions 
(IMFs) of the EMD, which is detailed in section III. An optimal 
signal reconstruction procedure is proposed in section IV. 
Section V presents the experimental work. Conclusions are 
drawn in section VI. 

II. OIL DEBRIS SIGNAL ENHANCEMENT USING INTEGRAL 
TRANSFORM 

As mentioned above, the raw data of the ODM is usually the 
mixture of three components: oil debris signal, vibration 
induced noise and random noise, i.e., 

 
)()()()( tntvtstr ++=         (1) 

 
where r(t), s(t), v(t) and n(t) respectively denotes raw data, oil 
debris signal, vibration noise and random noise. Suppose that in 
a specific time interval [Ta, Tb] there is an ideal particle signal 
s(t) which can be expressed as 
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where f is the particle signal frequency, [T0, T0+1/f] the particle 
signal passing period, and a the signal amplitude. If a is 
positive for a ferromagnetic particle then it is negative for a 
non-ferromagnetic one. Suppose that the flow rate of the oil is 
in the range [Fmin, Fmax], the sensor tube diameter is D and the 
distance between two field coils is d. The particle signature 
frequency f is bounded by [3] 
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In practice, the maximal frequency of the particle signal is 

often less than 50Hz, which is lower than most of frequencies 
of vibration interferences with larger amplitude. 

The ODM works in response to the inductive change caused 
by passing metallic particles [7], which means that it is also 
sensitive to the vibration velocity of the oil line on which the 
sensor is mounted. The vibration induced interference signal v(t) 
is approximately proportional to the vibration velocity. For the 
convenience of the analysis, the dominant component of the 
vibration velocity can be simplified as a sinusoidal signal 

 
ptbtv π2sin)( =       (4) 

 
where b and p are respectively the vibration amplitude and 
frequency. It is obvious that the vibration displacement x(t) is 
the integral of the velocity, i.e. 
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The random noise is generally much weaker than the 

vibration interference and thus neglected. To quantify the 
“quality” of a oil debris signal dataset and to evaluate the 
performance of the proposed method, we define the 
particle-to-vibration ratio (PVR) of the raw signal r(t) as 
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where the subscript ‘p-p’ represents the peak-to-peak value. A 
high PVR indicates good signal quality, i.e., good particle 
detectability. Thus, our goal is to improve the PVR. This can be 
done by the integral transform of the oil debris signal. The PVR 
of the transformed signal is  
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where I(.) represents the integral transform. Since most of 
vibration interference frequencies are much higher than the 
frequency of the particle signal, i.e. n >p, The above equation 
shows that the PVR can be improved by p/f times using the 
simple integral transform. 

To demonstrate the effectiveness of the above method, we 
simulate a signal according to (1) as 
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where ]1,0[∈t , rnd(.) denotes the random number 

]5.0,5.0[−∈ . The sampling frequency is set as 8kHz. Fig. 
1(a) displays the simulated raw data r(t). Due to the 
interference from v(t) and n(t), the signal s(t) cannot be 
observed directly. To compare, we integral transform the raw 
data and obtain r1(t)=I(r(t)) as shown in Fig. 1(b). It is 
obvious that the particle-to-vibration ratio is improved 
significantly. 
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Fig. 1 (a) Simulated raw data, and (b) integral transformed data. 
 
However, to accurately estimate particle size, the high 

frequency noise mixed with the oil debris signal and the trend 
component (baseline wander) have to be removed from the 
integral transformed signal. The removal of these signal 
components is detailed in the next section. 

III. REMOVAL OF TREND AND HIGH FREQUENCY COMPONENTS 

A. Trend removal 
The baseline drifting resulting from data acquisition error 

and other causes may be insignificant in many cases but is often 
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worsened by the integral transform. Therefore, it has to be 
removed. We propose using EMD for this purpose because 
EMD is highly adaptive and require minimal pre-specified 
parameters. With the EMD [8], the signal is decomposed into 
several elementary intrinsic-mode functions (IMFs). For 
example, the integral transformed signal r1(t) can be adaptively 
decomposed as 
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where I is the decomposition levels, IMFi(t) (1≤i≤I) denotes the 
ith IMF, and RS(t) represents the residue which is regarded as 
the last ‘IMF’ (IMFi+1(t)) in this paper for the convenience of 
analysis in the context. 

The EMD result of the integral transformed signal in Fig. 1(b) 
is plotted in Fig. 2.  It consists of eight IMFs and a residue 
(IMF9). 

Due to the low-frequency feature, the trend components may 
spread over the last several IMFs and the residue. It is 
well-known that trend components exist if the associated  IMFs 
are of zero mean, and no trend otherwise. Therefore trend can 
be identified by looking at the IMF means. More specifically, if 
order i of an IMF is equal to or greater than trend order J, the 
IMF should be the trend IMF and accordingly be set to zero to 
remove the trend components. In our research, the trend order J 

is determined if: 1) ))((mean))((mean
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According to the aforementioned procedure, the trend order 
of the EMD of r1(t) shown in Fig. 2 is calculated as 8, which 
means that the trend components reside mainly in IMF8 and the 
residue (IMF9).After determining the trend order J, one can 
directly remove trend IMFs from the original signal since the 
trend IMFs usually possesses less information of the target 
signal [9]. The de-trended signal, r2(t) can be expressed as 
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Fig. 2 The IMFs and residue of the integral transformed signal 

shown in Fig. 1(b) (The vertical axes of plots are not in the same 
scale). 

 
 
The comparison between the integral transformed data r1(t) 

and the de-trended data r2(t) (=r1(t)-IMF9-IMF8) is shown in 
Fig. 3. It is shown that the baseline wander of r1(t) has been 
mostly eliminated. 

 

 
Fig. 3 Comparison between the integral transformed data r1(t) (also 

shown in Fig. 1(b)) and the de-trended data r2(t). 
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B. High frequency component removal 
To eliminate the high frequency signal components, the  

mode cell [10], i.e., the oscillatory cell between two 
zero-crossings, is used as the basic thresholding unit. To 
partially reconstruct the signal from coarse to fine [11], there 
are J-1 reconstructions to be evaluated. The kth reconstruction, 
Rk(t), is given by 

 

∑
−
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k
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The mode cell i

kE  In each reconstruction order k, can be 
thresholded by [12] 
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where L is the length of the measured data, kσ  the standard 
deviation of Rk(t). In mode cell thresholding, the whole mode 
cell i

kE  is preserved as long as at least one point of the mode 
cell survives the Hk thresholding. This operation does not only 
preserve the integrity of the EMD oscillatory mode, but also 
help to minimize signal distortion. 

Fig. 4 demonstrates all the partial reconstruction results for 
r2(t) shown in Fig. 3. As displayed in Fig. 4, there are four 
reconstructions available. Which of the four options is selected 
for reconstruction will lead to different levels of signal 
distortion. An optimal selection process is explained in the next 
section. 

IV. OPTIMAL SIGNAL RECONSTRUCTION 
Considering the fact that the minimal signature distortion 

means maximal correlation with the ideal signal, a correlation 
coefficient (CC) reflecting both waveform area and profile is 
defined to select the best reconstruction order that yields the 
minimal waveform distortion. The CC between an option i

kE  
and the target signature is given by 
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where i

kρ  is the CC between option i
kE  and the target 

estimation i
kG , COV(·) represents covariance function, D(·) 

represents variance function, (·)’ denotes the differention 
operator, i

kA  is the waveform area associated with option i
kE , 

and jAmax  is its target area, which is given by 
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Fig. 4 Partial signal reconstruction results based on the mode cell 

thresholding. 
Suppose that the target signal has the same area as that of 

i
kE , i.e., 
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where i1 and iN are two zero-crossings of the mode cell i

kE . 
The target area can be obtained by (2) and (15). 
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Fig. 5 Optimal reconstruction results: (a) optimal reconstruction 
r3(t), and (b) comparison between )('

3 tr  (the differentiated r3(t), solid 

line) and s(t) (dashed line, given by (8)). 
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Obviously, the option associated with the highest CC should 
be selected as optimal reconstruction r3(t). Then, a differential 
transform (i.e., inverse integral transform) is perform for r3(t) to 
obtain )('

3 tr , the optimal estimation of the oil debris signal s(t). 
According to the calculation for reconstructions shown in Fig. 
4, R2(t) (=IMF7+IMF6+IMF5+IMF4+IMF3+IMF2) including the 
mode cell E2 has the maximal CC and thus is selected as the 
optimal reconstruction r3(t). Fig. 5 describes the reconstruction 
results. The results shows that the optimal estimation )('

3 tr  is 
very close to the target oil debris signal s(t). 

V. EXPERIMENTAL EVALUATION 
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Fig. 6 Experimental setup 
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Fig. 7 Experimental results. (a) signal measured from the ODM 
sensor when a nickel particle is manually passed through the tube, and 

(b) the detected oil debris signal. 
To evaluate the performance of the proposed method, an 

ODM sensor is mounted on a vibration exciter driven by a 
function generator and an amplifier. As shown in Fig. 6, a small 
nickel particle (roughly 40-50μm in diameter) is embedded in a 
plastic catheter which is manually led through the tube of the 
sensor to generate the oil debris signal. Due to the intrinsic 
characteristics, the random noise is unavoidable for the setup 
shown in Fig. 6. The mixture of the oil debris signal, the 
vibration noise and the random noise is captured by a computer 
through a data acquisition card.The sampling frequency is set at 
8 kHz. Fig. 7(a) shows part of the raw data collected from the 
setup. Fig, 7(b) displays the extracted oil debris signal which is 

very similar to the target signal. This clearly demonstrated the 
effectiveness of the proposed approach in detecting weak oil 
debris signal from contaminated raw data collected by the 
ODM sensor. 

VI. CONCLUSION  
This paper reports a new method to detect the weak oil debris 

signal from the severely contaminated raw data. The integral 
transform is first employed to enhance the detectability of the 
metal particle signature. The enhanced signal is then adaptively 
decomposed into several IMFs by the EMD to remove the 
baseline wander caused by the integral transform step. 
Considering the intrinsic features of the oil debris signal, the 
mode cell thresholding and the maximal correlation coefficient 
reconstruction are presented to find the optimal reconstructed 
signal. A simulation case reveals that the detected signal using 
the proposed ITEMD approach is very close to the ideal signal. 
This method is also validated using the experimental data. 
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