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Abstract—The Principal component regression (PCR) is a 

combination of principal component analysis (PCA) and multiple 

linear regression (MLR). The objective of this paper is to revise the 

use of PCR in shortwave near infrared (SWNIR) (750-1000nm) 

spectral analysis. The idea of PCR was explained mathematically and 

implemented in the non-destructive assessment of the soluble solid 

content (SSC) of pineapple based on SWNIR spectral data. PCR 

achieved satisfactory results in this application with root mean 

squared error of calibration (RMSEC) of 0.7611 Brix°, coefficient of 

determination (R2) of 0.5865 and root mean squared error of cross-

validation (RMSECV) of 0.8323 Brix° with principal components 

(PCs) of 14.  

 

Keywords—Pineapple, Shortwave near infrared, Principal 

component regression, Non-invasive measurement; Soluble solids 
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I. INTRODUCTION 

N near infrared spectral analysis, principal component 

analysis (PCA) compresses a complex spectral data matrix 

from high dimension to low dimension in such a way that 

correlations among variables can be removed and important 

information of the data matrix can be extracted and 

represented by a small matrix [1]. The variables in this small 

matrix are uncorrelated among each other and able to provide 

almost all variances of the complex spectral data matrix. As a 

result, redundancy and collinearity problems in spectral 

analysis can be avoided by using uncorrelated principal 

components (PCs) as the input variables of a predictive model 

[2], [3].  

In order to enhance the performance of PCA, different type 

of modified PCA methods were proposed in the literature, e.g. 

nonlinear principal component analysis (NLPCA) [4]-[8] and 

kernel principal component analysis (K-PCA) [9], [10]. But, 

K-PCA is infeasible and time consuming for a large number of 

data. Online and nonlinear PCA, on the other hand, was 

proposed to counter these problems by incremental eigen 

space update approach with a feature mapping function [11]. 
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In 2004, the application of the permutation test was adapted to 

the framework of PCA to determine principal components 

based on the significations of both the principal components 

and the variable contribution [12].  

Segmented PCA was proposed to provide the same results 

with less memory requirements for computing complex data 

[13]. The authors [13] reported that this approach is not only 

suitable for parallel calculations and cross-validation purposes, 

but it also avoids the process of reading the complete matrix 

into the main memory. However, misinterpretation of PCA, 

such as assuming that high loading variables are correlated in 

the same PC, is a critical issue and should be avoided. 

Recently, Camacho et al. (2010) [14] proposed Structural and 

Variance Information (SVI) plots to avoid this 

misinterpretation in PCA. Besides, the proposed method is 

possible to be applied for variable selection in spectral 

analysis.  

PCA is very popular for its easier interpreting characteristic. 

The main application of PCA in spectral analysis is 

classification, such as classification of vegetable oils [15]. But, 

it is worth noting that the utilization of principal components 

(PCs) as the input variables of multiple linear regression 

(MLR) or artificial neural network (ANN) improves the 

predictive performance and reduce the redundancy problems 

in most cases. In 2009, Sven and Tim [2] presented an 

expectation robust algorithm for principal component 

regression (RA-PCR) to reduce the effects of outliers and 

missing elements in the data.   

 Besides combining PCA and MLR to perform PCR, it is 

also quite popular to use PCA to compress spectral data first 

before using ANN. This kind of approach is so-called 

principal components – artificial neural network (PCs-ANN). 

In this paper, however, we only discuss the implementation of 

PCR in shortwave near infrared (SWNIR) spectral analysis. 

The purpose of this paper is to provide a step-by-step 

explanation for the utilization of PCR in SWNIR spectral 

analysis application. The procedure of the experiment is 

summarized in Section II. General idea of PCR is described in 

Section III. Section IV denotes an application of the PCR in 

spectral analysis in soluble solid content (SSC) of pineapple 

assessment. Lastly, conclusions are drawn in Section V. 

II. MATERIAL AND METHODS 

In this work, 155 pineapple samples were used to 

investigate the performance of PCR model in SSC prediction. 
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Reflectance spectra of each pineapple were scanned according 

to its label by using a USB4000 Miniature Fiber Optics 

Spectrometer (650-1000nm) (Ocean Optics, USA). A tungsten 

halogen light (LS-1, Ocean Optics, USA) was used as the 

energy source of SWNIR. A diffuse reflectance standard (WS-

1, Ocean Optics, USA) was utilised as the optical reference 

standard to calibrate the spectroscopy. All spectral data were 

stored in a computer and processed via MATLAB simulation 

software (MATLAB® Version 7.9.0.529 (R2009b)). The SSC 

reference acquisition was started immediately after spectra 

acquisition of each pineapple was completed by using a digital 

Hand-Held “Pocket” refractometer (ATAGO). 

III. CALIBRATION MODEL 

A. Pre-Processing 

First order derivative with first order Savitzky-Golay (SG) 

smoothing filter was implemented to pre-processing the data. 

There are two steps in this pre-processing approach. The first 

step is to using SG smoothing filter to filter out high frequency 

unwanted signal. The second step is to use derivative to 

remove baseline shift problems.  

B. Principal Component Regression 

Principal component regression (PCR) is a combination of 

principal component analysis (PCA) and multiple linear 

regression (MLR) [16]. Instead of using whole spectrum, the 

idea of PCR is utilizing the first few principal components 

(PCs) as the input variables of a MLR model to eliminate the 

redundancy and collinear problems. Due to the fact that the 

PCA only decomposes the independent matrix data (spectral 

data) without including the effects of dependent variable 

(component of interest), the large loading values are 

correspond to the spectral regions with large variability [17]. 

Numerous literatures reported the application of PCR in near 

infrared spectral analysis improves the accuracy and 

robustness of a predictive model [18], [19]. In this section, the 

idea of PCA will be introduced mathematically first, and then 

followed by the procedure for MLR computation.  

C. Principal Component Analysis 

The first step in PCR calibration approach is to decompose 

a spectral data matrix by using PCA. Generally, two types of 

decomposition techniques can be applied. The first technique 

is computing eigenvectors and eigenvalues directly. The 

second technique is using singular-value decomposition (SVD) 

approach. In this paper, we only implement SVD to 

decompose the spectral data. This is because SVD is generally 

accepted to be the most stable and numerically accurate 

technique [20]. SVD decomposes a spectral data into column-

mode eigenvectors, singular values and row-mode 

eigenvectors as shown in (1): 

 
T

pppnnnpn )(V ×S× U= X
××××

        (1) 

 

where, n is the number of sample, p is the number of input 

variables, U is the normalised score matrix (column-mode 

eigenvectors), S is the diagonal matrix (singular values), and V 

is the un-normalised (loading matrix or row-mode 

eigenvectors). In this work, the function of svd( ) in MATLAB 

(R2007a) was applied for the decomposition process. The 

algorithm of this function is based on LAPACK [21] routines. 

In fact, the product of column-mode eigenvectors, U, and 

singular values, S, is the so-called Principal Components 

(PCs), which are the input variables of a PCR calibration 

model. Therefore, (1) can be re-written as (2): 

 
T

pppnpn )(V ×PC = X
×××

       (2) 

 

Next, if the number of first few PCs used is r, which is much 

smaller than p, then (2) can be represented as (3): 

 
T

rprnpn )(V ×PC = X
×××

           (3) 

 

In order to validate the performance of a predictive model, 

loading matrix, V, is retained to transform the validation data 

into new PC. This transformation can be done by multiplying 

the validation spectral data, X(validation) to the loading matrix, V, 

as stated in (4): 

 

on)r(validatinrpon)p(validatin PC =)(V × X
×××  (4) 

 

Obviously, the size of input variable has been reduced from 

p to r by using PCA. In this work, the value of p is 601 (total 

variables of a SWNIR spectrum) and the value of r is normally 

less than 20 only.  

IV. RESULTS AND DISCUSSION 

Fig. 1 depicts that the root mean square errors of both 

calibration and cross-validation of PCR model versus the 

number input (i.e. PCs). Since the number input variables 

more than 14 does not improve the RMSECV significantly, the 

best PCs used for PCR is 14 to avoid both under-fitting and 

over-fitting problems. Under-fitting problem occurs when a 

predictive model does not have sufficient complexity (e.g. the 

number of input variables) for calibration between dependent 

and independent variables, i.e. soluble solids content and PCs, 

respectively.  

Over-fitting, on the other hand, exists when a predictive 

model is trying to fit noises and unwanted signals in its 

calibration process, which will ultimately produce outstanding 

calibration results but worse validation outcomes. However, 

over-fitting problem in terms of worse validation results does 

not illustrated in Fig. 1. This unexpected observation may due 

to the fact the variance from PCs is decreasing subsequently 

from the first PC, whereby the PCs with small variance may 

have relatively less influence compared to the first few PCs in 

the calibration. In addition, it is possible that high frequency 

noises and unwanted signals were eliminated by using first 
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order Savitzky-Golay (SG) smoothing filter. Even thought the 

aforementioned over-fitting problem does not exist, including 

extra PCs without improving validation results is risky and 

burden for any calibration model. Therefore, optimal PCs 

number selection is vital when using PCR model. 

Although the first PC contains most of the variance of a 

spectral data, the prediction results from PCR with only the 

first PC suggest that the first PC, individually, may not contain 

useful information to establish the relationship between 

spectral data and soluble solids contain of pineapple, i.e., R
2
 is 

around zero. However, by using multiple regression model, the 

first PC coupled with its following PCs can predict the soluble 

solids content of pineapple with reasonable accuracy, i.e. 

RMSECV less than one Brix°.  

In addition, Fig. 1 also shows that signification 

improvements occur at the second, seventh and fourteenth 

PCs. This observation once again indicate that PCs with high 

variance does not necessary contain sufficient relevant 

information for the components of interest. PCs with low 

variance, on the other hand, does not necessary contain 

unwanted signal or noises.  

 

 

Fig. 1 Root mean square error of PCR against the number of PCs 

 

In this work, by using the first 14 PCs as the input variables, 

PCR model achieved root mean square error of calibration 

(RMSEC) of 0.7611 Brix°, coefficient of determination (R2) 

of 0.5865 and root mean square error of cross-validation 

(RMSECV) of 0.8323 Brix°. These results are only slightly 

better than PCR with 8 PCs. In order to determine the optimal 

model complexity, Akaike’s Information Criterion (AIC) and 

Bayes Information Criterion (BIC) values are computed and 

depicted in Fig. 2. It is worth noting that the values of AIC and 

BIC alone are meaningless, except for comparing. In this 

work, BIC values suggest that the optimal PCs number is 8. 

AIC values, on the other hand, indicate that the optimal PCs 

number is 14. The difference between AIC and BIC is that 

BIC consider the size of samples in its computation, i.e., BIC 

will penalty more than AIC when the number of sample is 

more than 100, and vice versa. Since the number of sample 

used in this work is more than 100, BIC suggests less complex 

model than AIC. 

 

 

Fig. 2 Akaike’s Information Criterion (AIC) and Bayes Information 

Criterion (BIC) against the number of PCs 

V.  CONCLUSION  

In this paper, the development of principal component 

analysis was reviewed briefly in Section I. The implementation 

of principal component regression in shortwave near infrared 

(SWNIR) spectral analysis was described in Section II and III. 

The problems of under-fitting and over-fitting in PCR model 

were highlighted. In addition, the application of principal 

component regression (PCR) in nondestructive pineapple 

soluble solids content (SSC) assessment based on SWNIR data 

was demonstrated. Although PCR only achieved satisfactory 

performance in this work due to its limitation (i.e. PCR is not 

capable to handle non-linear information), it is still an 

important calibration model to be applied as a reference for 

comparison in the development of other calibration models. 

For future work, nonlinear model, e.g. artificial neural 

network, will be implemented to improve the prediction 

performance. 
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