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Abstract—In this work, we present a reliable framework to solve 

boundary value problems with particular significance in solid 
mechanics. These problems are used as mathematical models in 
deformation of beams. The algorithm rests mainly on a relatively new 
technique, the Variational Iteration Method. Some examples are 
given to confirm the efficiency and the accuracy of the method. 
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I. INTRODUCTION 
 HIS paper discussed the approximate solution of the 
equation of the form. 
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Ma and Silva [20] adopted iterative solution for (1) 
representing beams on elastic foundation when 0  k = .In the 
configuration of the deformed beam, the bending moment 
satisfies the relation UEIM ′′−= , where E  is the Young 
modulus of elasticity and I  is the inertial moment. 
Considering the deformation caused by a load )(xff =  
then U-EIM  vand   ′′′=′=′−= vf  ,where v  denotes 
the shear force. For u  representing an elastic beam of length

1  L = , which is clamped at its left side 0  x = , and resting 
on an elastic bearing at its right side 1  x = , and adding a 
load f  along its length to cause deformation. u(x) u = . 
This lead to the boundary value problem: 
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Solving (3) by means of iterative procedure, Ma and Silva 
obtained solution and argued that accuracy of result depends 
highly upon the integration method used in the iterative 
process.  

Barari et al [3] solved the problem with variational iteration 
method, a case of k = 0. 

In this work, it is aimed to apply the VIM proposed by He 
[12, 13, 14, 16] to different forms of (1) with boundary 
condition of physical significance. 

II.  VARIATIONAL ITERATION METHOD 
To illustrate the basic concept of the technique, we consider 

the following general differential equation 
 

)(xgNuLu =+                                    (4) 
 

Where L is a linear operator, N a nonlinear operator and 
g(x) is the forcing term. According to variational iteration 
method He [12, 13, 14, 17], Inokuti et al [15], we can 
construct a correct functional as follows: 
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Where λ  is a Lagrange multiplier which can be identified 
optimally via variational iteration method. The subscripts n 

denotes the nth approximation, nu  is considered as a restricted 

variation, i.e, 0 =nuδ  equation (5) is called a correction 
functional. The solution of the linear problems can be solved 
in a single iteration steps due to exact identification of 
Lagrange multiplier [3, 16, 20]. 

III. NUMERICAL EXAMPLE 
Example 1: 
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( ) ( ) ( ) keukeuuku +=′+==′+= 3)1(    ,21,10,10  

 
We construct a correction functional for (6), as follows: 
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The variational iteration formula corresponding to (6) is 

therefore  
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    Let dcxbxaxxu +++= 23
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                         (8) 
Then (7) becomes 
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Introducing the boundary condition, we have: 

1+= kd                                                                          (12) 
2=c                                                                                          (13) 
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Solving equations (12)- (15), we have: 
 

Case 1: k = 1, a = 0.500947014, b = 1.582497142, c = 2, d = 2 
Case 2: k = 2, a = 0.334347197, b = 1.665730754, c = 2, d = 3. 

 

         
Fig. 1 (a) 

                             
Fig. 1 (b) 

Fig. 1 (a) and Fig. 1 (b) The graphs of exact solution (u_exact) and 
the approximate solution (u_approx.) against x when k=1 and k=2   

respectively 
 

Example 2: 
 

Consider the following boundary value problem: 
 

( ) ( ) ( ) ( ) 1x0    ,34 <<+−+′′+= kxexuxuxu x            (16) 
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The iteration formulation is: 
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Incorporating the boundary into (18), we have 
 

kd +=1                                         (19) 

      0=c                                             (20) 
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The solutions of equations (19)- (22) gives: 
 

Case 1: k = 1, c=0, d=2, b=0.4101204308, a=-0.5104111543 
Case 2: k = 2, c=0, d=3, b=-0.336315472, a=-0.6655431229 

 

x vs u_approx and u_exact at k=1
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x vs u_approx and u_exact at k=2
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Fig. 2 (a) 

 

 
Fig. 2 (b) 

Fig. 2 (a) and Fig. 2 (b) The graphs of exact solution (u_exact) and 
the approximate solution (u_approx.) against x when k=1 and k=2 

respectively 
 

Example 3: 
 

Consider the following nonlinear boundary value problem: 
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Introducing boundary conditions, we have 
 

0=d                                                 (25) 
 

0=c                                                 (26) 
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Solving (25)-(28), we have: 
 
Case 1: k =1, d = 0, c = 0, a = -0.1363676737, b = 
2.082180724 
Case 2: k =2, d = 0, c = 0, a = -0.4395283713, b = 2.24694145 
 

x vs u_approx and u_exact at k=1

0.0000000000

0.5000000000

1.0000000000

1.5000000000

2.0000000000

2.5000000000

0.00 0.50 1.00 1.50

x

u_
ap

pr
ox

 a
nd

 u
_e

xa
ct

uapprox
uexact

x vs u_approx and u_exact at k=2
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Fig. 3 (a) 

 

Fig. 3 (b) 

Fig. 3 (a) and Fig. 3 (b) shows the graphs of exact solution (u_exact) 
and the approximate solution (u_approx.) against x when k=1 and 

k=2 respectively 

IV. CONCLUSION 
In this work, VIM has been successfully used to find the 

numerical solution of models which has fundamental 
importance in different field of engineering and applied 
sciences and can also be extended to those investigated in [1]-
[11] and [18]-[31]. Many of the results attained in this work 
confirm the idea that VIM is powerful mathematical tool for 
solving different kinds of practical problems, having wide 
application in engineering. 

Comparison between the approximate and exact solutions; 
Figs. 1a, 1b, 2a, 2b, 3a and 3b, shows that the one iteration of 
variational iteration method is enough. The methods also can 
be introduced to overcome the difficulties arising in 
calculating Adomian polynomials. 
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