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Laplace Transformation on Ordered Linear Space of
Generalized Functions

K. V. Geetha and N. R. Mangalambal

Abstract—Aim. We have introduced the notion of order to multi-
normed spaces and countable union spaces and their duals. The
topology of bounded convergence is assigned to the dual spaces. The
aim of this paper is to develop the theory of ordered topological linear
spaces L′

a,b, L′(w, z), the dual spaces of ordered multinormed spaces
La,b, ordered countable union spaces L(w, z), with the topology of
bounded convergence assigned to the dual spaces. We apply Laplace
transformation to the ordered linear space of Laplace transformable
generalized functions. We ultimately aim at finding solutions to non-
homogeneous nth order linear differential equations with constant
coefficients in terms of generalized functions and comparing different
solutions evolved out of different initial conditions.
Method. The above aim is achieved by

• Defining the spaces La,b, L(w, z).
• Assigning an order relation on these spaces by identifying a

positive cone on them and studying the properties of the cone.
• Defining an order relation on the dual spaces L′

a,b, L′(w, z)
of La,b, L(w, z) and assigning a topology to these dual spaces
which makes the order dual and the topological dual the same.

• Defining the adjoint of a continuous map on these spaces
and studying its behaviour when the topology of bounded
convergence is assigned to the dual spaces.

• Applying the two-sided Laplace Transformation on the ordered
linear space of generalized functions W and studying some
properties of the transformation which are used in solving
differential equations.

Result. The above techniques are applied to solve non-homogeneous
n-th order linear differential equations with constant coefficients in
terms of generalized functions and to compare different solutions of
the differential equation.

Keywords—Laplace transformable generalized function, positive
cone, topology of bounded convergence.

I. THE SPACES La,b , L(w, z) AND THEIR DUALS

We have associated the notion of ‘order’ to multinormed
spaces, countable union spaces (see [3], for details of multi-
normed spaces, countable union spaces) and their duals, by
identifying a positive cone on these spaces. Also, the topology
of bounded convergence is assigned to the dual spaces so that
the order dual and the topological dual become identical [1].

In this section we define the spaces La,b, L(w, z) and apply
the above ideas to these spaces and to their duals.

Manuscript received March 1, 2008.
K. V. Geetha is with the Department of Mathematics, St. Joseph’s

College, Irinjalakuda, Kerala, India. Pin.680 121 (Phone: Off. 0480-
2825358, Res. 0480-2824613, cell. 9447994135, fax. 0480-2830954, email.
kvgeethanand@yahoo.com)

N. R. Mangalambal is with the Department of Mathematics, St. Joseph’s
College, Irinjalakuda, Kerala, India. Pin.680 121 (Phone: Off. 0480-2825358,
Res. 0480-2709858, cell. 9495246832, fax. 0480-2830954, email. thot-
tuvai@sancharnet.in)

Let La,b denote the linear space of all complex valued
smooth functions defined on R. Let

La,b(t) = eat, 0 ≤ t <∞
= ebt, −∞ < t < 0.

(Km) be a sequence of compact subsets of R such that K1 ⊆
K2 ⊆ . . . and such that each compact subset of R is contained
in one Km. Define

γKm,k(φ) = sup
t∈Km

|La,b(t)Dkφ(t)|, k = 0, 1, 2 . . .

{γKm,k}∞k=0 is a multinorm on La,b,Km
where La,b,Km

is
the subspace of La,b whose elements have their support in
Km. The above multinorm generates the topology τa,b,Km on
La,b,Km

. La,b is equipped with the inductive limit topology
τa,b as Km varies over all compact sets K1,K2, . . . . La,b is
complete for τa,b. For each fixed s, e−st ∈ La,b if and only
if a ≤ Re s ≤ b. For each positive integer k, tke−st ∈ La,b if
and only if a < Re s < b.

We recall the notions of a positive cone, normal cone and
strict b-cone that have been defined in [1].

Definition 1: Let V be a multinormed space whose field of
scalars is R. A subset C or C(V ) is a positive cone in V if

(i) C + C ⊆ C
(ii) αC ⊆ C for all scalars α > 0

(iii) C ∩ (−C) = {0}
When the field of scalars is C, C + iC is the positive cone in
V which is also denoted as C. C defines an order relation on
V , φ ≤ ψ if ψ − φ ∈ C.

Definition 2: Let V (τ) be an ordered multinormed space
with positive cone C. C is normal for the topology τ generated
by the multinorm S if there is a neighbourhood basis of 0 for
τ consisting of full sets.

Definition 3: Let G be a saturated class of τ -bounded
subsets of an ordered multinormed space V (τ) such that
V = ∪{s : s ∈ G}. The positive cone C in V (τ) is a strict
G-cone if the class Gε = {(S ∩ C) − (S ∩ C) : S ∈ G} is a
fundamental system for G. A strict G-cone for the the class G
of all τ -bounded sets in V (τ) is called a strict b-cone.

Definition 4: The positive cone C of La,b when La,b is
restricted to real-valued functions is the set of all non-negative
functions in La,b. Then C + iC is the positive cone in La,b

which is also denoted as C.
Now we prove that the cone of La,b is not normal but is a
strict b-cone.

Theorem 1: The cone C of La,b is not normal.
Proof: Let La,b be restricted to real-valued functions.

Let m be a fixed positive integer and (φi) be a sequence of
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functions in La,b,Km
∩C such that λi = sup{φi(t) : t ∈ Km}

converges to 0 but (φi) does not converge to 0 for La,b,Km .
Define

ψi = λi, t ∈ Km+1

= 0, t �∈ Km+1.

Let ξi be the regularization of ψi defined by

ξi(t) =
∫

R

θα(t− t′)ψi(t′)dt′.

Then ξi ∈ La,b,Km+2 , ∀i.
Also, 0 ≤ φi ≤ ξi, ∀i and (ξi) converges to 0 for τa,b. In
Proposition 1.3, Chapter 1, [2], it has been proved that the
positive cone in an ordered linear space E(τ) is normal if and
only if for any two nets {xβ : β ∈ I} and {yβ : β ∈ I}
in E(τ) if 0 ≤ xβ ≤ yβ for all β ∈ I and if {yβ : β ∈ I}
converges to 0 for τ then {xβ : β ∈ I} converges to 0 for τ . So
we conclude that C is not normal for the Schwartz topology.
It follows that C + iC is not normal for La,b, we conclude
that the cone of La,b is not normal.

Theorem 2: The cone C is a strict b-cone in La,b.
Proof: Assume that La,b is restricted to real-valued

functions. Let B be the saturated class of all bounded cir-
cled subsets of La,b for τa,b. Then La,b = ∪B∈BBc where
Bc = {(B ∩C)− (B ∩C) : B ∈ B} is a fundamental system
for B and C is a strict b-cone since B is the class of all τ -
bounded sets in La,b.

Let B be a bounded circled subset of La,b for τa,b. Then all
functions in B have their support in some compact set Km0

and there exists a constant M > 0 such that |φ(t)| ≤ M ,
∀φ ∈ B, t ∈ Km0 . Let

ψ(t) = M, t ∈ Km0+1

= 0, t �∈ Km0+1.

Then the regularization ξ of ψ is defined by

ξ(t) =
∫

R

θα(t− t′)ψ(t′)dt′

and ξ has its support in Km0+2.
Also, B ⊆ (B + ξ) − {ξ} ⊆ (B + ξ) ∩ C − (B + ξ) ∩ C.
It follows that C is a strict b-cone. We conclude that C + iC
is a strict b-cone in La,b.

Order and topology on the dual L′
a,b of La,b.

Let L′
a,b denote the linear space of all linear functionals

defined on La,b. L′
a,b is ordered by the dual cone (see [2]) of

C in La,b. We assign the topology of bounded convergence
(see [1] for details) to L′

a,b. The class of all B0, the polars of
B as B varies over all σ(La,b,L′

a,b)-bounded subsets of La,b

is a neighbourhood basis of 0 in L′
a,b for the locally convex

topology β(L′
a,b,La,b). When L′

a,b is ordered by the dual cone
C ′ and is equipped with the topology β(L′

a,b,La,b) it follows
that C ′ is a normal cone since C is a strict b-cone in La,b for
τa,b by Corollary 1.26, Chapter 2, [2].

Theorem 3: The order dual L+
a,b is the same as the topo-

logical dual L′
a,b when L′

a,b is equipped with the topology of
bounded convergence β(L′

a,b,La,b).

Proof: Every positive linear functional is continuous for
the Schwartz topology τa,b on La,b.

L+
a,b = C(La,b,R) − C(La,b,R)

where C(La,b,R) is the linear subspace consisting of all non-
negative order bounded linear functionals of L(La,b,R), the
linear space of all order bounded, linear functionals on La,b.
It follows that L+

a,b ⊆ L′
a,b.

On the other hand, the space L′
a,b equipped with the

topology of bounded convergence β(L′
a,b,La,b) and ordered

by the dual cone C ′ of the cone C in La,b is a reflexive space
ordered by a closed normal cone. Hence if D is a directed
set (≤) of generalized functions that is either majorized in
L′

a,b or contains a β(L′
a,b,La,b)-bounded section, then supD

exists in L′
a,b and the filter F(D) of sections of D converges to

supD for β(L′
a,b,La,b). Hence L+

a,b = L′
a,b and we conclude

that L′
a,b with respect to the topology β(L′

a,b,La,b) is both
order complete and topologically complete. (See Proposition
1.8, Chapter 4, [2]).

Theorem 4: Let a ≤ c, d ≤ b. The restriction of any f ∈
L′

a,b to Lc,d is L′
c,d when L′

a,b, L′
c,d are assigned the topology

of bounded convergence.
Proof: When a ≤ c, d ≤ b, Lc,d ⊆ La,b. The topology

τc,d of Lc,d is stronger than the topology induced on Lc,d by
La,b. By Zemanian [3], the restriction of any f ∈ L′

a,b to
Lc,d is in L′

c,d when L′
c,d and L′

a,b are assigned the topology
of pointwise convergence. It follows that the above result is
true when L′

c,d and L′
a,b are assigned the topology of bounded

convergence by Theorem 2.15, [1].
Theorem 5: If a < c or d < b. L′

a,b cannot be identified in
one-to-one correspondence with a subspace of L′

c,d.
Proof: Zemanian [3] has illustrated that two different

members of L′
a,b have the same restriction to Lc,d if a < c or

d < b and when L′
a,b is assigned the topology of pointwise

convergence. By Theorem 2.15, [1], it follows that the same
result is true when L′

a,b is assigned the topology of bounded
convergence.

The Ordered Countable Union Space L(w, z) and its dual
L′(w, z).

Definition 5: Let w = a real number or −∞ and z = a real
number or +∞. Let (ai), (bi) be sequences of real numbers
such that ai → w+, bi → z−. Let L(w, z) = ∪∞

i=1Lai,bi
.

L(w, z) is a countable union spaces.
We have defined the spaces D, E in [1] as follows.

Definition 6: Let D denote the linear space of all complex-
valued smooth functions with compact support in R

n. Let K
be an arbitrary compact set in R

n. Let DK denote the subspace
of D consisting of functions with support in K. The topology
on DK is induced by the multinorm

γK,k(φ) = sup{|Dpφ(t)| : t ∈ K, |p| ≤ k}.
The topology induced by {γK,k}∞k=0 is a complete metrizable
locally convex topology on DK . D is assigned the inductive
limit topology with respect to the family {DKm}∞m=1 of linear
subspaces of D where

Km = {t = (t1, . . . , tn) ∈ R
n, |ti| ≤ m, i = 1, . . . n}.
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Restricting D to the real-valued functions an order relation is
defined on D by identifying the positive cone to be the set
of all non-negative functions on D. The cone C + iC is the
positive cone of D.

Definition 7: Let E be the linear space of all complex-
valued smooth functions defined on R

n and (Km) a sequence
of compact subsets of R

n such that K1 ⊆ K2 ⊆ . . . and such
that each compact subset of R

n is contained in some Km. Let
γKm,k(φ) = supt∈Km

|Dkφ(t)|, φ ∈ E , k = 0, 1, 2, . . . .
{γKm,k}∞k=0 is a multinorm on E and E is equipped with the
topology generated by it.
Note For details on D, E , refer [1], [3].

Result 1: D ⊆ La,b ⊆ E and D is not dense in La,b but D
is dense in L(w, z) for every w, z. D is dense in E also. It
follows that La,b is dense in E (refer [3]).
Equipped with the Schwartz topology L(w, z) is complete
since it is a countable union space. For k = 0, 1, 2, . . .
tke−st ∈ L(w, z) if and only if w < Res < z. L(w, z) is
ordered by the cone

C(L(w, z)) = ∪∞
i=1Ci(Lai,bi

)

The dual L′(w, z) of L(w, z) is ordered by the dual cone
C ′(L′(w, z)) of C(L(w, z)) and is assigned the topology of
bounded convergence β(L′(w, z),L(w, z)). From the defini-
tions of L(w, z), L′(w, z) and Theorems 1, 2, 3 we conclude
the following.

Theorem 6: The cone C(L(w, z)) is a strict b-cone.
Theorem 7: The dual cone C ′(L′(w, z)) of L′(w, z) is a

normal cone.
Theorem 8: L′(w, z) is topologically complete and order

complete.

II. LINEAR MAPS ON ORDERED MULTINORMED SPACES,
ORDERED COUNTABLE UNION SPACES AND THEIR

ADJOINTS

In this section we study the properties of linear maps
defined on ordered multinormed spaces, ordered countable
union spaces and the adjoints of these maps defined on their
duals when the dual spaces are assigned the topology of
bounded convergence. Also, we apply these results to some
linear maps on La,b, L(w, z) and their adjoints.

Definition 8: Let U, V be ordered multinormed spaces or
ordered countable union spaces with positive cones C(U),
C(V ) respectively. A linear map

T : U → V

is
(i) positive if T (C(U)) ⊆ C(V ), i.e., T (φ) ≥ 0 whenever

φ > 0, φ ∈ U .
(ii) strictly positive if T (φ) > 0 whenever φ > 0.

(iii) order bounded if T maps each order bounded set in U
into an order bounded set in V .

Note. Every strictly positive linear map is positive and every
positive linear map is order bounded.

Definition 9: Let U, V be ordered multinormed spaces or
ordered countable union spaces and let T : U → V be continu-
ous and linear. T ′ : V ′ → U ′ defined by (T ′f)(φ) = f(T (φ)),
f ∈ V ′, φ ∈ U is the adjoint of T .

Theorem 9: If T : U → V is linear and continuous its
adjoint T ′ : V ′ → U ′ is also linear and continuous where
U, V are ordered multinormed spaces or ordered countable
union spaces.

Proof: For φ, ψ ∈ C(U) and α, β any two complex
numbers, we have

(T ′f)(αφ+ βψ) = α(T ′f)(φ) + β(T ′f)(ψ)

so that T ′f is a linear functional on U .
Let (φα)α∈J be a net in C(U) which converges to 0.

Since T : U → V is continuous, T (φα) → 0 as α → ∞.
(T ′f)(φα) = f(T (φα)) → 0 as α→ ∞ since f ∈ U ′.

Thus T ′f is a continuous linear functional on U . i.e. T ′ is
a mapping on V ′ to U ′.
Also, T ′(αf + βg)(φ) = (αT ′(f) + βT ′(g))(φ), f, g ∈
C ′(V ′), φ ∈ C(U), α, β any two complex numbers. So,
T ′ : V ′ → U ′ is linear.

Let (fα)α∈J be a net converging to 0 and let B0
V be

a neighbourhood basis of 0 for the topology of bounded
convergence in V ′. B0

V is the polar of BV , a σ(V ′, V )-
bounded subset of V . Since T : U → V is linear and
continuous, BU = T−1(BV ) is a σ(U ′, U)-bounded subset
of U and B0

U , the polar of BU is such that T (fα) ∈ B0
U , the

polar of BU , ∀α ∈ J . It follows that (T ′fα)α∈J converges
to 0 and that T ′ : V ′ → U ′ is continuous with respect to the
topology of bounded convergence in U ′, V ′.
Note. The above results are true if U, V are countable union
spaces also.

Theorem 10: Let U, V be ordered multinormed spaces. If
T : U → V is strictly positive T ′ : V ′ → U ′ is also strictly
positive.

Proof: Let f > 0. For φ > 0, T (φ) > 0 since T is
strictly positive. f(T (φ)) > 0 ⇒ (T ′f)(φ) > 0 for φ > 0.
Thus f > 0 ⇒ T ′f > 0, T ′ is strictly positive. It follows that
T ′ is positive and order bounded.

A linear partial differential operator and its adjoint on gen-
eralized functions.

Let I be an open set in R
n or C

n and let t = (t1, . . . tn) ∈ I .
Let θi(t), i = 0, 1, . . . ,m be complex valued smooth functions
on I . Consider the linear partial differential operator

T = (−1)|k|θ0Dk1θ1D
k2 . . . θm−1D

kmθm

where ki denote non-negative integers and |k| = k1+· · ·+km.
T denotes a sequence of operators: multiply by θm, differenti-
ate according to Dkm , multiply by θm−1 etc. Let U(I), V (I)
be testing function spaces on I . Let T ′ denote the adjoint of
T

(T ′f)(φ) = f(T (φ)) =
∫

I

f(t)T (φ(t))dt.

By successive integration by parts this becomes∫
I

φ(θmD
km . . . Dk1θ0f)dt.

Thus T ′ may be identified as the operator

θmD
km . . . Dk1θ0



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:2, No:3, 2008

203

where D denotes the conventional differentiation. When T ′

acts upon f ∈ V ′(I), D denotes the generalized differentia-
tion.

Theorem 11: The generalized differentiation is a continu-
ous linear mapping of C ′(L′

a,b) into itself and of C ′(L′(w, z))
into itself and hence of L′

a,b and L′(w, z) when the topology
of bounded convergence is assigned to these dual spaces.

Proof: By the definition of seminorms γk, γk(−Dφ) =
γk+1(φ). By Lemma 1.10.1, [3], (−D) is a continuous linear
mapping of La,b into itself. By Theorem 9 its adjoint operator
D which is a generalized differentiation is a continuous
linear mapping of L′

a,b into itself. It follows that (−D) is
a continuous linear mapping of L(w, z) into itself and that
its adjoint operator D, the generalized differentiation is a
continuous linear mapping of L′(w, z) into itself.

Definition 10: Let S be a linear space of smooth functions
defined as follows: θ(t) ∈ S if and only if it is smooth on
(−∞,∞) and for each non-negative integer k there exists an
integer Nk such that,

(1 + t2)−NkDk(θ(t))

is bounded on (−∞,∞).
Theorem 12: For θ ∈ S the mapping f → θf is a

continuous linear mapping of C ′(L′(w, z)) into itself and
hence of L′(w, z) into itself.

Proof: Let φ ∈ C(Lc,d) for some c, d ∈ R and let
a, b ∈ R such that a < c, d < b. Then for any θ ∈ S,
φ → θφ is a continuous linear mapping of C(Lc,d) into
La,b. Thus θφ ∈ La,b whenever φ ∈ C(Lc,d). Let (φi) be
a sequence in L(w, z) that converges in L(w, z). Then there
exists real numbers a, b, c, d such that w < a < c, d < b < z
such that (φi) converges in Lc,d. By what proved above (θφi)
converges in La,b and hence in L(w, z). Thus θ → θφ is
a continuous linear mapping of C(L(w, z)) to L(w, z) and
hence of L(w, z) into itself. The adjoint of this map is f → θf ,
f ∈ C ′(L′(w, z)) and we conclude from Theorem 9 that
f → θf is a continuous linear map of L′(w, z) into itself

Theorem 13: Let α be a fixed complex number and r =
Re α. The mapping f → e−αtf from C ′(L′

a,b) onto
C ′(L′

a−r,b−r) is linear, continuous, strictly positive and hence
orderbounded. Its inverse is also continuous, strictly positive
and order bounded. Hence the map is a strictly positive,
order bounded isomorphism from L′

a,b onto L′
a−r,b−r. The

map is a strictly positive, order bounded isomorphism from
C ′(L′(w, z)) onto C ′(L′(w − r, z − r)) and hence from
L′(w, z) onto L′(w − r, z − r).

Proof: The map φ(t) → e−αtφ(t) and its inverse are
linear and strictly positive. Zemanian [3] has proved that
the map from La−r,b−r onto La,b as well as its inverse are
continuous. The adjoint map f → e−αtf , f ∈ C ′(L′

a−r,b−r)
is linear, continuous and its inverse is also continuous by
Theorem 9. It follows that the adjoint map and its inverse are
strictly positive by Theorem 10 and hence are order bounded.
We conclude that the map is a strictly positive, order bounded
isomorphism from L′

a,b onto L′
a−r,b−r.

From the definition of L(w, z), corresponding results follow
in the case of the map from L′(w, z) onto L′(w − r, z − r).

Theorem 14: Let λ be a fixed real number. For every a,
b, w, z, f(t) → f(t − λ) from C ′(L′

a,b) to itself is linear,
continuous, strictly positive and order bounded. Its inverse is
continuous and order bounded. Hence the map is an order
bounded automorphism on L′

a,b. The map is an order bounded
automorphism on L′(w, z).

Proof: φ(t) → φ(t+ λ) is linear, continuous and strictly
positive on La,b and hence on L(w, z). The adjoint of this
map f(t) → f(t+ λ) on C ′(L′

a,b) is continuous by Theorem
9 and the map is strictly positive and hence order bounded by
Theorem 2.4. It follows that the map is an order bounded
automorphism on L′

a,b. From the definition of L(w, z) it
follows that the map is an orderbounded automorphism on
L′(w, z)

III. THE TWO-SIDED LAPLACE TRANSFORMATION:
DEFINITION AND SOME BASIC PROPERTIES.

In this section we introduce the two-sided Laplace Transfor-
mation and discuss some properties of the transformation and
derive results which are used in solving differential equations.

Definition 11: Let d(f) be a linear space of conventional
functions and f be a linear functional defined on d(f) which
satisfies the following properties

(i) f is additive i.e. f(φ+ ψ) = f(φ) + f(ψ), φ, ψ ∈ d(f)
(ii) La,b ⊆ d(f) for at least one pair of real numbers a, b

with a < b
(iii) For every La,b ⊆ d(f) the restriction of f to Lc,d is in

L′
c,d.

f is called a Laplace transformable generalized function.
Note. The set W of all such functionals form a linear space
under the usual operations of addition of functions and multi-
plication by complex numbers and is ordered by the positive
cone of non-negative functionals.

Definition 12: Let f be a Laplace transformable general-
ized function. The set of all real numbers r such that there
exists two real numbers ar, br depending on r such that
ar < r < br and Lar,br

⊆ d(f) is denoted as ∧f .
Note. ∧f is an open set.

Theorem 15: Let σ1 = inf ∧f , σ2 = sup∧f . Given a
functional f defined on a linear space d(f) of conventional
functions f can be extended to a functional f1 on d(f) ∪
L(σ1, σ2) such that

(i) The restriction of f1 to L(σ1, σ2) is a member of
L′(σ1, σ2).

(ii) The restriction of f1 to d(f) coincides with f .
Proof: Since σ1 = inf ∧f , σ2 = sup∧f there exists two

sequences (ci), (di) such that

ci → σ1+, di → σ2−, ci, di ∈ ∧f , ci < di, ∀i.
Then f ∈ L′(ci, ci), f ∈ L′(di, di), ∀i.
Let λ(t) be a fixed smooth function on R such that

λ(t) = 0, for t < −1
= 1, for t > 1.

f can be extended to C(Lci,di
) and to Lci,di

as follows:
Let ψ ∈ C(Lci,di

).
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Define f(ψ) = f(λψ) + f((1 − λ)ψ).
f is continuous and linear on C(Lci,di) and hence on Lci,di .
Using the same methods f may be extended to L(σ1, σ2). This
extension of f is unique.

Definition 13: Let f be a Laplace transformable general-
ized function, σ1 = inf ∧f , σ2 = sup∧f ,

Ωf = {s : σ1 < Re s < σ2}.
The Laplace transformation F of f is defined as a conventional
function on Ωf by F (s) = (Lf)(s) = 〈f(t), e−st〉, s ∈ Ωf .
For any fixed s ∈ Ωf the right hand side has a meaning as
the application of f ∈ L′(σ1, σ2) to e−st ∈ L(σ1, σ2).

Theorem 16: If f(t) is a positive locally integrable function
such that f(t)

La,b(t)
is absolutely integrable on −∞ < t < ∞,

then f(φ) =
∫ ∞
−∞ f(t)φ(t)dt is a member of C ′(La,b).

Proof: Follows from Zemanian [3], Chapter 2, Section
3.2(v) and Theorem 2.15 of [1].

Theorem 17: If Lf = F (s) for s ∈ Ωf then F (s) is
analytic on Ωf and DF (s) = 〈f(t),−te−st〉, s ∈ Ωf .

Theorem 18: The Laplace transform is strictly positive and
is an order bounded linear map.

Proof: The linear space W of all Laplace transformable
generalized functions is an ordered linear space. We define an
order relation on the field of complex numbers by identifying
the positive cone to be the set of complex numbers α + iβ,
α > 0, β > 0. Since Lf > 0 for f > 0, f ∈ W it follows
that L is strictly positive and hence is order bounded.
Notation.

D ≡ d

dt
, Dt ≡ ∂

∂t
, Ds ≡ ∂

∂s
.

Result 2: L(Dkf(t)) = skF (s), s ∈ Ωf , k = 1, 2, . . . ,
Lf = F (s).

By Theorem 11 the generalized differentiation is a con-
tinuous linear mapping of L′(σ1, σ2) into itself. For f ∈
L′(σ1, σ2)

〈Dkf(t), e−st〉 = 〈f(t), (−Dt)ke−st〉
= 〈f(t), ske−st〉
= skF (s), s ∈ Ωf , k = 1, 2, . . .

Result 3: L(tkf(t)) = (−Ds)kF (s), s ∈ Ωf , k = 1, 2, 3,
. . ., tk ∈ S for k =1, 2, 3, . . ..
Let S be a fixed complex number such that for σ1 < Re s <
σ2,

〈tf(t), e−st〉 = 〈f(t), te−st〉
i.e., Lf(tf(t)) = −DsF (s), s ∈ Ωf .

For k = 1, 2, 3, . . .

〈tkf(t), e−st〉 = 〈tk−1f(t), te−st〉
= −Ds〈tk−1f(t), te−st〉
= −Ds〈tk−2f(t), te−st〉
= (−Ds)2〈tk−2f(t), e−st〉
= . . .

= (−Ds)k〈f(t), e−st〉
i.e., L(tkf(t)) = (−Ds)kF (s), s ∈ Ωf , k = 1, 2, 3, . . .

Result 4: For a fixed complex number α if Lf = F (s),

L(e−αtf(t)) = F (s+ α), s+ α ∈ Ωf .

Result 5: If Lf = F (s), for a fixed real number β

L(f(t− β)) = e−sβF (s), s ∈ Ωf .

IV. INVERSION AND UNIQUENESS

The results on inversion of the Laplace transform and
Uniqueness Theorems proved by Zemanian [3] hold good in
the ordered dual spaces when they are assigned the topology
of bounded convergence. In some situations the domain is
restricted to the positive cone of the respective spaces. We
state the theorems without proof.

Lemma 1: Let Lf = F (s) for σ1 < Re s < σ2, let φ ∈
C(D) and set ψ(s) =

∫ ∞
−∞ φ(t)estdt. Then for any fixed real

number r, with 0 < r <∞∫ r

−r

〈f(t), e−sτ 〉ψ(s)dw = 〈f(τ),
∫ r

−r

e−Sτψ(S)dw〉

where s = σ + iw and σ is fixed with σ1 < σ < σ2.
Lemma 2: Let a, b, σ and r be real numbers with a < σ <

b, φ ∈ C(D). Then

1
π

∫ ∞

−∞
φ(t+ τ)eσt sin rt

t
dt

converges in C(La,b) to φ(τ) and hence in La,b as r → ∞.
Theorem 19: Let Lf = F (s) for σ1 < σ < σ2, r be a real

variable. Then for a fixed real number σ, σ1 < σ < σ2,

f(t) = lim
r→∞

1
2πi

∫ σ+ir

σ−ir

F (s)estds

where the convergence is with respect to the topology of
bounded convergence in D′, the dual of D. (For details see
[1]).

Theorem 20: If Lf = F (s) for s ∈ Ωf and Lh = H(s)
for s ∈ Ωh and if Ωf ∩ Ωh �= φ and if F (s) = H(s) for
s ∈ Ωf ∩ Ωh then f = h in the sense of equality in L′(w, z)
where the interval w < σ < z is the intersection of Ωf ∩ Ωh

with the real axis.

V. OPERATIONAL CALCULUS AND SOLUTIONS OF
DIFFERENTIAL EQUATIONS

The following characterization for the Laplace transform has
been modified to suit the present situation of ordered Laplace
transformable generalized functions where we consider only
the elements of the positive cone we have defined.

Theorem 21: Let F (s) be a strictly positive function. The
necessary and sufficient condition for F (s) to be the Laplace
transform of a positive generalized function f and for the
corresponding strip of definition to be

Ωf = {s : σ1 < Re s < σ2}
is that F (S) be analytic on Ωf and for each closed substrip
{s : a ≤ Re s ≤ b} of Ωf where σ1 < a < b < σ2 is that
there be a polynomial P such that

F (s) ≤ P (|s|) for a < Re s < b
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The polynomial will in general depend on the choices of a
and b.

Corollary 1: Let F (s) be a strictly positive function and let
Lf = F (s) for s ∈ Ωf . Choose three fixed real numbers a,
σ and b such that a < σ < b and choose a polynomial Q(s)
that has no zeros for a ≤ Re s ≤ b and such that

F (s)
|Q(s)| ≤

k

|s|2 , a < Re s < b, k a constant.

Then in the sense of equality in L′(a, b)

F (t) = Q(Dt)
1

2πi

∫ σ+i∞

σ−i∞

F (s)
Q(s)

estds, a < σ < b.

where Dt represents generalized differentiation in L′(a, b) and
the integral converges in the conventional sense to a continu-
ous function that generates a regul;ar member of C ′(L(a, b)).

Operational Calculus

Consider the linear differential equation

Lu(t) = (anD
n + an−1D

n−1 + · · · + a0)u(t) = g(t)

where the ai’s are constants, an �= 0 and g(t) is a given
Laplace transformable generalized function. Applying Laplace
transform to both sides,

B(s) ∪ (s) = G(s)

where B(s) = ans
n + an−1s

n−1 + sn−1 + · · · + a0

∪(s) = Lu

G(s) = Lg, s ∈ Ωg = {s : σg1 < Re s < σg2}
If B(s) has no zeros in Ωg then by Theorem 21 there exists
a generalized function u(t) whose Laplace transform is G(s)

B(s)

on Ωg . u(t) is a unique member of L(σg1 , σg2) and satisfies
the given equation. If B(s) has a finite number of zeros in Ωg

there exists a set of m adjoint substrips
σg1 = σ0 < Re s < σ1, σ1 < Re s < σ2, . . . σm−1 < Re s <
σm = σg2 on which G(s)

B(s) is analytic and satisfies the growth
condition of Corollary 1. For any given substrip say σi <
Re s < σi+1 there exists a unique member u(t) of L(σi, σi+1)
and whose Laplace transform is G(s)

B(s) on σ1 < Re s < σi+1.
For any other choice of the substrip there will be a different
solution.

If u(t), v(t) are two solutions of the above differential
equation such that u(t) for all t lies to the left of the line say
Re s = α and v(t) lies to the right for all t then u ≤ v by the
order relation we have defined on the Laplace transformable
generalized functions.

ACKNOWLEDGMENT

Authors acknowledge gratefully the help and guidance of
Dr. T. Thrivikraman, Dr. M. S. Chaudhari and Dr. J. K. John
in the preparation of this paper.

REFERENCES

[1] Geetha K. V. and Mangalambal N. R. : On Dual Spaces of Ordered
Multinormed Spaces and Countable Union Spaces, Bull. KMA, No.2, Vol.
4, Dec 2007, pp. 63–74.

[2] Perissini A. L.: Ordered Topological Vector Spaces, Harper and Row,
New York, 1967.

[3] Zemanian A. H., Generalized Integral Transformations, Interscience, New
York, 1968.


