
International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:3, No:11, 2009

2172

 

 

  
Abstract—We describe a new filtering approach in the wavelet 

domain for image denoising and compression, based on the 
projections of details subbands coefficients (resultants of the splitting 
procedure, typical in wavelet domain) onto the approximation 
subband coefficients (much less noisy). The new algorithm is called 
Projection Onto Approximation Coefficients (POAC). As a result of 
this approach, only the approximation subband coefficients and three 
scalars are stored and/or transmitted to the channel. Besides, with the 
elimination of the details subbands coefficients, we obtain a bigger 
compression rate. Experimental results demonstrate that our 
approach compares favorably to more typical methods of denoising 
and compression in wavelet domain. 
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I. INTRODUCTION 
N image is affected by noise in its acquisition and 
processing. The denoising techniques are used to remove 

the additive noise while retaining as much as possible the 
important image features. In the recent years there has been an 
important amount of research on wavelet thresholding and 
threshold selection for images denoising [1]-[51], because 
wavelet provides an appropriate basis for separating noisy 
signal from the image signal. The motivation is that as the 
wavelet transform is good at energy compaction, the small 
coefficients are more likely due to noise and large coefficient 
due to important signal features [1]-[3]. These small coeffi-
cients can be thresholded without affecting the significant 
features of the image. 

 
In fact, the thresholding technique is the last approach 

based on wavelet theory to provide an enhanced approach for 
eliminating such noise source [4], [5] and ensure better image 
quality [6], [7]. Thresholding is a simple non-linear technique, 
which operates on one wavelet coefficient at a time. In its 
basic form, each coefficient is thresholded by comparing 
against threshold, if the coefficient is smaller than threshold, 
set to zero; otherwise it is kept or modified. Replacing the 
small noisy coefficients by zero and inverse wavelet transform 
on the result may lead to reconstruction with the essential 
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signal characteristics and with less noise. Since the work of 
Donoho & Johnstone [3], there has been much research on 
finding thresholds, however few are specifically designed for 
images [14]-[51].  

Unfortunately, this technique has the following disadvan-
tages: 
1) it depends on the correct election of the type of thre-             

sholding, e.g., OracleShrink, VisuShrink (soft-threshol-
ding, hard-thresholding, and semi-soft-thresholding), Sure 
Shrink, Bayesian soft thresholding, Bayesian MMSE esti-
mation, Thresholding Neural Network (TNN), due to 
Zhang, NormalShrink, , etc. [1]-[5], [8]-[38]  

2) it depends on the correct estimation of the threshold which 
is arguably the most important design parameter,  

3) it doesn't have a fine adjustment of the threshold after their 
calculation, 

4) it should be applied at each level of decomposition, need-
ing several levels, and 

5) the specific distributions of the signal and noise may not be 
well matched at different scales. 

 
Therefore, a new method without these constraints will 

represent an upgrade. On the other hand, similar considera-
tions should be kept in mind regarding the problem of image 
compression based on wavelet thresholding. 

 
The Bidimensional Discrete Wavelet Transform and the 

method to reduce noise and to compress by wavelet 
thresholding is outlined in Section II. The new approach as   
denoiser and compression tools in wavelet domain is outlined 
in Section III. In Section IV, we discuss briefly the more 
appropriate metrics for denoising and compression. In Section 
V, the experimental results using the proposed algorithm are 
presented. Finally, Section VI provides a conclusion of the 
paper.  

II. BIDIMENSIONAL DISCRETE WAVELET TRANSFORM 
The Bidimensional Discrete Wavelet Transform (DWT-2D) 

[6]-[7], [12]-[51] corresponds to multiresolution approxima-
tion expressions. In practice, mutiresolution analysis is carried 
out using 4 channel filter banks (for each level of decompo-
sition) composed of a low-pass and a high-pass filter and each 
filter bank is then sampled at a half rate (1/2 down sampling) 
of the previous frequency. By repeating this procedure, it is 
possible to obtain wavelet transform of any order. The down 
sampling procedure keeps the scaling parameter constant 
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(equal to ½) throughout successive wavelet transforms so that 
is benefits for simple computer implementation. In the case of 
an image, the filtering is implemented in a separable way be 
filtering the lines and columns. 
 

Note that [6], [7] the DWT of an image consists of four 
frequency channels for each level of decomposition. For 
example, for i-level of decomposition we have:  

 
LL n,i: Noisy Coefficients of Approximation.  
LH n,i: Noisy Coefficients of Vertical Detail, 
HL n,i: Noisy Coefficients of Horizontal Detail, and  
HH n,i: Noisy Coefficients of Diagonal Detail.  
 

The LL part at each scale is decomposed recursively, as 
illustrated in Fig. 1 [6], [7]. 

 

 
Fig. 1 Data preparation of the image. Recursive decomposition  

of LL parts 
 

To achieve space-scale adaptive noise reduction, we need to 
prepare the 1-D coefficient data stream which contains the 
space-scale information of 2-D images. This is somewhat 
similar to the “zigzag” arrangement of the DCT (Discrete 
Cosine Transform) coefficients in image coding applications 
[42]. In this data preparation step, the DWT-2D coefficients 
are rearranged as a 1-D coefficient series in spatial order so 
that the adjacent samples represent the same local areas in the 
original image [44].  

 
Figure 2 shows the interior of the DWT-2D with the four 

subbands of the transformed image [51], which will be used in 
Fig.3. Each output of Fig. 2 represents a subband of splitting 
process of the 2-D coefficient matrix corresponding to Fig. 1. 

 

A. Wavelet Noise Thresholding 
The wavelet coefficients calculated by a wavelet transform 

represent change in the image at a particular resolution. By 
looking at the image in various resolutions it should be possi- 
ble to filter out noise, at least in theory. However, the defini- 

 
Fig. 2 Two dimensional DWT.  A decomposition step. 

Usual splitting of the subbands. 
 

tion of noise is a difficult one. In fact, "one person's noise is 
another's signal". In part this depends on the resolution one is 
looking at. One algorithm to remove Gaussian white noise is 
summarized by D.L. Donoho and I.M. Johnstone [2], [3], and 
synthesized in Fig. 3. 

  

 
Fig. 3 Thresholding Techniques 

 
The algorithm is:  

1)  Calculate a wavelet transform and order the coefficients   
by increasing frequency. This will result in an array  
containing the image average plus a set of coefficients of 
length 1, 2, 4, 8, etc. The noise threshold will be calculated 
on the highest frequency coefficient spectrum (this is the 
largest spectrum). 

2) Calculate the median absolute deviation (mad) on the 
largest coefficient spectrum. The median is calculated 
from the absolute value of the coefficients. The equation 
for the median absolute deviation is shown below: 
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0.6745

Cmedian in
mad

)(| |,=δ                                                   (1) 

where Cn,i may be LHn,i , HLn,i , or HHn,i  for i-level of 
decomposition. The factor 0.6745 in the denominator res-
cales the numerator so that madδ  is also a suitable esti-
mator for the standard deviation for Gaussian white noise 
[5], [42], [44]. 
 

3) For calculating the noise threshold λ we have used a 
modified version of the equation that has been discussed 
in papers by D.L. Donoho and I.M. Johnstone. The 
equation is: 

][N2logmadδλ =                                                      (2) 

where N is the number of pixels in the subimage, i.e., HL, 
LH or HH. 

4) Apply a thresholding algorithm to the coefficients. There 
are two popular versions: 

 
4.1. Hard thresholding. Hard thresholding sets any coeffi-
cient less than or equal to the threshold to zero, see Fig. 
4(a). 

 

 
 

Fig. 4 (a) Soft-Thresholfing 
 

where x may be LHn,i , HLn,i , or HHn,i , y may be HHd,i : 
Denoised Coefficients of Diagonal Detail,  
HL d,i : Denoised Coefficients of Horizontal Detail,  
LH d,i : Denoised Coefficients of Vertical Detail,  
for i-level of decomposition. 

 
The respective code is: 
 
for row = 1:N1/2  
  for column = 1:N1/2  
    if |Cn,i[row][column]| <= λ,   
      Cn,i[row][column] = 0.0; 
    end 
  end 
end 
 
4.2. Soft thresholding. Soft thresholding sets any coeffi-
cient less than or equal to the threshold to zero, see Fig. 
4(b). The threshold is subtracted from any coefficient 

that is greater than the threshold. This moves the image 
coefficients toward zero. 

 

 
 

Fig. 4 (b) Hard-Thresholfing 
 

The respective code is: 
for row = 1:N1/2  
  for column = 1:N1/2  
    if |Cn,i[row][column]| <= λ,  
      Cn,i[row][column] = 0.0;  
    else  
      Cn,i[row][column] = Cn,i[row][column] - λ; 
    end 
  end 
end 

 

III. PROJECTION ONTO APPROXIMATION COEFFICIENTS 
As a natural consequence of Projection Onto Span Algo-

rithm (POSA), which was introduced by Mastriani [51], the 
POAC is based on the Orthogonality Principle too [52]. [53].  

A. Denoising via POAC inside wavelet domain 
In this section, the denoising of an image corrupted by 

white Gaussian noise will be considered, i.e., 
 
In = I + n                  

(3) 
 
where n is independent Gaussian noise. We observe In (a 

noisy image) and wish to estimate the desired image I as 
accurately as possible according to some criteria. 

 
Fig. 5 Orthogonality Principle inside wavelet domain 

 
Inside wavelet domain, if we use an orthogonal wavelet trans-
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form, the problem can be formulated as 
nwy += ˆ                                                                              (4) 

 
where y noisy wavelet coefficient (LH, HL and HH), ŵ  true 
coefficient, and n noise, which is independent Gaussian. This 
is a classical problem in estimation theory [52]. Our aim is to 
estimate from the noisy observation. A estimator based on the  
orthogonality principle will be used for this purpose [52], 
[53].  

Such estimators have been widely advocated for image 
restora-tion and reconstruction problems [51], [54]. In this 
particular case, and based on Fig.5, we have 

 
)/(ˆ LLyprojw =                                                                  (5) 

 
 

 
Fig. 6 POAC algorithm as denoiser 
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That is to say, ŵ  is the projection of y (LH, HL and HH) onto 
LL. Therefore,  

 

LL
TLLLLtrace

TyLLtrace
w

)(

)(
ˆ =                                                     (6) 

 
arising three possibilities, i.e., 
 

LLsw
LH

=ˆ                                                                   (7.a) 

 
LLsw

HL
=ˆ                                                                   (7.b) 

 
LLsw

HH
=ˆ                                                                   (7.c) 

 
where 

)(

)(
TLLLLtrace

TLHLLtrace
s

LH
=                                                 (8.a) 

 

)(

)(
TLLLLtrace

THLLLtrace
s

HL
=                                                  (8.b) 

 

)(

)(
TLLLLtrace

THHLLtrace
s

HH
=                                                (8.c) 

 
That is to say, they are three scalars that arising as a conse-
quence of POAC application inside wavelet domain (see 
Fig.6). This allows generate three new denoised detail 
coefficient matrices, uncorrelated regarding the noise and 
correlated with the approximation coefficient matrix LL, the 
less noisy one of all. 
 

 
Fig. 7(a) POAC algorithm as compressor. ENCODER 
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Fig. 7(b) POAC algorithm as compressor. DECODER 
 
 

B. Compression thanks to POAC inside wavelet domain 
As we could see in the previous section, the input of POAC 

inside wavelet domain, are the four subbands, i.e.,  LL, LH, 
HL and HH, while its output is the approximation subband LL 
plus three scalars 

LH
s , 

HL
s  and 

HH
s . This intrinsically, 

represents a compression approach with a com-pression rate 
of 4:1, approximately. 

 
The Figures 7(a) and 7(b) represents the encoder and 

decoder architecture for compression thanks POAC inside 
wavelet domain. 

IV. METRICS 

A. Data Compression Ratio (CR) 
    Data compression ratio, also known as compression power, 
is a computer-science term used to quantify the reduction in 
data-representation size produced by a data compression 
algorithm. The data compression ratio is analogous to the 

physical compression ratio used to measure physical 
compression of substances, and is defined in the same way, as 
the ratio between the uncompressed size and the compressed 
size [54]: 
 

SizeCompressed
SizeedUncompress

CR =                                                 (9) 

 
Thus a representation that compresses a 10MB file to 2MB 
has a compression ratio of 10/2 = 5, often notated as an 
explicit ratio, 5:1 (read "five to one"), or as an implicit ratio, 
5X. Note that this formulation applies equally for 
compression, where the uncompressed size is that of the 
original; and for decompression, where the uncompressed size 
is that of the reproduction. 

B. Percent Space Savings (PSS) 
    Sometimes the space savings is given instead, which is 
defined as the reduction in size relative to the uncompressed
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Fig. 8 Noisy and filtered images 

 
size: 
 

%100*)
1

1(
CR

PSS −=                                                 (10) 

 
Thus a representation that compresses 10MB file to 2MB 
would yield a space savings of 1-2/10 = 0.8, often notated as a 
percentage, 80%. 

C. Peak Signal-To-Noise Ratio (PSNR) 
    The phrase peak signal-to-noise ratio, often abbreviated 
PSNR, is an engineering term for the ratio between the 
maximum possible power of a signal and the power of 
corrupting noise that affects the fidelity of its representation. 
Because many signals have a very wide dynamic range, PSNR 
is usually expressed in terms of the logarithmic deci-bel scale. 

 
The PSNR is most commonly used as a measure of quality of 

reconstruction in image compression etc [54]. It is most easily 
defined via the mean squared error (MSE) which for two 
NR×NC (rows-by-columns) monochrome images I and Id , 
where the second one of the images is considered a denoised 
approximation of the other is defined as: 
 

∑ ∑
−

=

−

−

−=
1

0

1

0

2),(),(
1 NR

nr

NC

ncNRxNC
ncnrdIncnrIMSE  (11) 

 
The PSNR is defined as [ ]: 
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10

log20)
2

(
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MSE
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PSNR ==         (12) 
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Fig. 9 Original and compressed images 

 
    Here, MAXi is the maximum pixel value of the image. 
When the pixels are represented using 8 bits per sample, this 
is 255. More generally, when samples are represented using 
linear pulse code modulation (PCM) with B bits per sample, 
maximum possible value of MAXi is 2B-1. 
 
For color images with three red-green-blue (RGB) values per 
pixel, the definition of PSNR is the same except the MSE is 
the sum over all squared value differences divided by image 
size and by three [54]. 
 
Typical values for the PSNR in lossy image and video com-
pression are between 30 and 50 dB, where higher is better. 

V. EXPERIMENTAL RESULTS 
     The simulations demonstrate that the POAC technique 
improves the noise reduction and compression performan-ces 
in wavelet domain to the maximum. 

   Here, we present a set of experimental results using one 
typical image. Such images were converted to bitmap file 
format for their treatment [54]. Figure 8 shows the noisy 
(Gaussian white noise, with mean value = 0, and standard 
deviation = 0.01) and filtered images, with 256-by-256 (pixel) 
by 256 (gray levels) bitmap matrix. Table I summa-rizes the 
assessment parameters vs. filtering techniques for Fig.8, 
where ST means Soft-Thresholding and HT means Hard-
Thresholding. On the other hand, Fig.9 shows the original and 
compressed /decompressed images via ST, HT and POAC 
techniques. Table II summarizes the assessment parameters 
vs. compressed techniques for Fig.9. The quality 
is similar with very different CR and PSS.  
 

TABLE I 
ORIGINAL VS DENOISED IMAGES 

METRIC ST HT POAC 
MSE 229.2780 229.2803 228.6764 
PSNR 24.5272 24.5271 24.5386 
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Fig. 10 Histograms of wavelet coefficients: (a) before thresholding, (b) after soft-thresholding, (c) after hard-thresholding, and (d) after POAC 
 

TABLE II 
ORIGINAL VS DECOMPRESSED IMAGES 

METRIC ST HT POAC 
CR 3.065 3.044 5.055 

PSS [%] 67.37 67.15 80.21 
MSE 48.3938 34.9821 63.6266 
PSNR 31.2829 32.6923 30.0944 

 
On the other hand, Fig.10 shows the histograms of 

approximation (LL) and detail (LH, HL and HH) wavelet 
coefficients before and after the thresholding techniques. 
Observe, the damage caused for the pruning of ST and HT 
techniques, and the histogram affinity between LL (less noisy) 
and wavelet coefficients (LH, HL and HH) after POAC 
technique; considering that the histogram depends on the 
noisy presence in the wavelet coefficients. 

 
Wavelet basis employed in the experiments were Daube-

chies 1, 2 and 4, with only one level of decomposition. 
 
Finally, all techniques (denoising and compression) were 

implemented in MATLAB® (Mathworks, Natick, MA) on a 
PC with an Athlon (2.4 GHz) processor. 

VI. CONCLUSION 
In this paper we have developed a Projection Onto 

Approximation Coefficients technique for image filtering and 
compression inside wavelet domain. The simulations show 
that the POAC have better performance than the most 
commonly used thresholding technique for compression and 
denoising (for the studied benchmark parameters) which 
include Soft-Thresholding and Hard-Thresholding. 

 
Besides, the novel demonstrated to be efficient to remove 

multiplied noise, and all uncle of noise in the undecimated 
wavelet domain. Finally, cleaner images suggest potential 
improvements for classification and recognition. 
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