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Abstract—In the present article, nonlinear vibration analysis of 

single layer graphene sheets is presented and the effect of small 
length scale is investigated. Using the Hamilton's principle, the three 
coupled nonlinear equations of motion are obtained based on the von 
Karman geometrical model and Eringen theory of nonlocal 
continuum. The solutions of Free nonlinear vibration, based on a one 
term mode shape, are found for both simply supported and clamped 
graphene sheets. A complete analysis of graphene sheets with 
movable as well as immovable in-plane conditions is also carried out. 
The results obtained herein are compared with those available in the 
literature for classical isotropic rectangular plates and excellent 
agreement is seen. Also, the nonlinear effects are presented as 
functions of geometric properties and small scale parameter.  
 

Keywords—Small scale, Nonlinear vibration, Graphene sheet, 
Nonlocal continuum  

I. INTRODUCTION 
HE large amplitude vibration analysis has become 
increasingly important particularly in thin-walled 

structures such as plates and shells and several attempts have 
been made to obtain a solution for nonlinear vibration of such 
structures. The large amplitude vibration analysis has become 
increasingly important particularly in thin-walled structures 
such as plates and shells and several attempts have been made 
to obtain a solution for nonlinear vibration of such structures. 
The large amplitude vibrations of plates of various geometries 
have been investigated by several authors. The general 
solutions of the large amplitude vibration of thin elastic plates 
were obtained by Chu and Herrman [1] and Yamaki [2]. The 
nonlinear free vibration behavior of rectangular cross ply 
laminates was investigated by Singh et al. [3] using direct 
numerical integration. Leung and Mao [4] studied simply 
supported rectangular plates with movable edges using the 
Galerkin method. Theoretical and experimental studies for 
geometrically nonlinear vibrations of rectangular plates were 
developed by Amabili [5]. Nonlinear free axisymmetric 
vibration of simply supported isotropic circular plates was 
investigated by Haterboucha and Benamar [6] using the 
energy method and a multimode approach. An analytical 
solution was provided by Woo et al. [7] for the nonlinear free 
vibration behavior of plates made of functionally graded 
materials. Amabili and Farhadi [8] used the classical von 
Karman and the first order shear deformation theories for 
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studying the nonlinear forced vibrations of isotropic and 
laminated composite rectangular plates.Due to the vast 
computational expenses of nano-structures analyses when 
using atomic lattice dynamics and molecular dynamic 
simulations, there is a great interest in applying continuum 
mechanics for analysis of nano-structures. Many studies have 
been carried out for vibration analysis of nano-structures such 
as nanotubes and nano-plates. Lim and He [9] developed a 
von Karman type nonlinear model for ultra-thin, elastically 
isotropic films with surface effect. Kitipornchai et al. [10] 
used the continuum plate model for mechanical analysis of 
graphene sheets. Based on the continuum mechanics and a 
multiple-elastic beam model, Fu et al. [11] investigated the 
nonlinear free vibration analysis of embedded carbon 
nanotubes. Pradhan and Phadikar [12] presented classical and 
first-order shear deformation plate theories for vibration of 
nano-plates. Their approach was based on the Navier solution 
and for a nano-plate with all edges simply supported. Ke et al. 
[13] investigated the nonlinear free vibration of embedded 
double-walled carbon nanotubes based on the Eringen’s 
nonlocal elasticity theory and von Karman geometric 
nonlinearity using differential quadrature method. Dong and 
Lim [14] studied the nonlinear free vibrations of a nano-beam 
with simply supports boundary conditions based on nonlocal 
elasticity theory. Murmu and Pradhan [15] developed a single 
elastic beam model for thermo-mechanical vibration of a 
single-walled carbon nanotube embedded in an elastic 
medium based on nonlocal elasticity theory. Nonlinear free 
vibration of single-walled carbon nanotubes based on the 
Timoshenko beam model was studied by Yang et al. [16]. An 
elastic continuum approach for modeling the nonlinear 
vibration of double-walled carbon nanotubes under harmonic 
excitation was investigated by Hawwa and Qahtani 
[17].Practically all of the problems in mechanics are nonlinear 
and linearization is commonly an approximation. Therefore, 
the infinitesimal deformation model is invalid, and a 
geometrically nonlinear model is evidently needed. In this 
paper, the large amplitude vibration of a single layer graphene 
sheet is studied based on the nano-plate model. Considering 
the small scale effect in constitutive relations and using the 
von Karman nonlinear model, the governing equations of 
motion are obtained in form of two coupled nonlinear partial 
differential equations. The free vibration analysis are 
presented for both simply supported and clamped nano-plates 
with movable and immovable in-plane conditions. The effects 
of nonlocal parameter, boundary condition and aspect ratio on 
the nonlinear vibration behavior of graphene sheets are 
discussed in details. 
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II. CONSTITUTIVE RELATIONS OF NONLOCAL CONTINUUM 
According to nonlocal elasticity theory, the stress at a 
reference point X  is considered to be a function of the strain 
field at every point 'X  in the body. The nonlocal stress tensor 
σ  at point X  can be expressed as 
 

')'(')|,'(| dXXXXK
V

στσ ∫ −=  (1) 

 
where 'σ  is the classical stress tensor and |)'(| XXK −  is the 
Kernel function represents the nonlocal modulus. While the 
constitutive equations of classical elasticity is an algebraic 
relation between stress and strain tensors, that of nonlocal 
elasticity involves spatial integrals which represent weighted 
averages of contributions of the strain of all points in the body 
to the stress at the given point. Eringen [18] showed that it is 
possible to represent the integral constitutive relation in an 
equivalent differential form as 

')1( 2 σσμ =∇−  (2) 

where 2
0 )( ae=μ  is the nonlocal parameter, a  an internal 

characteristic length and 0e  a constant. Also, 2∇  is the 
Laplacian operator. 
 

III. FORMULATION 
Consider a thin nano-plate of total thickness h  with 
dimension ba ×  for modeling the single layer graphene sheet. 
The origin of the Cartesian coordinate system is located in the 
middle of the plate. Since the graphene sheet is assumed to 
have large amplitude motion, the von Karman type strain-
displacement relations are used as 

xxx zκεε += 0  

yyy zκεε += 0  (3) 

xyxyxy zκγγ += 0 , 
where 
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Here the time dependent variables u , v  and w  are the mid-
plane displacement components in the x , y  and z  directions 
respectively. As it can be seen, the strain-displacement 
relations are nonlinear with respect to transverse 
displacement. According to Hamilton's principle, the 
equations of motion of the nano-plate can be given by 

0
2

1

=∫
t

t

dtLδ  (5) 

where L  is the Lagrangian and t  is the time variable. 
Expressing the Lagrangian parameter based on the von 
Karman theory and considering the small scale effect from Eq. 

(2) in constitutive relations, the non-linear equations of 
motion for a nano-plate can be obtained as follows 
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where a dot denotes differentiation with respect to time and 
P  is the load acting on the plate in z  direction. The resultant 
forces ),,( xyyx NNN  and resultant moments ),,( xyyx MMM  
can be defined in terms of strains as 
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where E  and ν  are respectively the Young modulus and 
Poisson ratio of the nano-plate. Also, the inertia parameters 

),,( 210 III  can be expressed in term of density of the plate, ρ , 
as follow 

∫
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As it can be concluded, the parameter 1I  is identically zero 
for a symmetric nano-plate with respect to z  axis. 
Raju et al. [19] showed that the effect of longitudinal or in-
plane inertia on large amplitude vibration of thin-walled 
structures is negligible. Vanishing the in-plane inertia terms, it 
can be seen that two first equations (6) will be exactly 
satisfied if a stress function ϕ  is defined such as 
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Substituting these relations into Eq. (6c) and expressing the 
resultant moments in terms of transverse displacement yield 
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where D  denotes the flexural rigidity of the nano-plate 

)
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EhD . Eq. (10) is a nonlinear fourth order partial 

differential equation in terms of transverse displacement and 
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stress function, and it needs to be augmented with a 
compatibility equation. Eliminating u  and v  from Eq. (4) and 
expressing the in-plane strain components in terms of stress 
function, one can obtained the compatibility equation as 
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Eqs. (10) and (11) are the starting equations for analyzing the 
nonlinear vibration analysis of graphene sheets. As it can be 
seen these equations are nonlinear partial differential 
equations with a total degree of eight. Thus, the nonlinear 
behavior can be considered as two kinds, one from the in-
plane forces due to the nature of edge restrains and the other 
due to the interaction of displacement components affected in 
the in-plane differential equations as well as compatibility 
conditions. 

Also, the in-plane displacement components can be 
expressed in terms of w  and ϕ  by help of Eqs. (4), (7) and 
(9) by the following relations 
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IV. FREE VIBRATION ANALYSIS 
For large amplitude free vibration analysis of graphene sheets, 
the external load is assumed to be zero )0( =P . Four 
boundary conditions are considered for the nano-plate as all 
edges simply supported boundary condition with either 
movable or immovable in-plane edges and all edges clamped 
boundary condition with either movable or immovable in-
plane edges. 
 

i. An all edges simply supported (SSSS) graphene sheet 
Let us consider a simply supported nano-plate with the 
following boundary conditions 

a) Simply supported with movable in-plane edge (SSSS1) 
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b) Simply supported with immovable in-plane edge 

(SSSS2) 
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The movable in-plane edge is the edge which is kept straight 
by a distribution of normal stresses and therefore the resultant 
stresses on the edge is zero. 

The nonlinear free vibration response of the simply supported 
nano-plate can be obtained by introducing the following 
admissible function for transverse deflection 

)cos()cos()(
b

ym
a

xnthWw ππ
=  (14) 

where n  and m  are the numbers of half cosine waves in the 
x  and y  directions respectively and )(tW  is a function of 
time only. It is obvious that Eq. (14) satisfies the first two 
boundary conditions in Eqs. (13a) and (13b) of each edge. 
Substituting Eq. (14) in the right side of Eq. (11), the general 
solution for stress function ϕ  can be obtained as 
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The integral constant 1C  and 2C  should be determined 
whereas the two last conditions (in-plane boundary 
conditions) of Eqs. (13a) or (13b) are satisfied. It is easy to 
show that for movable simply supported nano-plate (SSSS1), 
the constant coefficients 1C  and 2C  should be equal to zero 
and for immovable simply supported nano-plates (SSSS2) 
these coefficients are as follows  
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The transverse displacement w  and the stress function ϕ  can 
be introduced from Eqs. (14) and (15) into the basic Eq. (10) 
and, in according to the Galerkin procedure, the integral 

∫ ΨΓ
A

dAw ),( ϕ  (17) 

can be computed over the area of the nano-plate. ),( ϕwΓ  is 
the nonlinear equation (10) and Ψ  is the spatial part of 
admissible function (14). A simple but lengthy calculation of 
the above integral leads to a modal time differential equation 
of Duffing’s type, for both cases, which can be written as 
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where the parameters α  and β  are defined in terms of 
graphene sheet properties as 
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For linear vibration of the graphene sheet in which term 

3)(tWβ  can be neglected, the corresponding linear natural 

frequency is given by αω =l . For periodic motion with 
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amplitude 0w , the nonlinear natural frequency of Duffing Eq. 
(18) can be expressed in term of Jacobi elliptic function as 
[20] 
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where K  is the complete elliptic integral of the first kind 
defined as 
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ii. An all edges clamped (CCCC) graphene sheet 

The boundary conditions for a clamped edges nano-plate may 
be identified as 

a) Clamped movable edge (CCCC1) 
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b) Clamped immovable edge (CCCC2) 
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Assume that a solution of transverse displacement can be 
expressed in the following form  

)(cos)(cos)( 22

b
ym

a
xnthWw ππ

=  (23) 

It is easy to show that the function (23) exactly satisfies the 
two first boundary conditions in clamped edges. Doing the 
same procedure as the previous case, the Duffing’s equation 
can be obtained as Eq. (18) with different coefficients. 

V. NUMERICAL RESULTS 
In order to verify the accuracy of the present formulations, 

the results are compared with the available results in literature 
for a special case of classical rectangular plates in which the 
nonlocal effect is neglected )0( =μ .  Fig. 1 presents a 
comparative study of the non-linear to linear time period ratio 
versus the non-dimensional amplitude for a square simply 
supported rectangular plate for both immovable and movable 
edges with 3.0=ν . It can be observed that the results of the 
present study are sufficiently accurate with the results in Ref. 
[2]. 
For numerical results, the following properties are assumed 
for the graphene sheet  

3/864.5 °= AeVE ,   19.0=ν ,   °= Ah 317.1 ,    
°= Amg /13.0ρ  (24) 

In order to recognize the hardening or softening state of the 
graphene sheet, the parameter β  is depicted in Fig. 2 versus 
the nonlocal parameter μ . It can be said that the coefficient 

of 3)(tW  is always positive and therefore the graphene sheet 
has a hard stiffness. Also, it can be concluded that as the small 
scale effect increases the hardening stiffness of the nano-plate 
rapidly decreases. i.e. the small scale effect makes the nano-
plate more flexible as the nonlocal model may be viewed as 
atoms linked by elastic springs while the local continuum 
model assumes the spring constant to take on an infinite value. 
The nonlinear to linear frequencies ratio versus amplitude is 
plotted to study the effects of physical properties of graphene 
sheets. Backbone curves (nonlinear to linear frequency-
amplitude curve) are plotted for all edge simply supported and 
all edges clamped graphene sheets in Fig. 3 and 4, 
respectively. It is found that the backbone curves do not 
depend on the nonlocal parameter.  Also, it can be seen that 
the effect of aspect ratio on backbone curves of simply 
supported nano-plates is more significant than that of clamped 
nano-plates. Besides, it can be concluded that the in-plane 
boundary conditions are very important in nonlinear analysis, 
as these can change the backbone curves quite significantly.  

VI. CONCLUSION 
The free nonlinear vibration analysis of single layer 

graphene sheets has been studied and the small scale effect on 
the nonlinear behavior of the nano-plates has been 
investigated. Considering the Eringen nonlocal theory and von 
Karman hypothesis, the nonlinear equations of motion have 
been obtained using the Hamilton’s principle. The solutions 
for the large amplitude vibrations of a nano-plate have been 
found. The effects of nonlocal parameter, boundary 
conditions, aspect ratio on the nonlinear vibration of graphene 
sheets have been discussed. It has been seen that the small 
length scale decreases the nonlinear behavior of the graphene 
sheets. Also, it has been shown that the backbone curves of 
the graphene sheets do not depend on nonlocal parameter.  
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Fig. 1 The comparison of backbone curves of a rectangular plate 
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Fig. 3 Backbone curves for all edges simply supported graphene 
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Fig. 4 Backbone curves for all edges clamped graphene sheets 
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