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Abstract—Software project effort estimation is frequently seen 

as complex and expensive for individual software engineers. 
Software production is in a crisis. It suffers from excessive costs. 
Software production is often out of control. It has been suggested that 
software production is out of control because we do not measure. 
You cannot control what you cannot measure. During last decade, a 
number of researches on cost estimation have been conducted. The 
metric-set selection has a vital role in software cost estimation 
studies; its importance has been ignored especially in neural network 
based studies. In this study we have explored the reasons of those 
disappointing results and implemented different neural network 
models using augmented new metrics. The results obtained are 
compared with previous studies using traditional metrics. To be able 
to make comparisons, two types of data have been used. The first 
part of the data is taken from the Constructive Cost Model 
(COCOMO'81) which is commonly used in previous studies and the 
second part is collected according to new metrics in a leading 
international company in Turkey. The accuracy of the selected 
metrics and the data samples are verified using statistical techniques. 
The model presented here is based on Multi-Layer Perceptron 
(MLP). Another difficulty associated with the cost estimation studies 
is the fact that the data collection requires time and care. To make a 
more thorough use of the samples collected, k-fold, cross validation 
method is also implemented. It is concluded that, as long as an 
accurate and quantifiable set of metrics are defined and measured 
correctly, neural networks can be applied in software cost estimation 
studies with success 

 
Keywords—Software Metrics, Software Cost Estimation, Neural 

Network. 

I. INTRODUCTION  
OFTWARE becomes increasingly expensive to develop 
and is a major cost factor in any information system 

budget. Software development costs often get out of control 
due to lack of measurement and estimation methodologies.  

Software cost estimation or software effort estimation is the 
process of predicting the effort required to develop a software 
system. Software engineering cost models and estimation 
techniques are used for a number of purposes including; 
budgeting, tradeoff and risk analysis, project planning and 
control, and software improvement investment analysis [1]. 
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The accuracy of the software project cost estimation has a 
direct and significant impact on the quality of the firm’s 
software investment decisions [2]. Accurate cost estimation 
can reduce the unnecessary costs and increase the 
organization’s efficiency. For this reason, many estimation 
models have been proposed over the last 20 years. The review 
completed by Jørgensen and Shepperd [3] identifies 304 
software cost estimation papers in 76 journals and classifies 
the papers according to research topic, estimation approach, 
research approach, study context and data set. Although there 
are number of different approaches, these models may be 
classified as algorithmic and non-algorithmic. Each of these 
techniques has their advantages as well as limitations. 
Unfortunately, despite the large body of experience with 
estimation models, the accuracy of these models is still far 
from being satisfactory [4]. Software development effort 
estimation with the aid of artificial neural networks (ANN) 
attracted considerable research interest especially at the 
beginning of the nineties [5]. Most of these studies are based 
on COCOMO’81 metric-set.  

A key factor in selecting a cost estimation model is the 
accuracy of its metrics, since these models rely on metrics as 
their input. Metric can be defined as a quantitative measure of 
the degree to which a system, component, or process 
possesses a given attribute. It may seem easy to think of 
attributes of computer software products, processes, people or 
programming environments that can be measured. However, 
identifying meaningful attributes to measure and then finding 
measurement processes to produce reliable and reproducible 
assessments of these attributes is the real problem [6].  

As the first step of our study, an augmented metric set was 
developed to take new technologies and more meaningful 
parameters into account. This augmented model, called Yıldız 
effort estimation model (YEEM), does include all the metrics 
existed in COCOMO and new ones which are derived from 
more recent software development projects, studies and 
experience.  

In this paper, we present an augmented metric set and 
investigate the success of the MLP for both COCOMO’81 
metric set and for the augmented metric set (YEEM). Tests 
were run for datasets containing the same number of samples. 
To investigate further, we have also experimented with larger 
datasets formed according to augmented metrics. Addressing 
the issues of the dataset characteristics and the amount of 
samples in the datasets is one of the purposes of this research. 
Since the amount of samples we have collected are still 
limited, 5-fold, 10 fold and 15-fold cross validation 
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techniques have been also applied.  

II. RELATED WORK  
Most of the software cost estimation studies using of neural 

networks have focused on the accuracy of the approach when 
compared to algorithmic models and paid little attention on 
the suitability of the metrics [7]. Wittig and Finnie [8] 
employed a back-propagation multi-layer perceptron to 
predict the development effort on the Desharnias and 
Australian Software Metrics Association (ASMA) data sets. 
Both data sets were tested three times by randomly removing 
ten projects to be used as the test set and using the remaining 
projects as the training set. The results they got were very 
encouraging, with an overall MMRE of 29% for the 
Desharnais data set and 17% for the ASMA data set. 
Venkatachalam [9] has also chosen a back-propagation multi-
layer perceptron to predict software effort and development 
time. The preliminary results, obtained with the data taken 
from the COCOMO database, were reported as promising. 
Jørgensen [10] reports the use of a multi-layer perceptron with 
a back propagation algorithm on a data set comprising 109 
maintenance projects and compares four different approaches; 
regression models, a neural network model, a form of pattern 
recognition and a simple baseline rule of thumb model. In this 
study, the neural network model was found to perform less 
well than the best regression model, in terms of MMRE, but 
very favorably in terms of Pred (25). On the negative side, he 
found the neural network to be one of the least robust 
approaches. Serluca [11] obtains much better results by using 
a back-propagation network on the MERMAID-2 data set. 
Serluca concluded that neural networks require large training 
sets.  

III. RESEARCH METHOD  
In this study a new metric set (YEEM), which is initially 

derived from COCOMO ’81, COCOMO II Post Architecture 
metric-set, 21 real world software development projects, 
studies and more than 90 years of project management 
experience, is proposed to be used in software cost estimation 
models. While building the YEEM, metric suggestions taken 
from 28 Project managers have been added to preliminary 
metric matrix. The correlations have been analyzed and some 
of the metrics were removed accordingly. After a 
mathematical, statistical and empirical optimization processes, 
the resulted metric set can be categorized into six groups; 
product, resource, risk, technology, environment, plans and 
predictions. The YEEM augmented metric set consists of 56 
sub-metrics, which are in a hierarchical structure.  

The experimental data is collected in a leading international 
company in Turkey, which gives additional importance to 
project management discipline. Developing standardized 
project plans and complying with software development 
standards are among the main characteristics of the company. 
Configuration management rules are strictly defined and 
followed within the company. The project teams are in matrix 

form; staff from different departments and from different 
positions form the project group. In performance 
management, the success of the project has a direct effect on 
individual success. 

A. YEEM Metric-Set 
1)  Metric-Set Definition  
In recent literature, a few measures have been proposed for 

capturing properties of software artifacts in a quantitative 
way. However, few of these 'software metrics' have 
successfully survived the initial definition phase and are 
actually used in industry. This is due to a number of problems 
related to the theoretical and empirical validity of software 
metrics, the most relevant of which are summarized below 
[12] 

1. Measures are not always defined in the context of some 
explicit well-defined measurement goal of the industrial 
interest they help to reach. 

2. Even if the goal is explicit, the experimental hypotheses 
are often not made explicit.  

3.A reasonable theoretical validation of the measure is often 
not possible because the attribute that a measure aims to 
quantify is often not well defined. 

4.Most of measures have never been subject to an empirical 
validation. 

5. Measurement definitions do not always take into account 
the environment or context in which they will be applied. 

This situation has frequently led to some degree of 
fuzziness in measure definitions, properties, and underlying 
assumptions, making the use of the measures difficult, their 
interpretation hazardous, and the results of the various 
validation studies somewhat contradictory. These 
characteristics do not imply that progress cannot be made in 
the measurement field. For this purpose metrics must be 
defined in a methodological and disciplined way. The main 
tasks of this method are shown in Fig. 1. 

We tried to construct a metric-set which is based on clear 
measurement goals.  GQM is used as a goal-oriented measure 
definition approach to ensure that the metric selection or 
definition effort, the validation effort and the subsequent 
measurement effort all contribute to the achievement of a 
well-defined goal.  

 
Fig. 1 Method for definition and validation of software metrics 

2) The Metric Definition Methodology  
Basili and Weiss data collection methodology has been 

used to construct the YEEM metric set. The methodology 
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consists of six steps with considerable feedback and iteration 
occurring at several places [14]: 

a. We established the goals of the data collection 
about software project cost indicator. 

b. We developed a list of questions of interest. 
c. We established metric-set categories. 
d. We designed and tested collection forms. 
e. We collected and validated data. 
f. We analyzed the data. 

The metric definition activity further involves the precise 
definition of the object of measurement, including its 
constituents. The unambiguous definition of the domain of a 
metric is a prerequisite for the validation of the metric, as well 
as for the practical use of the metric afterwards. Finally, as 
metrics are functions that take an argument and produce a 
value, there must be a precise description of the mathematical, 
logical or other formulation and notation that is used to define 
and denote the function prescriptions. 

The purpose of the definition phase is to define the goals of 
an experiment, formulated from the problem to be solved. In 
order to capture the goals of the experiment a template for 
goal definition based on the famous Goal-Question-Metric 
(GQM) paradigm. This goal template is:  Analyze <Object(s) 
of study> for the purpose of <Purpose> with respect to their 
<Quality focus> from the point of view of the <Perspective> 
in the context of <Context> [14] 

The object in this study is “software project development”. 
The Objects of the study the entity that is studied in the 
experiment The Purpose defines what the intention of the 
experiment is. The Perspective tells us the viewpoint from 
which the experiment results are interpreted. The general 
perspective we take is that of professionals working with 
Software Project Development. The Context is the 
“environment” in which the experiment is run. All the 
experiments we have done were run in an industrial 
environment. 

 
3)  Theoretical validation 
The main goal of theoretical validation is to assess whether 

a metric actually measures what it purports to measure [14]. In 
the context of an empirical study, the theoretical validation of 
metrics establishes their construct validity, i.e. it 'proves' that 
they are valid measures for the constructs that are used as 
variables in the study. 

The validity of the measurement instruments used for the 
variables of an empirical study is a key factor in the overall 
study validity. On the other hand, knowledge of the scale type 
of the metrics helps when choosing the appropriate statistical 
techniques to analyze the data obtained in the experiments. 
The preferred theoretical validation approach is one in which 
measures can be used as ratio scales, allowing the use of a 
wide range of data analysis techniques, including parametric 
statistics, and thus providing maximum flexibility to the 
researcher [14]. Unfortunately, as Van den Berg and Van den 
Broek [15] remark, even though several attempts have been 
made at proposing methods and principles to carry out the 

theoretical validation of metrics, there is not yet a standard, 
accepted way of theoretically validating a software metric. 
Work on theoretical validation has followed two paths: 

a.  Property-based approaches (Axiomatic 
approaches)  [12,16] 

b. Measurement-theory based approaches [17,18,  
19] 

In this work the theoretical validation of  YEEM metric-set 
will be performed using the distance framework. This 
framework, proposed by Poels and Dedene [19], is a 
conceptual framework for software metric validation 
grounded in Measurement Theory [20].  

The distance framework offers a measure construction 
procedure to model properties of software artifacts and defines 
the corresponding software metrics. In this sense, the 
framework has an added value above other measurement 
theoretic approaches that focus on metric validation. The basic 
idea of distance framework is to define properties of objects in 
terms of distances between the objects and other objects that 
serve as reference points for measurement [19].  

 
4) The Distance measure construction procedure 
The measure construction procedure prescribes five 

activities. The activities of the distance procedure are very 
briefly summarized below [17].  

1. Finding a measurement abstraction 
2. Defining distances between measurement abstractions 
3. Quantifying distances between measurement 

abstractions 
4. Finding a reference abstraction 
5. Defining a measure for the property 
 
5) Empirical validation 
Empirical validation is crucial for the success of any 

software measurement project. Through empirical validation 
we can demonstrate with real evidence that the measures we 
have proposed serve the purpose they were defined for and 
that they are useful in practice, i.e. related to some external 
attribute worth studying and therefore helping to reach some 
goal. In our case we want to demonstrate the empirical 
validity of the YEEM metric-set, this means that we have to 
corroborate that they are really related to software project 
effort estimation.  

We use three major types of empirical research strategy to 
get all related metrics and their importance. 

i.Surveys. A survey is often an investigation performed in 
retrospect. The primary means of gathering qualitative or 
quantitative data are interviews or questionnaires. The results 
from the survey are then analyzed to derive descriptive or 
explanatory conclusions. We made interviews and 
questionnaire to get all related metrics and their importance.  

ii.Experiments. Experiments are formal, rigorous and 
controlled investigations..  

iii.Case studies. A case study is an observational study. Our 
case studies are aimed at tracking a specific attribute or 
establishing relationships between different attributes.  
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6)  YEEM metric-set suggestion 
Cocomo 81 and Cocomo II metric-sets has been mostly 

used in Software cost prediction studies. Therefore YEEM 
metric-set is based on Cocomo metric sets. 28 Project 
managers’ metric suggestions added to preliminary metric 
matrix. Then, the correlations have been captured and the 
related metrics was removed. After a mathematical, statistical 
and empirical optimization processes, the resulted metric set 
can be grouped in 6 parts which are: Product, Resource, Risk, 
Technology, Environment, Plans & Predictions 

All of the metrics in Cocomo metric-set has been used in 
YEEM metric-set. However there is a hierarchical structure. 
The resulted 6 parts has 26 metrics which are shown in Table 
I. The main aim of this paper is suggesting a metric-set which 
provide us to get better results from software development 
prediction studies and models. This paper suggests that using 
hybrid model provide us better results. So using function point 
and predictions as input metrics makes a hybrid model. Some 
metrics which are not used in Cocomo metric-set are also 
added the suggested metric set.  

TABLE I 
YEEM METRIC-SET 

Category Metric 
1.Complexity 
2.Function Point 
3.Importance of the final product 
4.Budget Size 

A. Product 

5.Expected Features’ Level 
6.Qualifiedness of Project’s Members 
7.Personnel Continuity (PCON) 
8.Team-Size  
9.Hardware situation 

B. Resource 

10.Use of Software Tools (TOOL) 
11.Budget (Change) Risk 
12.Human-Resurce’s Risk 
13.Hardware Risk C. Risk 
14.Product definition and scope change 
risk 

15.Usage Easiness of Software 
Development Tools D. Technology 

16.Usage know-how of Software 
Development Tools  

17.General Features 
18.Responsibility 
19. Pressure 
20.Time Management 

F.Environment 

21.Average Productivity 
22. Predicted time plan 
23.Predicted budget size 
24. Prediction Average Error  
25. Toleration 

F. Plans and 
Prediction 

26.Required Development Schedule 
(SCED) 

a. Product 
One of the main categories of the suggested set is product 

size. It has 5 metrics: complexity, FP, importance of final 
product, budget size and expected features’ levels. 

It is very important to find the required resources by 
estimating size of the product. The most of the project 
managers said that complexity of the product (CPLX), size of 
the database (DATA) and reusability (RUSE) are most 
important factors.  CPLX, DATA and RUSE are also used in 
COCOMO model. These are sub-metrics of the complexity 
metric. 

Function points are a measure of the size of computer 
applications and the projects that build them. It is important to 
stress what function points do not measure. Function points 
are not a perfect measure of effort to develop an application or 
of its business value, although the size in function points is 
typically an important factor in measuring each Using the 
function point as an input metric has two advantages. It gives 
us product size and it gives us product’s appearance size.  

Project budget is one of the most important components of 
a software development project. So if we can get the size of 
the budget, it will give us roughly size and the importance 
level. Importance of the final product is a very important 
metric to get the total pressure, capability of the project’s 
member and managerial responsibility and support. The 
expected features can be flexibility, reliability (RELY), user 
friendship, maintainability, security and documentation 
(DOCU). 

 
b. Resource 
Resource size and the resource qualifiedness are the main 

metric in the most of the metric sets. If you want to calculate 
the cost of doing something, you have to know two things: 
size of the product and the resource.  

Qualifiedness of project’s members is one of the resources 
metric. It has 3 or more sub-metrics which are qualifiedness 
level of project manager, qualifiedness level of software 
developers (ACAP) and qualifiedness level of system and 
business analysts (PCAP).Team-size is a resource metric. It 
has 3 or more sub-metrics which are number of project 
manager, developer, analyst and tester. We have to multiply 
these sub-metrics to availability to get the pure human 
resource. We can use personnel continuity (PCON) metric. 

Hardware situation is another resource metric which have 
three sub-metrics. These are time constraint (TIME), storage 
constraint (STOR) and platform volatility (PVOL). 

 
c. Risk  
The capability to effectively deliver software on time and 

within budget is based upon a variety of risk factors. 
As each project commences, the size, complexity, and 

various risk factors are assessed, and an estimate is derived. 
Initially, the resulting estimate would typically be based upon 
industry data that reflect average occurrences of behavior 
given a project’s size, complexity, and performance profile. 
Over time, as an organization develops a historical baseline of 
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information regarding its own behaviors, performance profiles 
would reflect a more accurate representation of likely 
outcomes. This information can be used to predict and explore 
what-if scenarios on future 

Risk exposure, or risk impact, is quantified as: risk 
exposure = probability of undesirable outcome x cost of 
undesirable outcome. So if we can get the probability of 
undesirable outcome and the cost of undesirable outcome, we 
can calculate the risk exposure. Most projects have budget 
risk, human-resource’s risk, hardware risk and definition and 
scope change risk. These four metrics has two sub-metrics: 
probility and effect. 

 
d. Technology 
The software tools and tool experience has very significant 

effect which incredibly change the result. So we have to 
mention it to get better result. The structure of the 
establishment can affect the cost of the software development. 
The averages of lateness, pressure, responsibility and time 
management can greatly affect the cost.  Usage easiness and 
know-how of software development tools are the two metric 
in technology category. Usage know-how has 4 sub-metrics: 
platform experience (PEXP), application experience (AEXP), 
language and tool experience (LTEX), multi-site development 
(SITE).  

 
e. Environment 
General Features metric can include 4 sub-metrics; Average 

delayed-project percentage in the enterprise, Average lateness 
in the enterprise, Average lateness percentage in the 
enterprise, and Standard deviation of lateness in the enterprise. 

Responsibility metric can include 4 or more sub-metrics 
which are responsibility level of Project Manager, 
management, team members and the customer. 

Pressure metric can include at least 3 sub-metrics, which 
are managerial pressure, customer pressure, marketing 
pressure. 

And the time management can include 4 sub-metrics: (i) 
Average interruption number in one day for a member, (ii) 
Average interruption-duration time, (iii) Average returning to 
normal state time after interruption, (iv) Average overtime 

 
f. Plans and Prediction 
Expert judgment is still the dominant technique in practice 

today for estimation of software project size and effort. Using 
expert judgment result as an input metric is suggested. Thus, it 
will increase the accuracy of the result. 

B.  Neural Network Model  
1) Algorithm 
The model used in this study is a multi-layer feed-forward 

network that is used with the back propagation algorithm. 
Back-propagation involves performing computations 
backwards through the network to determine the gradient of 
the cost function. Then the weights are adjusted in the 
direction of the negative gradient. The mechanism by which 

weights are updated is known as training algorithm. The 
selected training algorithm is the Levenberg-Marquardt [18]. 

COCOMO ’81 and YEEM metrics are used in turn, as 
network inputs to predict the software cost.  

 
2) Data Processing  
a. Checking for Randomness and Outliers  
In this study, the training and test data sets have been 

verified for randomness, using the ’Run’ test [21].  
Three outliers were identified in COCOMO ’81 data set, 

and consequently only remaining 60 samples are used in this 
study. Similarly 9 out of the 109 samples, collected according 
to proposed metric set, are left out since they represented 
bigger projects.  

 
b. Pre-processing and Post-processing of Data  
In this study, min-max normalization [22] is used, to squash 

the data values into the intervals [0, 1].  
 
c. Organization of the Data Sets  
Organization of the data sets used in experiments, and the 

amount of data points in each set are given in Table II. They 
are subdivided into training and test sets to be used to test the 
neural network models. Dataset 2, containing the same 
amount of data with Dataset 1, is formed to compare the 
results of new metric set with COCOMO. And Dataset 3 was 
formed to asses the effect of data size on the success of 
models.  

 
TABLE II 

ORGANIZATION OF THE DATA SETS 
  Data Set 1 Data Set 2 Data Set 3 

Metric Set 
COCOM
O YEEM YEEM 

Total Number of Data 60 60 100 
Number of Training Data 45 45 75 
Number of Test Data 15 15 25 

IV. RESULTS 

A. Evaluation Criteria 
Magnitude of Relative Error (MRE) is a common criterion 

for the evaluation of similar cost estimation models in 
literature [23, 24]. The MRE value is calculated for each 
observation i, whose cost is predicted. The aggregation of 
MRE over whole test set can be achieved through Mean MRE 
(MMRE). 

Although MMRE may be sensitive to individual predictions 
with excessively large MREs, careful selection of data, by 
checking the data against outliers or randomness, should 
provide sound results. It is always beneficial to check the 
standard deviation of the results as well. The results for each 
data set, are given in Table III. 
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TABLE III 
RESULTS FOR COCOMO AND YEEM METRIC SETS USING MLP  
ANN 
Model Data Set 

Total Number 
of Samples MMRE 

MLP COCOMO 60 1.805 
MLP YEEM 60 0.280 
MLP YEEM 100 0.207 

B. Cross Validation 
Error estimation techniques, such as the v-fold cross-

validation, can help in estimating the generalization 
performance as well as in selecting good parameters. 

The v-fold cross-validation makes a more thorough use of 
the samples [14]. MLP neural network is used to implement 
the 5-fold, 10-fold and 15-fold cross validation methods. And 
the WEKA data-mining tool was used for these experiments 
[25]. Table 4 shows the results for the 5-fold, 10-fold and 15-
fold cross validation methods using MLP. 
 

TABLE  IV 
RESULTS OF CROSS VALIDATION METHOD USING MLP 

  Data Set 1 Data Set 2 Data Set 3
Metric Set COCOMO YEEM YEEM 
Total Number of Data 60 60 100 
MMRE 5-fold cv 1.898 0.216 0.128 
MMRE for 10-fold cv 1.890 0.222 0.120 
MMRE for 15-fold cv 1.664 0.189 0.095 

 

V. CONCLUSION 
In this paper we have proposed a new augmented metric set 

for software cost estimation and investigated the applicability 
of neural networks into software cost estimation studies.  

From the results obtained, it can be concluded that the 
controversial results existing in literature are mostly due the 
selection of metrics. Considerable part of those studies uses 
historical COCOMO '81 data and reports very poor results. 
During the experiments we have also observed that the results 
obtained by using COCOMO'81 data were very inconsistent 
and poor. Despite experimenting with different neural network 
architectures and training algorithms it was not possible to 
draw any meaningful conclusion.  

On the other hand when we used the augmented metric set 
(YEEM), which is constructed by identifying meaningful and 
up to date attributes, the results were consistent and 
reproducible. The new metric set and the data collected 
accordingly are tested with MLPs. 15-fold cross-validation 
result seems to be the most reliable one among the three cross-
validation settings we have tried.  
 Since we have experimented with different size of data sets, 
it was also possible to see that the amount of samples has an 
effect on the success of the models. 
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