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    Abstract—This paper presents an approach for early breast 
cancer diagnostic by employing combination of artificial neural 
networks (ANN) and multiwaveletpacket based subband image 
decomposition. The microcalcifications correspond to high-frequency 
components of the image spectrum, detection of microcalcifications 
is achieved by decomposing the mammograms into different 
frequency subbands,, reconstructing the mammograms from the 
subbands containing only high frequencies. For this approach we 
employed different types of multiwaveletpacket.  We used the result 
as an input of neural network for classification. The proposed 
methodology is tested using the Nijmegen and the Mammographic 
Image Analysis Society (MIAS) mammographic databases and 
images collected from local hospitals. Results are presented as the 
receiver operating characteristic (ROC) performance and are 
quantified by the area under the ROC curve. 
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I.   INTRODUCTION 
 

REAST cancer is the type of cancer with highest 
incidence rates in women. It is also the most common 

cause of cancer death in women in many countries, only 
exceeded by lung cancer in Asian countries and recently in the 
United States [1]. The early detection of breast cancer is vital 
to improve its prognosis. Moreover, it is well known that 
screening mammography is the best tool available for 
detecting cancerous lesions before clinical symptoms appear. 
Since about half of cancers detected by mammography 
correspond to clustered microcalcifications, these lesions are 
one of the mammographic hallmarks of early breast cancer 
[1].Usually, the shape and arrangement of microcalci-fications 
help the radiologist to judge the likelihood of cancer being 
present. Malignant calcifications are typically very numerous, 
clustered, small, dot-like or elongated, variable in size, shape 
and density. Benign calcifications are generally larger, more 
rounded, smaller in number, more diffusely distributed, and 
more homogeneous in size and shape. However, because of 
the small size of microcalcifications, the characterization of 
benign and malignant lesions represents a very complex 
problem even for an experienced radiologist. Moreover, there   
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are many cases in which the structure of malignant 
microcalcifications is not very different from that of benign 
ones. These perceptual problems result in screening errors that 
lead either to missed malignant cases or more often to 
unnecessary biopsies. It has been reported that only 17% of 
calcifications requiring biopsy are cancerous [1]. Computer-
aided diagnosis can help to reduce the number of false 
positives and therefore the number of unnecessary biopsies. 
    In the literature, several techniques have been proposed to 
detect the presence of microcalcifications using various 
methodologies. Concerning image segmentation and 
specification of regions of interest (ROIs), several methods 
have been proposed such as classical image filtering and local 
thresholding [6]. Stochastic fractal models [9], wavelet 
analysis [10,11]. Furthermore, various classification 
methodologies have been reported for the characterization of 
ROI such as, fuzzy logic systems [4]. Nevertheless, the most 
work reported in the literature employs neural networks for 
cluster characterization [3,5,7]. 
     In this study, we present system, aiding radiologist for 
breast cancer diagnosis and identification of microcalci-
fication clusters in digitized mammographic images. As the 
microcalcifications correspond to high-frequency components 
of the image spectrum, detection of microcalcifications is 
achieved by decomposing the mammograms into different 
frequency subbands, suppressing the low-frequency subband, 
and finally, reconstructing the mammogram from the 
subbands containing only high frequencies. The wavelet 
transform often fails to accurately capture high-frequency 
information, especially at low bit rates where such information 
is lost in quantization noise. Coifman et al. developed a 
technique called wavelet packets that is better able to represent 
high-frequency information [12].To achieve the best result we 
employed different types of multiwavelet packets such as 
GHM,CL. Orthogonal and biorthogonal, all are from the class 
of SA multifilters. The orthogonal SA multi filters used 
are“SA4” and “ORT4” [13], [14]; for biorthogonal SA multi 
filters we used “BSA7/5” and “BSA9/7” [15]. We use these 
results as inputs of neural network for classification. The 
neural network contains one input, two hidden and one output 
layers. A neural network is a set of connected input/output 
units where each connection has a weight associated with it. 
During the learning phase, the network learns by adjusting the 
weights so as to be able to predict the correct class of the input 
samples. The back propagation algorithm performs learning 
on a multi layer feed-forward neural network.     
 
 

B 



International Journal of Medical, Medicine and Health Sciences

ISSN: 2517-9969

Vol:1, No:12, 2007

652

II.   BACKGROUND 
 

      A.   Wavelet 
 

      Multi-scale representation has proven to be useful in many 
Image processing applications. Wavelet analysis is one way to 
generate such representation. Mallat’s pyramidal algorithm 
has been successfully used to decompose an input digital 
image into a hierarchy of independent detail subimages in 
subsequent (fine scales and an approximation sub-image in the 
coarsest scale [10, 11].Wavelet transform has been used for 
mammographic image compression, image enhancement, 
microcalcification detection, and feature extraction. Fig. 2 
shows the structure of wavelet. 
 
 
 

          
(a)                                                   (b) 

 

Fig. 1 (a) Decimated analysis wavelet filter bank (b) wavelet output   
 
    The single level expansion results in 3 "details" images: 
dHH, dHL, and dLH, (shorter: HH, HL, LH) covering 
Independent bands in the frequency domain. The 
"approximation" aLL (or LL) is a low-pass component, which 
is passed to the next level of decomposition.(Figure1).  
 
  B.   Multiwavelet 
 

   A newer alternative to the wavelet transform is the 
multiwavelet transform. Multiwavelets are very similar to 
wavelets but have some important differences. In particular, 
whereas wavelets have an associated scaling function  and 
wavelet function  , multiwavelets have two or more scaling 
and wavelet functions. For notational convenience, the set of 
scaling functions can be written using the vector 
notation , where is called 
the multiscaling function. Likewise, the  multiwavelet function 
is defined from the set of wavelet functions as 

. When  , is 
called a scalar wavelet, or simply wavelet. While in principle 
can be arbitrarily large, the multiwavelets studied to date are 
primarily for .The multiwavelet two-scale equations 
resemble those for scalar wavelets. 
 

               (1)  

                         (2) 
 

    Note, however, that  and  are matrix filters, i.e.,  
and  are  matrices for each integer  . The matrix 

elements in these filters provide more degrees of freedom than 
a traditional scalar wavelet. These extra degrees of freedom 
can be used to incorporate useful properties into the 
multiwavelet filters, such as orthogonality, symmetry, and 
high order of approximation. The key, then, is to figure out 
how to make the best use of these extra degrees of freedom. 
Multifilter construction methods are already being developed 
to exploit them [14], [15]. However, the multi-channel nature 
of multiwavelets also means that the subband structure 
resulting from passing a signal through a multi filter bank is 
different. Sufficiently different, in fact, so that established 
quantization methods do not perform as well with 
multiwavelets as they do with wavelets.  
 

 
(a)                                                     (b) 

Fig. 2 (a) Image subbands after single level decomposition    
  (b)Parent-children relationship among subbnads 

 
   C.  Wavelet Packet 
 

    Multiwavelets provide one alternative to the wavelet 
transform. Another alternative is the wavelet packet transform. 
Despite its general success, the wavelet transform often fails 
to accurately capture high-frequency information, especially at 
low bit rates where such information is lost in quantization 
noise. Coifman et al. developed a technique called wavelet 
packets that is better able to represent high-frequency 
information. 
    A multilevel wavelet filter bank involves iterating the 
lowpass–highpass filtering and downsampling procedure only 
on the output of the lowpass branch of the previous stage. 
Coifman et al. formulated an extension of the octave-band 
wavelet decomposition to full tree decomposition by allowing 
the lowpass–highpass filtering and downsampling procedure 
to be iterated also on highpass (bandpass) branches in the tree. 
They defined the new basis functions, called wavelet packets, 
as follows. Let  and  be the scaling and wavelet 
functions, respectively, which obey the two-scale equations 

              (3) 

             (4) 

    Note that the sequences and are the scaling and 
wavelet filter coefficients. Now let  
and , and define 
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          (5) 

         (6) 
    Taking dyadic rescaling and translations of these functions 
yields a library of functions  . This library is 
over complete, but a proper complete basis can be found by 
selecting a subset of the library with the right set of 
parameters . 
    This selection of a basis can be viewed in terms of a tree 
structure, in which the set of elements of each basis 
corresponds in a one-to-one fashion to a particular set of 
terminal nodes of a binary tree. Wavelet packets impose 
increased computational complexity due to the basis selection 
process. Selection of a “best” basis for any particular image 
may be performed in a number of ways. Coifman et al. 
suggested the use of an additive cost function that is applied to 
each set of parent and child nodes in the pruning process. If 
the sum of the costs of the children is greater than the parent’s 
cost, the children are pruned; otherwise the children are kept. 
The performance of this method depends entirely on the 
choice of cost functions. Some cost functions that have been 
proposed include: Shannon entropy, the number of 
coefficients in the node that are significant compared to 
(i.e.,greater than) some threshold2 [16], and the number of bits 
required to represent all the coefficients in the node 
(introduced in this paper).Newer methods for selecting a basis 
approach the problem from a rate-distortion perspective. 
Ramchandran and Vetterli proposed a method that attempts to 
select the set of terminal nodes that are optimal in a rate-
distortion sense. Their approach involves the minimization at 
each branch of a Lagrangian “cost function,”  , 
where  is the average distortion and  is the target average 
bit rate. The value of that minimizes  determines 
whether to prune and also gives the best quantizer for that 
node (which is then used for uniform quantization of the 
coefficients of that node). More recently, Xiong et al.have 
taken this idea and merged the basis optimization with their 
space-frequency quantization (SFQ) approach, yielding 
impressive results [17]. 
 
   D.   Multiwavelet Packet 
 

   Just as with scalar wavelets, the multiwavelet filter bank 
procedure involves iterating the filtering operation on the 
lowpass channel of the filter bank. And, just as with scalar 
wavelets, new basis functions can be produced by iterating on 
the highpass channels of multiwavelet filter banks too. This 
new approach combines wavelet packet decomposition with 
multiwavelet filters; hence, we call it multiwavelet packet 
decomposition. We define multiwavelet packets in a manner 
analogous to the definition of wavelet packets. 
Let  and  , and define 
 

               (7) 

            (8) 
 

   Note the similarity between these mulitwavelet packet 
equations (7) and (8) and the corresponding wavelet packet 
equations, (5) and (6).  
    The basis selection algorithms and cost functions used to 
prune the resulting tree structure are identical to those of the 
scalar wavelet packet case with one exception: each branching 
in the multiwavelet packet tree structure creates four new 
channels (assuming ) instead of just two. Since the 
multiwavelet packet tree then has four children for each parent, 
the computational complexity for multiwavelet packets may 
be higher than for wavelet packets. Cost function based 
methods will be essentially unaffected because they just 
operate on all the pixels corresponding to each node; with 
multiwavelet packets there are four nodes instead of two, but 
each node represents half as much data. However, methods 
that perform some form of rate-distortion optimization will 
require more computation due to the increased number of 
nodes. To achieve the best result we employed different types 
of multiwavelet packets such as GHM, CL. Both orthogonal 
and biorthogonal multiwavelets were tested, and all are from 
the class of SA multi filters. The orthogonal SA multi filters 
used are“SA4” and “ORT4” [13], [14]; for biorthogonal SA 
multifilters weused “BSA7/5” and “BSA9/7” [15] 

 
III.    ROC CURVES 

 

     The ROC receiver operating characteristic curve is a plot 
of the sensitivity against one minus the specificity for different 
values of the threshold. Comparison is usually in terms of the 
area under the curve, which gives a summary of performance 
over the whole range of values and is independent of the 
prevalence of the condition unlike the accuracy, which 
weights the sensitivity and specificity in proportion to their 
prevalence. It measures the probability that for any pair of 
patients, one of whom with an event and one without, the 
patient for whom the event has occurred will have a higher 
predicted probability of the event than the other.  
    True Positive (TP): lesions called cancer and prove to be 
cancer. False Positive (FP): lesions called cancer that prove to 
be benign. False Negative (FN): lesions that are called 
negative or benign and prove to be cancer. True Negative 
(TN): lesions that are called negative and prove to be negative. 
False positive fraction is FPF (9) and true positive fraction is 
TPF(10) 

                                                     (9) 

                                                    (10) 
 
    Alternatively, the free receiver operating characteristic 
(FROC) curve may be used which considers the number of 
false positive clusters per image instead of the specificity 
value. 
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IV.   DATABASE 
 

    We used a mammogram database developed by N. 
Karssemeijer in the University Hospital Nijmegen, the 
Netherlands and  Mammographic Image Analysis Society 
(MIAS)[2] and some other clinical images that collected form 
local hospitals mentioning that biopsy has done on the patients 
so we already know the results of benign or malignancy . The 
mammograms were recorded with a Kodak MIN-R/SO 177 
screen/ (lm combination. An Eikonix 1412 CCD camera was 
used to digitize the images. The spatial resolution was set to 
be 2048 by 2048 pixels per image with a gray-level resolution 
of 12 bits per pixel. There are 66 mammograms in the 
database taken from 32 different patients. There are a total of 
196 microcalcifications clusters, 63 benign and 133 malignant 
cases, in the database with varying sizes and visibility. 
Containing microcalcification clusters with different visibility, 
this database is a good representative of clinical cases. 
 
 

 
 

Fig. 3 Microcalcification detection system 
 

V.   CLASSIFICATION MODULE 
 

     In order to specify the features that will be used as inputs to 
the classification system, at first 32 features are identified and 
computed characterizing either an individual micro-
calcification (object) or a group of them in a specific ROI. 
Those features fall into three categories related with the 
intensity, shape and texture properties of each object. The 
selection of the five largest microcalcifications is made since a 
very small microcalcification does not have enough pixels for 
reliable feature value computation. (Fig. 3) shows how the 
classification module works. Since the number of the 
computed features is quite large and their discriminative 
power varies, a feature validation together with feature 
selection procedure is applied. The receiver operating 
characteristic (ROC)   curve is plotted for each feature and the 
area Az under the ROC curve is computed. Features with the 
highest Az are selected, resulting in a set of 18 features. 

TABLE I 
FEATURES RELATED TO THE SHAPE AND APPEARANCE OF 

MICROCALCIFICATIONS 
---------------------------------------------------------------------------------------------------- 
Number of microcalcifications in the cluster 
Maximum size of calcifications in cluster 
Standard deviation of the size of calcifications in cluster 
Number of calcifications with size of 1 pixel 
Sum of the area of the calcifications in each cluster 
Maximum value of compactness in cluster 
Average compactness in cluster 
Radius of the circle that best fits the cluster 
Scattering of the microcalcifications 
Average gray level of the microcalcifications in cluster 
Standard deviation of the mean of the microcalcification gray 
levels in the cluster 
Maximum standard deviation of the gray levels in each 
calcification 
Average standard deviation of the gray levels in each 
calcification in cluster 
Area of the cluster convex hull 
The length of the cluster convex hull 
Neighbouring with a larger cluster 
Average microcalcifications intensity 
Average local microcalcification background 

 
    It must be noted that most of the selected features 
correspond to the mammographic characteristics that 
radiologists examine during a diagnostic procedure such as 
shape, density, size, distribution of the examined group or 
individual objects. In the next step of the classification module 
the selected features are fed into a neural network 
Classification system. The neural network that is used for 
characterization is a feed   forward neural network with 
sigmoid hidden nodes.  
     In order to select appropriate architecture (number of 
hidden layers and hidden nodes per layer) several networks 
were tested with one or two hidden layers and different 
number of hidden nodes. In order to reduce the dimensionality 
of the input vector, a PCA (principal component analysis) was 
applied to eliminate the features that contribute less than 3% 
to the total variation of the data set. The PCA procedure 
transforms each 18-dimensional feature vector into a 7-
dimensional feature vector that will constitute the input to the 
neural network (Fig. 4). The neural network contains one input, 
two hidden and one output layers. For learning phase we used 
back propagation algorithm which the input signals are 
computed and passed through the neural network layer by 
layer. Then the neurons in output layer products the output 
signals then error signals can be generated by comparing the 
output response with the desired response. This work can be 
used to minimize the distortion of the MLP. This learning 
algorithm is iteratively executed for the training set and then 
products the synaptic weight vectors.  We used 60% of our 
images for training and the   remaining was used   for test    
process. Training is terminated either when the training error 
is less than a very small given value or when 2000 
iterations have been performed.  
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Fig. 4 PCA and Neural network architecture  
 

    The network performance is measured using the area (Az) 
under a ROC curve generated by plotting the true positive 
fraction (sensitivity) against the false positive fraction (1-
specificity) of the cases for various threshold values. 
 

VI.    EXPERIMENTAL RESULTS 
 

     As mentioned before we applied different types of 
multiwavelet packets such as GHM, CL. Orthogonal and 
biorthogonal multiwavelets, all are from the class of SA 
multifilters. The orthogonal SA multi filters used are“SA4” 
and “ORT4” [13], [14]; for biorthogonal SA multi filters we 
used “BSA7/5” and “BSA9/7” [15]. The ROC curves, which 
presents the performance of the microcalcification system 
detection has shown in figure6. 
 

VII.   CONCLUSION 
 

Intelligent system has been developed for the identification 
of microcalcification clusters in digitized mammograms,   
aiding   the   radiologists   for breast cancer prognosis.   
 
 

      
 

(a)                                         (b) 
 

Fig. 5 (a) Original mammogram (b) Result after applying wavelet 
 

The method employs multiwavelet packets and neural 
network. We tested our system in the Nijmegen and the MIAS 
and images collected from local hospitals with satisfactory 
results. As it shown, comparing the multiwavelet packets, best 
performance was achieved by ORT4 multiwavelet packet with 
areas under ROC curve ranging around 0.98.   The system 
successfully combines intelligent methods and image 
processing techniques which contribute to the enhancement of 
mammographic diagnosis sensitivity and reduction of negative 
biopsies.      The      proposed       methodology     could be an 

essential part of an integrated CAD (computer aided 
diagnosis) technique, which could assist   radiologists in 
mammogram analysis and diagnostic decision making. 
 
 

  
(a)                                                  (b) 

    
(c)                                           (d) 

                   
(e)                                               (f) 

   
Fig. 6 ROC curves obtained from system corresponding to 
Mutiwavelet packets (a) ORT4 (b) SA4 (c) CL (d) GHM 

 (e) BSA7/5 (f) BSA9/7 
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