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Abstract—This paper presents the development of a Bayesian 

belief network classifier for prediction of graft status and survival 
period in renal transplantation using the patient profile information 
prior to the transplantation. The objective was to explore feasibility 
of developing a decision making tool for identifying the most suitable 
recipient among the candidate pool members.  The dataset was 
compiled from the University of Toledo Medical Center Hospital 
patients as reported to the United Network Organ Sharing, and had 
1228 patient records for the period covering 1987 through 2009.  The 
Bayes net classifiers were developed using the Weka machine 
learning software workbench.  Two separate classifiers were induced 
from the data set, one to predict the status of the graft as either failed 
or living, and a second classifier to predict the graft survival period.  
The classifier for graft status prediction performed very well with a 
prediction accuracy of 97.8% and true positive values of 0.967 and 
0.988 for the living and failed classes, respectively.  The second 
classifier to predict the graft survival period yielded a prediction 
accuracy of 68.2% and a true positive rate of 0.85 for the class 
representing those instances with kidneys failing during the first year 
following transplantation. Simulation results indicated that it is 
feasible to develop a successful Bayesian belief network classifier for 
prediction of graft status, but not the graft survival period, using the 
information in UNOS database. 
 

Keywords—Bayesian network classifier, renal transplantation, 
graft survival period, United Network for Organ Sharing  

I. INTRODUCTION 
HE United Network for Organ Sharing (UNOS) database 
offers a list of tens of thousands of organ transplant 

records and as such is a valuable resource as a medical 
reference.  Automated software tools that can extract this 
knowledge offer significant benefits to the renal patients in the 
waiting list for the renal transplantation. In that context, the 
inductive learning approaches from the machine learning 
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domain are appropriate for empirical development of 
predictors for a given field or attribute in the UNOS dataset. 
For instance, Bayesian belief networks provide a promising 
means for empirical or data-driven development of predictors. 
Bayesian belief networks are probabilistic modeling tools and 
can approximate the posterior probability distribution of any 
chosen attribute in the domain.  This type of information is 
poised to benefit medical professionals engaged in decision 
making and need data-driven or empirical classifier or 
regression models. In fact, Bayesian belief networks were 
already employed in a variety of ways for development of 
probabilistic inferencing or classification models in the 
medical organ transplantation domain [1, 2].  

The relative scarcity of grafts available for liver 
transplantation, just as it is the case for nearly all other organ 
transplants, highlights the need to identify patients likely to 
have good outcomes after treatment.  [1] used a Bayesian 
belief network (BBN) for prediction of graft survival period in 
liver transplantation.  The author used transplant data from the 
UNOS to construct Bayesian network models to predict 90-
day graft survival rates. The final model incorporated a set of 
29 pre-transplant variables and achieved a performance of 
0.674 through cross-validation, and 0.681 on an independent 
validation set for the area under the receiver operating 
characteristic (ROC) curve. The positive predictive value was 
91%, however the negative predictive value was much lower 
at 30%.  

J.-H. Ahn et al. [2] applied the Bayesian belief network to a 
large UNOS dataset to develop a predictor for renal graft 
survival period. The model was developed using a supervised, 
machine-learning approach, called the Advanced Pattern 
Recognition and Identification (APRI) system. The APRI 
system builds the Bayesian network model using entropy-
based mutual information to select variables and indentify 
dependencies between selected variables. The model is built 
using the publicly-available data from UNOS with 35,366 
records for kidney-transplants performed between 1987 and 
1991.  Each record contains 43 attributes (called variables in 
the paper) with information on characteristics of the donor 
kidney and the transplant recipients. The model was used to 
predict one-year graft survival rates. They illustrated the 
model’s prediction for two hypothetical kidney-transplant 
patients.  Patient A who is younger, never had a prior 
transplant, had fewer HLA mismatches, and a lower peak 
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panel reactive antibody level was compared to those of patient 
B. Because of these favorable health characteristics, patient A 
had a much higher average predicted graft survival rate 
(91.2%) than patient B (78.4%). Finally, they claimed the 
performance in predicting 1-year graft survival rates showed 
promise for providing valid information to better allocate such 
scarce resources as transplant organs. 

Researchers also investigated the predictive ability of 
multiple pretransplant comorbidities for graft and patient 
survival in renal transplantation [3]. They considered 25,270 
transplants between 1995 and 2002, and examined the 
potential use of comorbidities not recorded in the organ 
procurement and transplantation network (OPTN) together 
with OPTN variables to predict long-term graft loss and 
patient death. Using the OPTN database they showed that 
patient survival is associated with cardiovascular conditions, 
diabetes and history of malignancy.  

There is currently substantial interest in developing decision 
making aids to help better manage the overall organ 
transplantation process starting with who should get the organ.  
Prediction of graft survival rate for a given pool of potential 
recipients for an organ transplant such as a kidney is helpful 
for decision makers [4, 5, 6].  It is the aim of this paper to 
investigate the feasibility of such a tool in the form of a 
Bayesian belief network classifier designed to predict the renal 
graft status and survival period for a given patient.  This paper 
proposes the Bayesian belief network as an empirical classifier 
model for predicting the value of the “graft status and survival 
period” for renal transplantation. 

The following sections present the details of the work 
accomplished. The UNOS data for University of Toledo 
Medical Center (UTMC) and the data-preprocessing applied 
are discussed next. This is followed by Bayesian belief 
network classifier development using Weka machine learning 
software [7]. Simulation study and testing results are listed 
and analyzed subsequently. Finally, conclusions are discussed. 

II. DATA AND PREPROCESSING 
The study reported herein covers patients who received a 

kidney transplant at University of Toledo Medical Center 
(UTMC). The raw data file was obtained from UNOS for 
UTMC patients who received kidney transplantation from 
1987 to 2009. This file entails general registration information 
data of patients just before the transplant survey, and it is 
supplied by the patients through the form entitled “Transplant 
Candidate Registration Form”. There are 1,228 records for 
recipient registration for UTMC patients for this time period, 
and each patient record is made up of 128 fields or attributes.  

The “Transplant Candidate Registration Form” entails the 
patient information and profile as deemed relevant for the 
renal transplantation within the context of UNOS.  The 
information content of this file is used for prediction model 

development after removing some fields that were deemed to 
be not essential, not relevant or unusable. The UNOS dataset 
has high ratio of missing values for many attributes. Any 
attribute which had more than 95% missing values was 
removed.  The values entered for the fields or attributes in the 
original UNOS data file were varied since apparently no 
standards were imposed on data entry and different people 
worked on it during the time period covered by this study. For 
example, there are many kinds of expressions (entries or 
values) in the dataset that are all intended to represent the 
concept of “unknown.”  Some examples for this include 
“unknown”, “U”, “UNK”, and “UNKNOWN” etc. 
Accordingly, values of a given attribute had to be unified by 
standardizing the different values with the same meaning. 
Another preprocessing step entailed conversion of the 
continuous-valued attributes into discrete-valued attributes so 
that Bayes net classifier algorithm can be applied.  This has 
been implemented with the specialist domain input mainly by 
the transplant surgeon and the transplant coordinator nurse on 
the research team.  Discretized variables or attributes are 
presented in Table I.   

A number of data fields or attributes were deemed to be not 
relevant given the focus of this study.  Since patient 
anonymity is a very important concern, personal information 
such as social security number, last name, first name, and 
initials are all removed from the data file. Any fields or 
attributes that relate to co-morbidity conditions were retained. 
Any attribute or field that was for an explanation for a given 
attribute was excluded: for instance “Primary 
Diagnosis//Specify” is an auxiliary attribute for the main 
attribute “Primary Diagnosis” and as such was deemed not 
essential. There were many attributes with some form of “age” 
information incorporated, i.e. registration age, admission age, 
discharge age, previous transplant age, first dialyzed age and 
so on.  Consequently, a total of 70 attributes out of the original 
list of 128 were included in the study.  The list of 70 attributes 
except those already listed in Table I is shown in Table A-I in 
the Appendix.  

The time-to-failure for the transplanted kidney is variable of 
interest for observation or prediction for this study.  A field 
named “graft survival period” was added to track the periods 
of the survival time after the renal transplantation.  In deciding 
how many classes for this attribute, we analyzed 1228 patients 
and identified that the data can support at most 4 classes 
assuming that each class should have approximately equal 
number of instances so that the classifier model can be 
constructed with reasonable accuracy.   Given the original 
UNOS/UTMC data distribution as presented in Table A-II in 
the Appendix, a total of 4 discrete values (or classes) were 
identified as indicated in Table IIA.  Since the number of 
instances in each class is still disparate, a special processing 
step or Weka filter (weka.filters.supervised.instance.resample 
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with biasToUniformClass parameter set to 1.0) that resamples 
the original dataset to induce a uniformly distributed new 
dataset was applied [7].  Following application of this filter, 
the new instance counts for each class is shown in the same 
table.  A second attribute of interest related to the query or 
prediction is if a graft will fail or survive following the surgery 
given the pretransplant profile of the patient.  We formulated 
an additional class attribute “graft status” with two values of 
“failed” and “living”.  Original instance distribution for class 
values are shown in Table IIB.  The same uniform distribution 
filter was applied to this class attribute as well with results 
shown in the same table. 

 
TABLE I 

LIST OF DISCRETIZED VARIABLES IN UNOS/UTMC DATA 
Attribute Discrete 

Values 
Discrete Value Ranges 

Serum Creatinine 
at time of Tx 

Nominal 
R1, R2, 
R3, R4, 
R5 
 

R1 in the range of 0 to 1.0,  
R2 in the range of 1.0 to 4.0,  
R3 in the range of 4.0 to 8.0,  
R4 in the range of 8.0 to 12.0, and  
R5 as greater than 12.0 
 

TCI Right 
KI//Total Cold 
ischemia Time 
Right KI(OR EN-
BLOC) (if 
pumped include 
pump time) 
 

Nominal 
R1, R2, 
R3, R4, 
R5 
 

R1 in the range of 0 to 5 hours,  
R2 in the range of 5 to 10 hours,  
R3 in the range of 10 to 15 hours,  
R4 in the range of 15 to 20 hours, and  
R5 as greater than 20 hours 

TWI Right 
KI//Total Warm 
Ischemia Time 
Right KI (OR EN-
BLOC)  (incl. 
anastomotic time) 

Nominal 
R1, R2, 
R3, R4 
 

R1 in the range of 0 to 30 minutes,  
R2 in the range of 30 to 60 minutes,  
R3 in the range of 60 to 120 minutes, 
and  
R4 as >120 minutes 

 
TCI Left KI//Total 
Cold ischemia 
Time Left KI (if 
pumped include 
pump time) 

 
Nominal 
R1,R2, 
R3,R4, R5 

 
R1 in the range of 0 to 5 hours,  
R2 in the range of 5 to 10 hours,  
R3 in the range of 10 to 15 hours,  
R4 in the range of 15 to 20 hours, and  
R5 as greater than 20 hours 

 
TWI Left 
KI//Total Warm 
ischemia Time 
Left KI (include 
Anastomotic time) 
 

 
Nominal 
R1, R2, 
R3, R4 
 

 
R1 in the range of 0 to 30 minutes,  
R2 in the range of 30 to 60 minutes,  
R3 in the range of 60 to 120 min., and  
R4 in the range of >120 minutes 

Most recent 
Serum Creatinine 
prior to discharge 
 

Nominal 
R1, R2, 
R3, R4, 
R5 
 

R1 in the range of 0.0 to 0.5,  
R2 in the range of 0.5 to 2.0,  
R3 in the range of 2.0 to 4.0,  
R4 in the range of 4.0 to 6.0 and  
R5 as greater than 6.0 
 

BMI Nominal 
R1,R2,R3,
R4,R5,R6,
R7 
 

R1 in the range of 0.0 to 15.0,  
R2 in the range of 15.0 to 20.0,  
R3 in the range of 20.0 to 25.0,  
R4 in the range of 25.0 to 30.0,  
R5 in the range of 30.0 to 35.0,  
R6 in the range of 35.0 to 40.0, and  
R7 as greater than 40.0 

 
 

III. SIMULATION STUDY 

A. Weka and Bayes Net  
The machine learning software workbench Weka [7] will be 

used for performing the simulation based analysis. The 
BayesNet classifier algorithm in Weka (Version 3.5.5) will be 
leveraged to develop the Bayesian belief network (BBN) [8] 
classifier model of the data. The options that must be 
addressed in Weka include the estimator that computes the 
conditional probability tables of the Bayes network, the 
searchAlgorithm that implements a user selected structure 
learning algorithm and the useADTree that facilitates savings 
in learning time at the expense of increased memory usage. 
The estimator will be set to SimpleEstimator with the default 
alpha value of 0.5, while the useADTree parameter will be set 
to false.   

 
TABLE IIA 

CLASS ATTRIBUTE GRAFT SURVIVAL PERIOD DISCRETE VALUES 
Discrete Value Survival Period Number 

of 
Instances 

Instances After 
Resampling 

LTE-1-Year Up to 1 year 94 359 

LTE-5-Years More than 1 year but 
less than or equal to 5 
years 

467 290 

LTE-10-Years More than 5 years but 
less than equal to 10 
years 

332 288 

GT-10-Years More than 10 years 335 335 

 
TABLE IIB 

CLASS ATTRIBUTE GRAFT STATUS DISCRETE VALUES 
Discrete Value Number of  

Instances  
Instances After 
Reseampling 

Failed 221 650 
Living 1007 578 

 
The searchAlgorithm option with Weka BBN algorithm 

will be set to a number of choices (as elaborated upon below) 
in order to adequately explore the structure learning space.  
The structure learning algorithms as implemented in Weka 
(through the so-called searchAlgorithm option) are presented 
in three groupings: local score based structure learning (i.e., 
minimum description length principle), conditional 
independence based structure learning, and global score based 
structure learning (i.e., cross validation). The local score based 
structure learning algorithms are desirable for computation 
cost savings purposes. We employed five of these algorithms, 
which included K2, hill climber, tabu search, Genetic 
Algorithm and Simulated Annealing. The set of local score 
based algorithms and associated option settings are presented 
in Table III. The conditional independence based structure 
learning option was also explored and its realization within 
Weka, the CISearch, was experimented with through the 
settings indicated as in Table III. Additionally, the naïve 



International Journal of Medical, Medicine and Health Sciences

ISSN: 2517-9969

Vol:4, No:3, 2010

97

 

 

Bayes classifier algorithm (through default parameter values) 
was tested on the UNOS UTMC dataset to serve as the 
minimum standard or benchmark to compare against. 

The set of options for the local score based search 
algorithms are initAsNaiveBayes, MarkovBlanketClassifier, 
scoreType, maxNrOfParents, useArcReversal, randomOrder, 
and Runs. The parameter initAsNaiveBayes has two settings. A 
value of true, which is the default, results in a naive Bayes 
network structure to be used as the initial network structure. 
On the other hand a false value will impose an empty network 
structure initially, i.e., the Bayes net has no arrows.  The 
markovBlanketClassifier (set to false by default), if set to true, 
leverages a heuristic: when the search space is traversed 
completely, this heuristic is used to validate that each of the 
attributes are in the Markov blanket of the classifier node. If a 
node that is not already in the Markov blanket (i.e., is a parent, 

or child of sibling of the classifier node), an arrow is added. If 
the value of this parameter is set to false, then no action is 
taken.  The scoreType parameter is used to identify the score 
metric to be used. The set of score metrics that were used in 
the simulations include Bayes, AIC, and MDL. The 
maxNrOfParents parameter establishes an upper bound on the 
number of parents for each node in the network. The 
randomOrder parameter has a default value of false, which 
implies that the order of the nodes in the dataset is used. If the 
randomOrder parameter is set to true, then the order of nodes 
in the network is randomly determined.  The parameter 
useArcReversal has a default value of false, and when set to 
true results in arc reversal operation to be performed during 
the search.  The parameter Runs has a default value of 10, and 
which sets the number of generations of Bayes network 
structure populations.   

 
TABLE III 

OPTION SETTINGS FOR BAYES NET STRUCTURE SEARCH ALGORITHMS 
WEKA Bayes Net Structure 

Learning Parameters 
Local K2 Hill Climber Tabu Search CI Search Genetic 

Algorithm 
Simulated 
Annealing 

initAsNaiveBayes false false n/a n/a n/a n/a 
MarkovBlanketClassifier false false false false false false 
scoreType {Bayes, MDL, 

and AIC} 
{Bayes, MDL, 

and AIC} 
{Bayes} {Bayes} {Bayes} {Bayes} 

maxNrOfParents 3 or 4 4 3 n/a n/a n/a 
Random Order false n/a n/a n/a n/a n/a 
useArcReversal n/a true true n/a n/a n/a 
Runs n/a n/a 10 n/a 10 1000 

 
The genetic algorithm requires following parameters to be 

initialized or set: descendantPopulation, populationSize, seed, 
useCrossOver, useMutation, and useTournamentSelection. 
The descendantPopulationSize parameter, which was set to 
the value of 10, establishes the size of the population of 
descendants that is created each generation.  The parameter 
populationSize, which was left with its default value of 10, 
sets the size of the population of network structures that is 
selected each generation. The parameter seed with the default 
value of 1 is the initialization value for random number 
generator. Setting the seed allows replicability of experiments. 
The parameter useCrossOver is set to true. It determines 
whether crossover is allowed. Crossover combines the 
network structure bit representations by taking at random first 
k bits of one, and adding the remainder of the other. The 
parameter useMutation which is set to true determines whether 
mutation is allowed: mutation flips a bit in the bit 
representation of the network structure. The parameter 
useTournamentSelection is set to true. It determines the 
method of selecting a population. When set to true, 
tournament selection is used (pick two at random and the 
highest is allowed to continue). When set to false, the top 
scoring network structures are selected. 

 

 
 
For simulated annealing, it has several options to specify 

including Tstart, delta, and seed. Tstart has a default value of  
10.0. It is the start temperature of the simulated annealing 
search. The start temperature determines the probability that a 
step in the “wrong” direction in the search space is accepted. 
The higher the temperature, the higher the probability of 
acceptance is. The parameter delta with the default value of 
0.999 sets the factor with which the temperature and thus the 
acceptance probability of steps in the wrong direction in the 
search space is decreased in each iteration. The parameter seed 
also has the default value of 1.  All parameters were used with 
their default values.  Tabu search was used with the default 
value of 5 for its only additional parameter tabuList, which is 
the length of the tabu list. 

B. Simulation Results and Analysis  
The Bayesian belief network structure learning algorithms in 

Table III and the naïveBayes algorithm were trained and tested 
on the revised UNOS UTMC dataset (with uniform class 
distribution) that had 70 attributes and 1,228 instances. The 
BBN classifier models on the dataset are built and tested by 
means of 5-fold cross-validation. The JavaHeap size was set to 
1.5 GB for WEKA.  The simulation platform is an Intel™ core 
duo 2 processor system with 3 GB RAM under Microsoft 
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Windows Vista™ operating system.  There were two class 
attributes, graft survival period and graft status, and a separate 
classifier model was generated for each one. 

Simulation results in Table IV for the classifier intended to 
predict the graft status indicate that the Bayes net classifiers 
generally demonstrated very high prediction accuracies for 
both class values of “failed” and “living”.  The version with 
hill climber structure learning and Bayes scoring function 
performed at 97.8% prediction rate with true positive rates of 
0.967 and 0.988 for the two class values as seen Table V.  The 
confusion matrix for this Bayes net classifier supports these 
observations as well, Table VI.  This classifier demonstrated a 
very good performance indicating that it is able to predict the 
status of the graft with high accuracy for either value of the 
class attribute.  Three other leading machine learning 
classifiers were trained on the same dataset through five-fold 
crossvalidation, and their prediction accuracy values are 
presented in Table VII.  These results suggest that the Bayes 

net classifier performs at par with other leading machine 
learning classifiers. 

TABLE IV 
BBN CLASSIFIER MODELS FOR GRAFT STATUS ATTRIBUTE 

Search Algorithm 
(including options in WEKA format) 

Prediction 
Accuracy in % 

Build Time 
(sec) 

Naïve Bayes 79.6 0.02 
CISearch (-S BAYES) 75.1 0.02 
Tabu Search (-R –N –U 10 –P 3 –S 
BAYES) 

75.2 1.69 

Hill Climber (-P 3 –N –S BAYES) 97.8 67.09 
Hill Climber (-P 3 –N –S MDL) 97.0 25.48 
Hill Climber (-P 3 –N –S AIC) 96.7 39.42 
Local K2 (-p 3 –N –S BAYES) 96.0 10.91 
Local K2 (-p 3 –N –S MDL) 97.5 1.09 
Local K2 (-p 3 –N –S AIC) 95.7 1.22 
Local K2 (-p 4 –N –S BAYES)  46.34 
Local K2 (-p 4 –N –S MDL) 94.8 0.81 
Local K2 (-p 4 –N –S AIC) 94.9 1.18 
Genetic Algorithm (-L 10 –A 10 –U 10 –R 
1 –M –C –O -S) 

89.4 12383.07 

Simulated Annealing (-A 10 –U 1000 –D 
0.999 –R 1 –S BAYES) 

84.9 0.19 

 
 

TABLE V 
COMPREHENSIVE PERFORMANCE PROFILE OF BAYES NET WITH HILL CLIMBER 

TP Rate FP Rate Precision Recall F-Measure ROC Class 
0.967 0.012 0.986 0.967 0.976 0.994 Living 
0.988 0.033 0.971 0.988 0.979 0.994 Failed 

 
TABLE VI  

CONFUSION MATRIX OF BAYES NET WITH HILL CLIMBER 
Living Failed Classified as 

559 19 Living 
8 642 Failed 

 
TABLE VII 

PERFORMANCE OF LEADING MACHINE LEARNING CLASSIFIERS FOR GRAFT STATUS PREDICTION 
Search Algorithm 
(including options in WEKA format) 

Prediction 
Accuracy in % 

Build Time 
(sec) 

J48  (-U -M 2) 98.04 0.13 
SMO (-C 1.0 -L 0.0010 -P 1.0E-12 -N 0 -V -1 -W 1 -K 
"weka.classifiers.functions.supportVector.RBFKernel -C 250007 -G 0.01") 

98.37 21.19 

IBk -K 10 -W 0 -A "weka.core.neighboursearch.LinearNNSearch -A 
\"weka.core.EuclideanDistance -R first-last\"" 

92.75 0.01 

 
Bayes net classifiers for prediction of the graft survival 

period are presented in Table VIII.  The naïve Bayes algorithm 
performance at 46% prediction rate serves as the minimum 
standard against which performances of other algorithm can 
be compared.  A number of Bayes net classifiers performed 
better than the 60% prediction rate.  The highest performing 
BBN models used versions of local K2 and hill climber for 
structure learning.  The best performing classifier model (hill 
climber with Bayes scoring function) achieved a prediction 
accuracy of 68.2%.   For a typical classifier, these numbers are 
quite low indicating that the data does not lend itself to a high-
performing classifier model development.  The Bayes net 
classifier with hill climber structure learning and Bayes 
scoring function was further analyzed to better understand and 

expose its performance characteristics through a number of 
measures.  Set of performance measures included true positive 
rate, false positive rate, precision, recall, F measure, and area 
under the receiver-operating characteristic (ROC) curve as 
presented in Table IX.  True positive (TP) value for LTE-1-
Year is reasonably high but this appears to be an exception 
since the other classes have comparably much lower TP 
values.  The same trend can be observed for the rest of the 
performance measures as well.  This indicates that the 
developed classifier is performing well for the members of the 
class LTE-1-Year only.  Supporting and correlated 
observations can be made through the confusion matrix 
presented in Table X. 
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TABLE VIII 
BBN CLASSIFIER MODELS FOR GRAFT SURVIVAL PERIOD ATTRIBUTE 
Search Algorithm 
(including options in WEKA format) 

Prediction 
Accuracy in % 

Build 
Time (sec) 

Naïve Bayes 46.0 0.02 
CISearch (-S BAYES) 46.5 0.01 
Tabu Search (-R –N –U 10 –P 3 –S 
BAYES) 

46.3 1.69 

Hill Climber (-P 3 –N –S BAYES) 68.2 67.09 
Hill Climber (-P 3 –N –S MDL) 29.7 25.48 
Hill Climber (-P 3 –N –S AIC) 61.4 39.42 
Local K2 (-p 3 –N –S BAYES) 54.2 10.91 
Local K2 (-p 3 –N –S MDL) 29.8 1.09 
Local K2 (-p 3 –N –S AIC) 60.9 1.22 
Local K2 (-p 4 –N –S BAYES) 54.2 46.34 
Local K2 (-p 4 –N –S MDL) 29.8 0.81 
Local K2 (-p 4 –N –S AIC) 60.9 1.18 
Genetic Algorithm (-L 10 –A 10 –U 10 –
R 1 –M –C –O -S) 

31.2 12383.07 

Simulated Annealing (-A 10 –U 1000 –D 
0.999 –R 1 –S BAYES) 

54.2 0.19 

 
 
 
 

TABLE IX 
PERFORMANCE PROFILE OF BAYES NET WITH HILL CLIMBER 

TP Rate FP Rate Precision Recall F-
Measure 

ROC Class 
Value 

0.858 0.043 0.893 0.858 0.875 0.967 LTE-1-
Year 

0.638 0.12 0.621 0.638 0.629 0.866 LTE-5-
Years 

0.542 0.14 0.542 0.542 0.542 0.824 LTE-10-
Years 

0.646 0.116 0.633 0.646 0.639 0.856 GT-10-
Years 

 
TABLE X 

CONFUSION MATRIX OF BAYES NET WITH HILL CLIMBER 
LTE-1-Year LTE-5-Years LTE-10-

Years
GT-10-Years  Classified as

308 22 15 14 LTE-1-Year 
12 185 63 30 LTE-5-Years 
16 51 156 65 LTE-10-Years 

9 40 54 188 GT-10-Years 
 
 

Other prominent machine learning classifiers were also 
evaluated to validate that the Bayes net performance is 
competitive.  Classifiers including C4.5 decision tree (J48 in 
Weka), support vector machine classifier (SMO in Weka), and 
instance based classifier were evaluated on the same dataset 
using Weka with default parameter values and settings.  For 

classifier model development and performance testing, five-
fold cross-validation was implemented on the entire (training) 
data set. Results of the simulations are presented in Table XI 
and indicate that Bayes net classifiers fail to demonstrate a 
competitive performance for the prediction of graft survival 
period on the UNOS/UTMC dataset. 

 
TABLE XI 

PERFORMANCE OF LEADING MACHINE LEARNING CLASSIFIERS ON UNOS/UTMC DATASET 
Search Algorithm 
(including options in WEKA format) 

Prediction 
Accuracy in % 

Build Time 
(sec) 

J48  (-U -M 2) 70.6 0.49 
SMO (-C 1.0 -L 0.0010 -P 1.0E-12 -N 0 -V -1 -W 1 -K 
"weka.classifiers.functions.supportVector.RBFKernel -C 250007 -G 0.01") 

73.8 82.72 

IBk -K 10 -W 0 -A "weka.core.neighboursearch.LinearNNSearch -A 
\"weka.core.EuclideanDistance -R first-last\"" 

76.4 0.01 

IV. CONCLUSION 
Software tools are needed to help with the complex decision 

making process associated with the identification of a good 
transplant candidate for an available kidney. Predictors for 
renal transplantation graft status and graft survival period 
using Bayes net classifiers were developed using the 
University of Toledo Medical Center (UTMC) patient data as 
reported to UNOS.  The Bayes net classifier for the graft 
status demonstrated very high prediction accuracy and true 
positive values for all classes suggesting that it can be readily 
employed in a clinical setting.  The second Bayes net classifier 
for the prediction of graft survival period failed to demonstrate 
an acceptable level of performance.  
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APPENDIX  

 
TABLE A-I 

LIST OF ATTRIBUTES 
Attribute Label Attribute Label 
Gender Incidental Tumor found at time of Transplant 
Tx Age  
State of Permanent Residence Resumed Maintenance Dialysis 
Surgeon Name Age of Graft Failure 
Donor Type Primary Cause of Graft Failure 
Primary Diagnosis Primary Cause of Graft Failure//Specify 
Primary Diagnosis//Specify Acute Rejection 
Patient Status Graft Thrombosis 
Was patient hospitalized during the last 90 days prior to the 
transplant admission Infection 

Medical Condition at time of transplant Surgical Complications 
Functional Status Urological Complications 
Physical Capacity Recurrent Disease 
Working for income Most Recent Serum Creatinine Prior to Disch.//ST= 
Working for Income//If No. Not Working Due To Kidney Produced > 40ml of Urine in First 24 Hours 
Working for Income//If Yes Patient Need Dialysis within First Week 

Primary Source of Payment//Primary Creatinine decline by quarter or more in first 24 hours on 2 
separate samples 

Secondary Source of Payment//Secondary Did patient have any acute rejection episodes between 
transplant and discharge 

Previous Transplant Organ 1 Was biopsy done to confirm acute rejection 
Previous Transplant Organ 2 Biological or Anti-viral Therapy 
Previous Transplant Organ 3 If Anti-viral check all that apply//If Yes. check all that apply 
Pretransplant Dialysis Biological or Anti-viral Therapy1//Specify 
CMV IgG Biological or Anti-viral therapy2//Specify 
CMV IgM Other therapies 

HBV Core Antibody Are any medications given currently for maintenance or anti-
rejection 

HBV Surface Antigen Did the patient participate in any clinical research protocol for 
immunosuppressive medications 

Was preimplantation kidney biopsy performed at the 
transplant center 

Did the px participate in any clinical research protocol for 
immunization medications//If Yes. Specify 

Pretransplant blood transfusions//Did patient receive any 
pretransplant blood transfusions HIV Serostatus 

Any tolerance induction technique used HCV Serostatus 
Previous Pregnancies EBV Serostatus 
Procedure Type Previous Pregnancies 
Kidney(s) received on  
Received on ice Graft Status 
Received on pump Graft survival period 

TABLE A-II 
DISTRIBUTION OF FAILED KIDNEYS OVER THE YEARS 

Graft Survival Period Number of Instances 
1 year (0-12 months) 71 
2 years (13-24 months) 26 
3 years (25-36 months) 24 
4 years (37-48 months) 16 
5 years (49-60 months) 13 
6 years (61-72 months) 16 
7 years (73-84 months) 13 
8 years (85-96 months) 10 
9 years (97-108 months) 7 
10 years (109-120 months) 9 
11 years (121-132 months) 8 
12 years (133-144 months) 1 
14 years (157-168 months) 5 
15 years (168-180 months) 1 
17 years (193-204 months) 1 
Graft alive 1007 

 
 
 


