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Abstract—In this research, a 2-D computational analysis of 

steady state free convection in a rectangular enclosure filled with an 
electrically conducting fluid under Effect of Magnetic Field has been 
performed. The governing equations (mass, momentum, and energy) 
are formulated and solved by a finite volume method (FVM) 
subjected to different boundary conditions. A parametric study has 
been conducted to consider the influence of Grashof number (Gr), 
Prantdl number (Pr) and the orientation of magnetic field on the flow 
and heat transfer characteristics. It is observed that Nusselt number 
(Nu) and heat flux will increase with increasing Grashof and Prandtl 
numbers and decreasing the slope of the orientation of magnetic field. 
 

Keywords—Rectangular Cavity, magneto-hydrodynamic, free 
convection, simulation 

I. INTRODUCTION 

HE effect of the magnetic field has many applications in 
engineering problems such as plasma studies, nuclear 

reactors, boundary layer control in the field of aerodynamics, 
geothermal energy extraction and electromagnetic launch 
technology. Semiconducting and superconducting materials 
are special types of materials that they are used in 
electromagnetic launch technology. 

   In industry the quality of crystal is affected adversely by 
instabilities in the melt phase because instabilities impose 
temperature fluctuations at the solidification front and lead to 
striations in the crystalline product. It is well known that 
applying magnetic field to the system leads to damping 
unavoidable hydrodynamic movement and consequently 
growing high quality crystals. In general, the quality and 
homogeneity of single crystals grown from dropped 
semiconductor melts are very important and interesting for 
manufactures of semi- and superconductors. Therefore, 
analysis of flow and heat transfer of liquid metals in cavities 
subjected to external magnetic field is interesting for 
researchers in this field.   

 [1] studied numerically the effect of a transverse magnetic 
field on the natural – convection flow inside a rectangular 
cavity with adiabatic horizontal walls and iso-thermal vertical 
walls. They found that a circulating flow is formed with a 
relatively weak magnetic field that the convection is 
suppressed and the role of convective heat transfer is 
decreased when the magnetic field strength increases. [4] have 
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studied the effect of a magnetic field on the buoyancy driven 
convection in a differentially heated square cavity. The results 
showed that the flow characteristics inside the cavity and heat 
transfer mechanism depend strongly upon both the strength of 
the Rayleigh number and magnetic field. For a review of other 
numerical, experimental and analytical studies and interested 
reader may refer to [2-13]. 

   Most of the previous studies apply magnetic field in 
perpendicular or parallel direction with gravity vector, no 
more existing studies apply magnetic field in the direction 
inclined with gravity vector. When the direction of a magnetic 
field is perpendicular to the gravity vector, the flow induced 
by the buoyant force crosses it. In that case, in the momentum 
equation, the vertical velocity component includes an 
additional term for the electromagnetic force appears. 
Therefore, the boundary layer approximation is applicable, 
and the equation is simplified as in [3-4]. However when the 
direction of magnetic field is parallel to gravity vector, a term 
for the electromagnetic force appear in the momentum 
equation for horizontal velocity component and the buoyancy 
force appears in it due to vertical velocity component. 
Therefore, the momentum equations for velocity components 
must be solved [7]. The main scope of the present paper is to 
study the effect of orientation of magnetic field on thermal and 
hydrodynamic behavior of typical a fluid in a rectangular 
cavity.  

II.  GOVERNING EQUATION 

The Fig. 1 shows a schematic diagram of the system 
considered in the present study. The system consists of a 
rectangular cavity with length of  L  and height of H .The flow 
in the rectangular cavity is subject to a uniform magnetic field 

of 0M  . The orientation of magnetic field forms an angle α  
with horizontal axis. The Boussinesq approximation of linear 
temperature dependence of density is utilized. 

 
Fig.1. Schematic of computational domain 

 
The magnetic current density is; 

( )MVJ ×= σ                                                               (1) 

And the electromagnetic force is; 
MJFEM ×=                                                                (2) 
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The two-dimensional, non dimensional governing equation 
for an incompressible, Newtonian liquid in laminar regime and 
in steady state condition with application the electromagnetic 
field is given by:  

Continuity equation: 
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X-Momentum equation: 
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Y-Momentum equation: 
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Energy equation: 
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III.  NUMERICAL SOLUTIONS 

The governing equations (1)-(6) with their associated 
boundary conditions were solved numerically using an in-
home developed finite volume code based on collocated grid. 
In order to correctly capture the viscous layer, the grids near 
the solid walls were refined. Figure 2 shows the generated grid 
used in the present simulation. The convective terms are 
calculated with using the QUICK [15] scheme and a second-
order centered scheme was used to calculated diffusive terms 
in the governing equations. The SIMPLE [16] (Semi-implicit 
method for pressure-linked equations) algorithm was used to 
accomplish the pressure- velocity coupling.  

 

 
Fig. 2 Computational grid 

 
To obtain better accuracy in the simulations, four 

quadrilateral grids with total sizes of 2030×  (coarse), 3040×  
(medium), 4050×  (fine), 5060×  (very fine) were generated by 
discretizing the computational domain, for the grid sensitivity 
study. Table I shows the comparison between the calculated 
Nusselt number and maximum value of stream function in the 
computational domain in each case. 
 
 
 
 
 

 

TABLE I 
GIRDS INDEPENDENCY STUDY 

 
Symbol Number of grid   Nu                    

maxψ           

   
           30*20 .1926                       5.69 

0=α  
          40*30 .2156              7.56 

510=Gr            50*40 .2499              8.19 

           60*50 .2515              8.30 
   
           30*20 .1926                       5.69 

90=α  
          40*30 .2156              7.56 

710=Gr            50*40 .2499              8.19 

           60*50 .2515              8.30 

 
The comparison of results (Table І) shows, deviations 

among third and fourth grid were very small, hence the 
solution becomes independent of grid size in case3. Therefore, 
based on aforementioned parameters for grid independency 
test, the case3 with total number of 4050× cells seemed to be 
adequate to accurately capture fluid flow and heat transfer 
behaviors in the cavity and further increasing the grids will 
have negligible effect on the solution and results. 

IV. RESULTS AND DISCUSSIONS 

In order to validate the results, we applied our code a 
system composed of fluid in an enclosure with different Ra 
numbers and Pr= 0.7 which has been studied by other 
researchers, [17], [18] and [19]. Table II shows a comparison 
of calculated average Nusselt number with available data in 
the literature. Comparison of the present numerical results 
with available data indicates that the results of our numerical 
code are in good agreement with them. 

TABLE II 
COMPARISON OF PRESENT NUMERICAL RESULTS WITH AVAILABLE  

DATA IN AN ENCLOSURE FOR PR=0.7 AT DIFFERENT RAYLEIGH NUMBERS  

 
Symbol Present          DAVIS Hadjisophocleous      Markatos and 

et al.[19]                   Pericleous.[18]                
 

 
       

410=Ra   

uN  
  2.241         2.243          2.29                               2.201 

         510=Ra  
 

   

uN  
  4.513         4.519          4.964                               4.430 

     610=Ra       

uN  
  8.756         8.799          10.39                               8.754 

   
   

 
Effects of the parameters such as Grashof number (Gr), 

Hartmann number (Ha), orientation of magnetic field and 
Prandtl number of fluid (Pr) on heat transfer and fluid flow 
inside the cavity have been studied. The first section has 
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focused on flow and temperature fields, which contains 
streamlines and isotherms for the different cases. Heat transfer 
including average Nusselt number at the heated wall has been 
discussed in the following section. The ranges of Gr, Ha, and 
α for this investigation vary from 510 to 710 , 0 to 80 and 0 to 
90  ,respectively while the prandtl number is kept fixed at 
0.015 and 0.15 . 

The influence of Grashof number Gr (from 
510=Gr to 

710=Gr ) on streamlines and isotherms at Ha = 0, Pr = 0.015, 
0=α has been shown in Fig. 3. The flow with 

510=Gr  has 
been affected by the buoyancy force, thus creating a vortex at 
the center of cavity.   The speed of vortex increases with 
increasing Grashof number as shown and for higher Gr 
number, the size of the existing recirculation region becomes 
smaller while two other vortex are beginning to develop at the 
right and left of the cavity. The size of these vortexes 
increases with increasing Gr number.  

 
 

 
Fig. 3a Effect of Grashof number on streamlines 

 
Fig. 3(b) illustrates the temperature counters in the flow 

region. The high temperature region remains near the left side 
of the computational domain and the isothermal lines are 
nearly linear and parallel to the vertical walls for 510=Gr . 
These lines become more curved with of growing of Gr. The 
isothermal lines concentrate near the hot and cold walls for 
larger values of Gr. With increasing Grashof number the 
thickness of thermal boundary layer on the hot and cold walls 
decreases. Therefore, local heat transfer coefficient on the wall 
will increase.  

 

 

Fig. 3b Effect of Grashof number on temperature counter 
 

The effect of orientation of magnetic field on the flow field 

is depicted in Fig. 4(a) where
6104.1 ×=Gr , 015.0Pr = and 

40=Ha . The streamlines contain a rotating cell at 0=α . 
The size of this vortex increases with increasing orientation of 
magnetic field so that it covers almost the whole of the cavity 
and this is suitable for better mixing of fluid. Fig. 4(b) 

illustrates the temperature field in the flow region. The 
thermal field becomes more compressed at the hot and cold 
walls of the cavity with decreasingα .  So, the high 
temperature region remains near the hot wall of the 
computational domain increases and the isothermal lines are 
become more linear and parallel to the vertical walls with 
increasingα . It is obvious that with increasing α  the Nusselt 
number on the hot wall decreases because the thermal 
boundary layer on the wall increases. 

 

 
 

 
Fig. 4a Effect of orientation of magnetic field on streamlines inside 

the cavity 

 
Fig. 4b Effect of orientation of magnetic field on temperature field 

inside the cavity  
 

Fig. 5 (a,b) shows the effect of Hartmann number Ha (from 

0 to 80) on flow field at 
710=Gr , 015.0Pr = , 0=α . The 

non-dimensional number (Ha) shows the power of magnetic 
force on the flow field and at the absence of magnetic field, 
the streamlines consist of two recirculation cells including one 
at the left side of cavity and a secondary eddy at the right side 
of cavity. As seen, these vortexes loss their strength and 
finally are disappeared with rising Ha while larger vortex 
produced at the center of cavity. The corresponding 
temperature field shows that the concentrated region near the 
walls becomes more compressed and the isothermal lines are 
more bend from the right top corner due to the elevating 
Hartmann number. It means that the magnetic field 
significantly affects the flow and thermal fields in the cavity. 

 

 
Fig. 5a Effect of Hartmann number on streamlines inside the cavity  
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Fig. 5b Effect of Hartmann number on temperature field inside the 

cavity  
Fig. 6 (a,b) show the effect of Prandtl number (Pr) on flow 

field at 
6104.1 ×=Gr , 40=Ha , 0=α .  As seen at both Prantdl 

numbers, the streamlines consist of a recirculation cell at the 
center of cavity but with rising Pr, the vortex become stronger 
and finally is covered the most of computational domain. The 
corresponding temperature field shows the concentrated 
region near the walls becomes more compressed and the 
isothermal lines at the whole of domain except near vertical 
walls are become more linear and parallel to horizontal walls 
due to the elevating Prandtl number. It is clear that with 
increasing Prandtl number the thermal boundary layer on the 
walls decreases and the heat transfer coefficient on the walls 
increase. 

 
Fig. 6a Effect of Prandtl number on streamlines inside the cavity  

 
Fig. 6b Effect of Prandtl number on temperature field inside the 

cavity  
  
 In order to show how the presence of Prandtl number, 

magnetic field and its orientation affects the heat transfer rate 
along the heated surface, the average Nusselt number is 
plotted as a function of Grashof number as shown in Fig 7. It 
is observed that Nu rises with increasing Grashof and Prandtl 
numbers and decreasing Hartmann and orientation of magnetic 
field. The maximum heat transfer rate is obtained for the 
lowest Ha and the highest Gr, because the magnetic field tends 
to concentrate motion.The flow at the center of cavity. It is 
worth mentioning that the influence of mentioned parameters 
on Nusselt number is not very sensitive at lower Grashof 
numbers. 

 
Fig. 7 Effect of HaGr ,Pr,,α on Nusselt number  

V.  CONCLUSION 

In the present investigation, we studied the effect of 
magnetic field on natural convection flow in a rectangular 
enclosure filled with an electrically conducting fluid. The 
governing equations along the appropriate boundary 
conditions for the present problem are first transformed into a 
non-dimensional form and the resulting non linear system of 
partial differential equations are then solved numerically using 
finite volume method. The influence of Grashof number, 
Prantdl number of fluid, Hartmann number and orientation of 
magnetic field on the flow and heat transfer characteristic such 
as average Nusselt number, streamlines and isotherms is 
performed. It is observed that Nu rises with increasing 
Grashof and Prandtl numbers and decreasing Hartmann and 
orientation of magnetic field. 
 

NOMENCLATURE 

pC   Heat capacity of fluid at constant pressure (
Kkg

J
.

) 

H   Height of cavity ( m ) 

k   Thermal conductivity (
Km

W
.

) 

L   Length of cavity (m ) 

p   Pressure (pa ) 

p̂   Non-dimensional pressure 

Pr   Prandtl number 

T   Temperature
 ( K ) 

Nu   Nusselt number 

Gr   Grashof number 

Ha   Hartmann number 

B   Magnetic field 
g   Acceleration due to gravity 

vu,  Velocity components in x and y directions (sm ) 

vu ˆ,ˆ  Non-dimensional velocity components in  

               X and Y   directions 

yx NN ,
   

Number of grid in yandx  directions 

yx,     Cartesian coordinates(m) 

yx ˆ,ˆ     non-dimensional Cartesian coordinates 

GREEK SYMBOLS 

α   Orientation angle of magnetic field  

θ   non-dimensional temperature  
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µ   dynamic  viscosity(
2sm

kg ) 

ρ   Density (
3m

kg ) 

β   Thermal expansion coefficient  

σ   Electrical conductivity of fluid 

SUBSCRIPTS 

h  Hot 
c   Cold  

�      Previous iteration 
x   in x direction              

y  in y direction 

z   in z direction 
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