
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:11, 2008

3958

Abstract—Software project effort estimation is frequently seen

as complex and expensive for individual software engineers.
Software production is in a crisis. It suffers from excessive costs.
Software production is often out of control. It has been suggested that
software production is out of control because we do not measure.
You cannot control what you cannot measure. During last decade, a
number of researches on cost estimation have been conducted. The
metric-set selection has a vital role in software cost estimation
studies; its importance has been ignored especially in neural network
based studies. In this study we have explored the reasons of those
disappointing results and implemented different neural network
models using augmented new metrics. The results obtained are
compared with previous studies using traditional metrics. To be able
to make comparisons, two types of data have been used. The first
part of the data is taken from the Constructive Cost Model
(COCOMO'81) which is commonly used in previous studies and the
second part is collected according to new metrics in a leading
international company in Turkey. The accuracy of the selected
metrics and the data samples are verified using statistical techniques.
The model presented here is based on Multi-Layer Perceptron
(MLP). Another difficulty associated with the cost estimation studies
is the fact that the data collection requires time and care. To make a
more thorough use of the samples collected, k-fold, cross validation
method is also implemented. It is concluded that, as long as an
accurate and quantifiable set of metrics are defined and measured
correctly, neural networks can be applied in software cost estimation
studies with success

Keywords—Software Metrics, Software Cost Estimation, Neural

Network.

I. INTRODUCTION
OFTWARE becomes increasingly expensive to develop
and is a major cost factor in any information system

budget. Software development costs often get out of control
due to lack of measurement and estimation methodologies.

Software cost estimation or software effort estimation is the
process of predicting the effort required to develop a software
system. Software engineering cost models and estimation
techniques are used for a number of purposes including;
budgeting, tradeoff and risk analysis, project planning and
control, and software improvement investment analysis [1].

Manuscript received August 31, 2006. A Metric-Set and Model Suggestion
for Better Software Project Cost Estimation

M. Ayyıldız is with the Computer Engineering Department,Yıldız
Technical University, Istanbul, Turkey (e-mail: f0100301@ yildiz..edu.tr)

O. Kalıpsız is with the Computer Engineering Department,Yıldız Technical
University, Istanbul, Turkey (e-mail: kalipsiz@ ce.yildiz..edu.tr).

S. Yavuz is with the Computer Engineering Department,Yıldız Technical
University, Istanbul, Turkey (e-mail: sirma@ce.yildiz.edu.tr).

The accuracy of the software project cost estimation has a
direct and significant impact on the quality of the firm’s
software investment decisions [2]. Accurate cost estimation
can reduce the unnecessary costs and increase the
organization’s efficiency. For this reason, many estimation
models have been proposed over the last 20 years. The review
completed by Jørgensen and Shepperd [3] identifies 304
software cost estimation papers in 76 journals and classifies
the papers according to research topic, estimation approach,
research approach, study context and data set. Although there
are number of different approaches, these models may be
classified as algorithmic and non-algorithmic. Each of these
techniques has their advantages as well as limitations.
Unfortunately, despite the large body of experience with
estimation models, the accuracy of these models is still far
from being satisfactory [4]. Software development effort
estimation with the aid of artificial neural networks (ANN)
attracted considerable research interest especially at the
beginning of the nineties [5]. Most of these studies are based
on COCOMO’81 metric-set.

A key factor in selecting a cost estimation model is the
accuracy of its metrics, since these models rely on metrics as
their input. Metric can be defined as a quantitative measure of
the degree to which a system, component, or process
possesses a given attribute. It may seem easy to think of
attributes of computer software products, processes, people or
programming environments that can be measured. However,
identifying meaningful attributes to measure and then finding
measurement processes to produce reliable and reproducible
assessments of these attributes is the real problem [6].

As the first step of our study, an augmented metric set was
developed to take new technologies and more meaningful
parameters into account. This augmented model, called Yıldız
effort estimation model (YEEM), does include all the metrics
existed in COCOMO and new ones which are derived from
more recent software development projects, studies and
experience.

In this paper, we present an augmented metric set and
investigate the success of the MLP for both COCOMO’81
metric set and for the augmented metric set (YEEM). Tests
were run for datasets containing the same number of samples.
To investigate further, we have also experimented with larger
datasets formed according to augmented metrics. Addressing
the issues of the dataset characteristics and the amount of
samples in the datasets is one of the purposes of this research.
Since the amount of samples we have collected are still
limited, 5-fold, 10 fold and 15-fold cross validation

A Metric-Set and Model Suggestion for Better
Software Project Cost Estimation

Murat Ayyıldız, Oya Kalıpsız, and Sırma Yavuz

S

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:11, 2008

3959

techniques have been also applied.

II. RELATED WORK
Most of the software cost estimation studies using of neural

networks have focused on the accuracy of the approach when
compared to algorithmic models and paid little attention on
the suitability of the metrics [7]. Wittig and Finnie [8]
employed a back-propagation multi-layer perceptron to
predict the development effort on the Desharnias and
Australian Software Metrics Association (ASMA) data sets.
Both data sets were tested three times by randomly removing
ten projects to be used as the test set and using the remaining
projects as the training set. The results they got were very
encouraging, with an overall MMRE of 29% for the
Desharnais data set and 17% for the ASMA data set.
Venkatachalam [9] has also chosen a back-propagation multi-
layer perceptron to predict software effort and development
time. The preliminary results, obtained with the data taken
from the COCOMO database, were reported as promising.
Jørgensen [10] reports the use of a multi-layer perceptron with
a back propagation algorithm on a data set comprising 109
maintenance projects and compares four different approaches;
regression models, a neural network model, a form of pattern
recognition and a simple baseline rule of thumb model. In this
study, the neural network model was found to perform less
well than the best regression model, in terms of MMRE, but
very favorably in terms of Pred (25). On the negative side, he
found the neural network to be one of the least robust
approaches. Serluca [11] obtains much better results by using
a back-propagation network on the MERMAID-2 data set.
Serluca concluded that neural networks require large training
sets.

III. RESEARCH METHOD
In this study a new metric set (YEEM), which is initially

derived from COCOMO ’81, COCOMO II Post Architecture
metric-set, 21 real world software development projects,
studies and more than 90 years of project management
experience, is proposed to be used in software cost estimation
models. While building the YEEM, metric suggestions taken
from 28 Project managers have been added to preliminary
metric matrix. The correlations have been analyzed and some
of the metrics were removed accordingly. After a
mathematical, statistical and empirical optimization processes,
the resulted metric set can be categorized into six groups;
product, resource, risk, technology, environment, plans and
predictions. The YEEM augmented metric set consists of 56
sub-metrics, which are in a hierarchical structure.

The experimental data is collected in a leading international
company in Turkey, which gives additional importance to
project management discipline. Developing standardized
project plans and complying with software development
standards are among the main characteristics of the company.
Configuration management rules are strictly defined and
followed within the company. The project teams are in matrix

form; staff from different departments and from different
positions form the project group. In performance
management, the success of the project has a direct effect on
individual success.

A. YEEM Metric-Set
1) Metric-Set Definition
In recent literature, a few measures have been proposed for

capturing properties of software artifacts in a quantitative
way. However, few of these 'software metrics' have
successfully survived the initial definition phase and are
actually used in industry. This is due to a number of problems
related to the theoretical and empirical validity of software
metrics, the most relevant of which are summarized below
[12]

1. Measures are not always defined in the context of some
explicit well-defined measurement goal of the industrial
interest they help to reach.

2. Even if the goal is explicit, the experimental hypotheses
are often not made explicit.

3.A reasonable theoretical validation of the measure is often
not possible because the attribute that a measure aims to
quantify is often not well defined.

4.Most of measures have never been subject to an empirical
validation.

5. Measurement definitions do not always take into account
the environment or context in which they will be applied.

This situation has frequently led to some degree of
fuzziness in measure definitions, properties, and underlying
assumptions, making the use of the measures difficult, their
interpretation hazardous, and the results of the various
validation studies somewhat contradictory. These
characteristics do not imply that progress cannot be made in
the measurement field. For this purpose metrics must be
defined in a methodological and disciplined way. The main
tasks of this method are shown in Fig. 1.

We tried to construct a metric-set which is based on clear
measurement goals. GQM is used as a goal-oriented measure
definition approach to ensure that the metric selection or
definition effort, the validation effort and the subsequent
measurement effort all contribute to the achievement of a
well-defined goal.

Fig. 1 Method for definition and validation of software metrics

2) The Metric Definition Methodology
Basili and Weiss data collection methodology has been

used to construct the YEEM metric set. The methodology

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:11, 2008

3960

consists of six steps with considerable feedback and iteration
occurring at several places [14]:

a. We established the goals of the data collection
about software project cost indicator.

b. We developed a list of questions of interest.
c. We established metric-set categories.
d. We designed and tested collection forms.
e. We collected and validated data.
f. We analyzed the data.

The metric definition activity further involves the precise
definition of the object of measurement, including its
constituents. The unambiguous definition of the domain of a
metric is a prerequisite for the validation of the metric, as well
as for the practical use of the metric afterwards. Finally, as
metrics are functions that take an argument and produce a
value, there must be a precise description of the mathematical,
logical or other formulation and notation that is used to define
and denote the function prescriptions.

The purpose of the definition phase is to define the goals of
an experiment, formulated from the problem to be solved. In
order to capture the goals of the experiment a template for
goal definition based on the famous Goal-Question-Metric
(GQM) paradigm. This goal template is: Analyze <Object(s)
of study> for the purpose of <Purpose> with respect to their
<Quality focus> from the point of view of the <Perspective>
in the context of <Context> [14]

The object in this study is “software project development”.
The Objects of the study the entity that is studied in the
experiment The Purpose defines what the intention of the
experiment is. The Perspective tells us the viewpoint from
which the experiment results are interpreted. The general
perspective we take is that of professionals working with
Software Project Development. The Context is the
“environment” in which the experiment is run. All the
experiments we have done were run in an industrial
environment.

3) Theoretical validation
The main goal of theoretical validation is to assess whether

a metric actually measures what it purports to measure [14]. In
the context of an empirical study, the theoretical validation of
metrics establishes their construct validity, i.e. it 'proves' that
they are valid measures for the constructs that are used as
variables in the study.

The validity of the measurement instruments used for the
variables of an empirical study is a key factor in the overall
study validity. On the other hand, knowledge of the scale type
of the metrics helps when choosing the appropriate statistical
techniques to analyze the data obtained in the experiments.
The preferred theoretical validation approach is one in which
measures can be used as ratio scales, allowing the use of a
wide range of data analysis techniques, including parametric
statistics, and thus providing maximum flexibility to the
researcher [14]. Unfortunately, as Van den Berg and Van den
Broek [15] remark, even though several attempts have been
made at proposing methods and principles to carry out the

theoretical validation of metrics, there is not yet a standard,
accepted way of theoretically validating a software metric.
Work on theoretical validation has followed two paths:

a. Property-based approaches (Axiomatic
approaches) [12,16]

b. Measurement-theory based approaches [17,18,
19]

In this work the theoretical validation of YEEM metric-set
will be performed using the distance framework. This
framework, proposed by Poels and Dedene [19], is a
conceptual framework for software metric validation
grounded in Measurement Theory [20].

The distance framework offers a measure construction
procedure to model properties of software artifacts and defines
the corresponding software metrics. In this sense, the
framework has an added value above other measurement
theoretic approaches that focus on metric validation. The basic
idea of distance framework is to define properties of objects in
terms of distances between the objects and other objects that
serve as reference points for measurement [19].

4) The Distance measure construction procedure
The measure construction procedure prescribes five

activities. The activities of the distance procedure are very
briefly summarized below [17].

1. Finding a measurement abstraction
2. Defining distances between measurement abstractions
3. Quantifying distances between measurement

abstractions
4. Finding a reference abstraction
5. Defining a measure for the property

5) Empirical validation
Empirical validation is crucial for the success of any

software measurement project. Through empirical validation
we can demonstrate with real evidence that the measures we
have proposed serve the purpose they were defined for and
that they are useful in practice, i.e. related to some external
attribute worth studying and therefore helping to reach some
goal. In our case we want to demonstrate the empirical
validity of the YEEM metric-set, this means that we have to
corroborate that they are really related to software project
effort estimation.

We use three major types of empirical research strategy to
get all related metrics and their importance.

i.Surveys. A survey is often an investigation performed in
retrospect. The primary means of gathering qualitative or
quantitative data are interviews or questionnaires. The results
from the survey are then analyzed to derive descriptive or
explanatory conclusions. We made interviews and
questionnaire to get all related metrics and their importance.

ii.Experiments. Experiments are formal, rigorous and
controlled investigations..

iii.Case studies. A case study is an observational study. Our
case studies are aimed at tracking a specific attribute or
establishing relationships between different attributes.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:11, 2008

3961

6) YEEM metric-set suggestion
Cocomo 81 and Cocomo II metric-sets has been mostly

used in Software cost prediction studies. Therefore YEEM
metric-set is based on Cocomo metric sets. 28 Project
managers’ metric suggestions added to preliminary metric
matrix. Then, the correlations have been captured and the
related metrics was removed. After a mathematical, statistical
and empirical optimization processes, the resulted metric set
can be grouped in 6 parts which are: Product, Resource, Risk,
Technology, Environment, Plans & Predictions

All of the metrics in Cocomo metric-set has been used in
YEEM metric-set. However there is a hierarchical structure.
The resulted 6 parts has 26 metrics which are shown in Table
I. The main aim of this paper is suggesting a metric-set which
provide us to get better results from software development
prediction studies and models. This paper suggests that using
hybrid model provide us better results. So using function point
and predictions as input metrics makes a hybrid model. Some
metrics which are not used in Cocomo metric-set are also
added the suggested metric set.

TABLE I
YEEM METRIC-SET

Category Metric
1.Complexity
2.Function Point
3.Importance of the final product
4.Budget Size

A. Product

5.Expected Features’ Level
6.Qualifiedness of Project’s Members
7.Personnel Continuity (PCON)
8.Team-Size
9.Hardware situation

B. Resource

10.Use of Software Tools (TOOL)
11.Budget (Change) Risk
12.Human-Resurce’s Risk
13.Hardware Risk C. Risk
14.Product definition and scope change
risk

15.Usage Easiness of Software
Development Tools D. Technology

16.Usage know-how of Software
Development Tools

17.General Features
18.Responsibility
19. Pressure
20.Time Management

F.Environment

21.Average Productivity
22. Predicted time plan
23.Predicted budget size
24. Prediction Average Error
25. Toleration

F. Plans and
Prediction

26.Required Development Schedule
(SCED)

a. Product
One of the main categories of the suggested set is product

size. It has 5 metrics: complexity, FP, importance of final
product, budget size and expected features’ levels.

It is very important to find the required resources by
estimating size of the product. The most of the project
managers said that complexity of the product (CPLX), size of
the database (DATA) and reusability (RUSE) are most
important factors. CPLX, DATA and RUSE are also used in
COCOMO model. These are sub-metrics of the complexity
metric.

Function points are a measure of the size of computer
applications and the projects that build them. It is important to
stress what function points do not measure. Function points
are not a perfect measure of effort to develop an application or
of its business value, although the size in function points is
typically an important factor in measuring each Using the
function point as an input metric has two advantages. It gives
us product size and it gives us product’s appearance size.

Project budget is one of the most important components of
a software development project. So if we can get the size of
the budget, it will give us roughly size and the importance
level. Importance of the final product is a very important
metric to get the total pressure, capability of the project’s
member and managerial responsibility and support. The
expected features can be flexibility, reliability (RELY), user
friendship, maintainability, security and documentation
(DOCU).

b. Resource
Resource size and the resource qualifiedness are the main

metric in the most of the metric sets. If you want to calculate
the cost of doing something, you have to know two things:
size of the product and the resource.

Qualifiedness of project’s members is one of the resources
metric. It has 3 or more sub-metrics which are qualifiedness
level of project manager, qualifiedness level of software
developers (ACAP) and qualifiedness level of system and
business analysts (PCAP).Team-size is a resource metric. It
has 3 or more sub-metrics which are number of project
manager, developer, analyst and tester. We have to multiply
these sub-metrics to availability to get the pure human
resource. We can use personnel continuity (PCON) metric.

Hardware situation is another resource metric which have
three sub-metrics. These are time constraint (TIME), storage
constraint (STOR) and platform volatility (PVOL).

c. Risk
The capability to effectively deliver software on time and

within budget is based upon a variety of risk factors.
As each project commences, the size, complexity, and

various risk factors are assessed, and an estimate is derived.
Initially, the resulting estimate would typically be based upon
industry data that reflect average occurrences of behavior
given a project’s size, complexity, and performance profile.
Over time, as an organization develops a historical baseline of

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:11, 2008

3962

information regarding its own behaviors, performance profiles
would reflect a more accurate representation of likely
outcomes. This information can be used to predict and explore
what-if scenarios on future

Risk exposure, or risk impact, is quantified as: risk
exposure = probability of undesirable outcome x cost of
undesirable outcome. So if we can get the probability of
undesirable outcome and the cost of undesirable outcome, we
can calculate the risk exposure. Most projects have budget
risk, human-resource’s risk, hardware risk and definition and
scope change risk. These four metrics has two sub-metrics:
probility and effect.

d. Technology
The software tools and tool experience has very significant

effect which incredibly change the result. So we have to
mention it to get better result. The structure of the
establishment can affect the cost of the software development.
The averages of lateness, pressure, responsibility and time
management can greatly affect the cost. Usage easiness and
know-how of software development tools are the two metric
in technology category. Usage know-how has 4 sub-metrics:
platform experience (PEXP), application experience (AEXP),
language and tool experience (LTEX), multi-site development
(SITE).

e. Environment
General Features metric can include 4 sub-metrics; Average

delayed-project percentage in the enterprise, Average lateness
in the enterprise, Average lateness percentage in the
enterprise, and Standard deviation of lateness in the enterprise.

Responsibility metric can include 4 or more sub-metrics
which are responsibility level of Project Manager,
management, team members and the customer.

Pressure metric can include at least 3 sub-metrics, which
are managerial pressure, customer pressure, marketing
pressure.

And the time management can include 4 sub-metrics: (i)
Average interruption number in one day for a member, (ii)
Average interruption-duration time, (iii) Average returning to
normal state time after interruption, (iv) Average overtime

f. Plans and Prediction
Expert judgment is still the dominant technique in practice

today for estimation of software project size and effort. Using
expert judgment result as an input metric is suggested. Thus, it
will increase the accuracy of the result.

B. Neural Network Model
1) Algorithm
The model used in this study is a multi-layer feed-forward

network that is used with the back propagation algorithm.
Back-propagation involves performing computations
backwards through the network to determine the gradient of
the cost function. Then the weights are adjusted in the
direction of the negative gradient. The mechanism by which

weights are updated is known as training algorithm. The
selected training algorithm is the Levenberg-Marquardt [18].

COCOMO ’81 and YEEM metrics are used in turn, as
network inputs to predict the software cost.

2) Data Processing
a. Checking for Randomness and Outliers
In this study, the training and test data sets have been

verified for randomness, using the ’Run’ test [21].
Three outliers were identified in COCOMO ’81 data set,

and consequently only remaining 60 samples are used in this
study. Similarly 9 out of the 109 samples, collected according
to proposed metric set, are left out since they represented
bigger projects.

b. Pre-processing and Post-processing of Data
In this study, min-max normalization [22] is used, to squash

the data values into the intervals [0, 1].

c. Organization of the Data Sets
Organization of the data sets used in experiments, and the

amount of data points in each set are given in Table II. They
are subdivided into training and test sets to be used to test the
neural network models. Dataset 2, containing the same
amount of data with Dataset 1, is formed to compare the
results of new metric set with COCOMO. And Dataset 3 was
formed to asses the effect of data size on the success of
models.

TABLE II

ORGANIZATION OF THE DATA SETS
 Data Set 1 Data Set 2 Data Set 3

Metric Set
COCOM
O YEEM YEEM

Total Number of Data 60 60 100
Number of Training Data 45 45 75
Number of Test Data 15 15 25

IV. RESULTS

A. Evaluation Criteria
Magnitude of Relative Error (MRE) is a common criterion

for the evaluation of similar cost estimation models in
literature [23, 24]. The MRE value is calculated for each
observation i, whose cost is predicted. The aggregation of
MRE over whole test set can be achieved through Mean MRE
(MMRE).

Although MMRE may be sensitive to individual predictions
with excessively large MREs, careful selection of data, by
checking the data against outliers or randomness, should
provide sound results. It is always beneficial to check the
standard deviation of the results as well. The results for each
data set, are given in Table III.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:11, 2008

3963

TABLE III
RESULTS FOR COCOMO AND YEEM METRIC SETS USING MLP
ANN
Model Data Set

Total Number
of Samples MMRE

MLP COCOMO 60 1.805
MLP YEEM 60 0.280
MLP YEEM 100 0.207

B. Cross Validation
Error estimation techniques, such as the v-fold cross-

validation, can help in estimating the generalization
performance as well as in selecting good parameters.

The v-fold cross-validation makes a more thorough use of
the samples [14]. MLP neural network is used to implement
the 5-fold, 10-fold and 15-fold cross validation methods. And
the WEKA data-mining tool was used for these experiments
[25]. Table 4 shows the results for the 5-fold, 10-fold and 15-
fold cross validation methods using MLP.

TABLE IV
RESULTS OF CROSS VALIDATION METHOD USING MLP

 Data Set 1 Data Set 2 Data Set 3
Metric Set COCOMO YEEM YEEM
Total Number of Data 60 60 100
MMRE 5-fold cv 1.898 0.216 0.128
MMRE for 10-fold cv 1.890 0.222 0.120
MMRE for 15-fold cv 1.664 0.189 0.095

V. CONCLUSION
In this paper we have proposed a new augmented metric set

for software cost estimation and investigated the applicability
of neural networks into software cost estimation studies.

From the results obtained, it can be concluded that the
controversial results existing in literature are mostly due the
selection of metrics. Considerable part of those studies uses
historical COCOMO '81 data and reports very poor results.
During the experiments we have also observed that the results
obtained by using COCOMO'81 data were very inconsistent
and poor. Despite experimenting with different neural network
architectures and training algorithms it was not possible to
draw any meaningful conclusion.

On the other hand when we used the augmented metric set
(YEEM), which is constructed by identifying meaningful and
up to date attributes, the results were consistent and
reproducible. The new metric set and the data collected
accordingly are tested with MLPs. 15-fold cross-validation
result seems to be the most reliable one among the three cross-
validation settings we have tried.
 Since we have experimented with different size of data sets,
it was also possible to see that the amount of samples has an
effect on the success of the models.

REFERENCES
[1] Devnani-Chulani, S.: Bayesian Analysis of Software Cost and Quality

models. University of Southern California, Doctor of philosophy Thesis.
(1999)

[2] Al-Sakran, H.: Software Cost Estimation Model Based on Integration of
Multiagent and Case-Based Reasoning. Journal of Computer Science
Volume 2(3) (2006) 276-282

[3] Jørgensen M. and Shepperd M.: A Systematic Review of Software
Development Cost Estimation Studies. IEEE Transactions on Software
Engineering. (2006)

[4] Leung, H., Fan, Z.: In Handbook of Software Engineering and
Knowledge Engineering (Ed,Chang, S. K.). Volume 2 World Scientific.
(2002)

[5] Han, J. and Kamber, M.: Data mining concepts and techniques.
Academic Press. San Francisco. (2001)

[6] Kan, S.H.: Metrics and Models in Software Quality Engineering.
Adisson Wesley. (2002)

[7] Hughes, R.T.: An Evaluation of Machine Learning Techniques for
Software Effort Estimation. University of Brighton. (1996)

[8] Wittig, G., Finnie, G.: Estimating Software Development Effort with
Connectionist Models. Information and Software Technology. Volume
39 (1997) 469-476

[9] Venkatachalam, A.R.: Software Cost Estimation Using Artificial Neural
Networks. International Joint Conference on Neural Networks. Nagoya.
(1993)

[10] Jørgensen, M.: Experience with the Accuracy of Software Main Task
Effort Prediction Models. IEEE Transactions on Software Engineering,
Volume 21(8) (1995) 674-681

[11] Serluca, C.: An Investigation Into Software Effort Estimation using a
Back-Propogation Neural Network. M.Sc. Thesis. Bournemouth
University. (1995)

[12] Briand L., Morasca S. and Basili V. (2002). An Operational process for
goal-driven definition of measures. IEEE Transactions on Software
Engineering, 30(2), 120-140.

[13] Zuse H. (1998) A Framework of Software Measurement. Walter de
Gruyter Berlin.

[14] Fenton N. and Pfleeger S. (1997). Software Metrics: A Rigorous
Approach. 2nd. edition. London. Chapman & Hall.

[15] Van Den Berg and Van Den Broek. (1996). Axiomatic Validation in the
Software Metric Development Process. In Chapter 10: Software
Measurement, Edited by Austin Melton, Thomson Computer Press.

[16] Weyuker E.J. (1988). Evaluating Software Complexity Measures. IEEE
Transactions on Software Engineering. 14(9). 1357-1365.

[17] Whitmire S. (1997). Object Oriented Design Measurement. John Wiley
& Sons. Inc.

[18] Reed, R. D. and Marks, R. J.: Neural Smithing: Supervised Learning in
Feedforward Artificial Neural Networks. MIT Press. (1999)

[19] Poels G. and Dedene G. (2000). Distance-based software measurement:
necessary and sufficient properties for software measures. Information
and Software Technology. 42(1). 35-46.

[20] Krantz D., Luce R.D., Suppes P. and Tversky A. (1971). Foundations of
Measurement. Vol. 1. Academic Press. New York.

[21] Knuth E. D.: The art of computer programming. 2nd ed. Addison-
Wesley. (1981)

[22] Pyle, D.: Data Preparation for Data Mining. Morgan Kaufmann. (1999)
[23] Briand, L., El Emam, K., Surmann, D., Wieczorek, I., and Maxwell, K.:

An Assessment and Comparison of Common Software Cost Estimation
Modeling Techniques. In Proceedings of the International Conference on
Software Engineering. (1999) 313-322

[24] Idri A., Abran A., Khoshgoftaar T.: Fuzzy Case-Based Reasoning
Models for Software Cost Estimation. Soft Computing in Software
Engineering: Theory and Applications. Springer-Verlag. (2003)

[25] Witten, I. H. and Frank, E.: Data Mining: Practical machine learning
tools and techniques. 2nd Ed. Morgan Kaufmann. San Francisco. (2005)

