
International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:3, No:9, 2009

1119

 

 

  
Abstract—A two-dimensional numerical simulation of cross-

flow around four cylinders in an in-line rectangular configuration is 
studied by using the lattice Boltzmann method (LBM). Special 
attention is paid to the effect of the spacing between the cylinders. 
The Reynolds number ( eR ) is chosen to be 100eR =  and the 

spacing ratio /L D  is set at 0.5, 1.5, 2.5, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0 
and 10.0. Results show that, as in the case of four cylinders in an in-
line rectangular configuration , flow fields show four different 
features depending on the spacing (single square cylinder, stable 
shielding flow, wiggling shielding flow and  a vortex shedding flow) 
are observed in this study. The effects of spacing ratio on physical 
quantities such as mean drag coefficient, Strouhal number and root-
mean-square value of the drag and lift coefficients are also presented. 
There is more than one shedding frequency at small spacing ratios. 
The mean drag coefficients for downstream cylinders are less than 
that of the single cylinder for all spacing ratios. The present results 
using the LBM are compared with some existing experimental data 
and numerical studies. The comparison shows that the LBM can 
capture the characteristics of the bluff body flow reasonably well and 
is a good tool for bluff body flow studies.  
 

Keywords—Four square cylinders, Lattice Boltzmann method, 
rectangular configuration, spacing ratios, vortex shedding.  

I. INTRODUCTION 
 LOW around a group of cylinders is of practical 
importance in many fields of engineering, such as flow 
around cables, heat exchanger tube arrays, etc. The effects 

of the flow interference among the cylinders strongly depend 
on the arrangement of the cylinders. The interference effects 
strongly depend on the arrangement of the two cylinders 
Zdravkovich [1]. He categorized the two cylinders 
arrangements into three types: side-by-side, tandem and 
staggered arrangements. Sayers [2] experimentally measured 
the lift and drag coefficient on a single cylinder in a group of 
four equally spaced cylinders in an open-jet wind tunnel at 
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spacing ratios ranging from 1.1 to 5.0 and Reynolds number 
( 43.0 10eR = × ). Later, Sayers [3] further measured the 
Strouhal number ( tS ) of each cylinder in the same open-jet 
wind tunnel. Lam and Luo [4] had conducted a visualization 
study at spacing ratios ranging from 1.28 to 5.96 
and 32.1 10eR = ×  and summarized the flow characteristics into 
three different flow patterns. Lam and Fang [5] experimentally 
determined the effects of flow interference of four cylinder 
array at spacing ratios ranging from 1.26 to 5.80 
and 312.8 10eR = × . Zdravkovich [6] and Norberg [7] 
numerically investigated the flow around single and multiple 
cylinders cover a wide range of Reynolds numbers, from 40 
to 62.0 10× . However, numerical studies of the flow around 
four cylinders in an in-line square configuration are relatively 
few. Farrant et al [8] and Lam et al [9] numerically studied the 
flow around four cylinders using a cell boundary element 
method and surface vorticity method, at 200eR =  by Farrant 

et al. in [8] and at 31.3 10eR = × by Lam et al [9], respectively. 
They observed different flow patterns such as in-phase vortex 
shedding, anti-phase vortex shedding and synchronized mode. 
Lam et al [10] further numerically observed some interesting 
observations. Further Lam et al [11] carried out two- and 
three-dimensional numerical simulations of cross-flow around 
four cylinders in an in-line square configuration using a finite-
volume method at spacing ratios ranging from 1.6 to 5.0 at 
Reynolds numbers 100 and 200.  They observed three distinct 
flow patterns for two-dimensional studies: (i) a stable 
shielding flow; (ii) a wiggling shielding flow and (iii) a vortex 
shedding flow.  

On the other hand, there have been numerous detailed 
studies of flow past a square cylinder in two-dimensions as 
well as three-dimensions for side-by-side, tandem, staggered 
and single square cylinders. Inoue et al [12] numerically 
investigated flow around two square cylinders for side-by-side 
arrangement. They paid special attention to the effect of the 
spacing between the two cylinders at 150eR = . They observed 
six different flow patterns: anti-phase and in-phase 
synchronized, flip-flopping, single bluff-body and steady 
patterns. Recently, the flow around side-by-side square 
cylinders numerically investigated by Rao et al [13] using the 
lattice Boltzmann method. They examined the flip-flop regime 
at small space ratios and the synchronized regime at large 
space ratios. Degawa and Uchiyama [14] numerically 
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examined bubbly flow around two tandem square cylinders 
using vortex method. They observed that the strength of the 
Karman vortex downstream of the second cylinder is larger 
than that for the single-cylinder at Reynolds number 10000. A 
number of studies have been done so far, especially on the 
flow around a single square and rectangular cylinder [15-18].  

As mentioned above there have been some experimental 
and numerical studies for different flow configurations, 
however, the investigations of the spacing effects on the flow 
characteristics for four square cylinders in an in-line 
rectangular configuration has far from completed especially at 
low Reynolds number for laminar flows. The quantitative 
information of the changes in vortex structures, the changes in 
physical quantities and the variations in force coefficients is 
quite far from completed. Regarding the available studies in 
the literature, the present study provides further computational 
information and close investigation on the spacing effect of a 
four square cylinders in an in-line rectangular configuration at 
low Reynolds number. The effects of the spacing on the force 
coefficients, the Strouhal number and the flow structures in 
the near wake are reported in detail. The LBM with the 
incompressible Bhatnagar-Gross-Krook (LBGK) model are 
used for the fluid flow simulation and the results are compared 
with related data published in the literature for single square 
cylinder especially experimentally.  

The rest of this paper is organized as follows. A brief 
description of the problem to be considered is given in Section 
II and a detailed description of the lattice Boltzmann method 
(LBM) together with the boundary is presented in Section III. 
The results on the effects of the spacing on the force 
coefficients, vortex shedding frequency and the flow 
structures are discussed in Section IV. Finally conclusions are 
drawn in Section V.  

II. PROBLEM DESCRIPTION 
The schematic configuration of a rectangular cylinder in a 

uniform flow is shown in Fig.1 where D  is the diameter of 
the cylinder and L  is the centre-to-centre spacing between 
cylinders, and U∞ is the velocity of the uniform flow. A 
computational domain with 10D  upstream, 40D downstream 
and a distance of 12.5D  on either sides of the cylinder in 
transverse direction is selected for the present simulations, 
which has been proved to provide a good compromise 
between accuracy of the solution and computational cost for a 
uniform flow past a cylinder [19].   

      

 
Fig. 1 Arrangement and computational domain for a four-cylinder 
array 

III. NUMERICAL METHOD 
Instead of solving the usual continuum equations for the 

conserved fluid fields, the lattice Boltzmann method (LBM) 
models the fluid flow by tracking the evolution of fluid 
particles where the physical space are discretized into a 
number of square regular lattices and at each time step the 
particles move and collide following certain rules. In the 
present study, a two-dimensional nine-velocity (D2Q9) model 
and the Bhatnagar-Gross-Krook (BGK) collision model used 
in the standard Boltzmann equation are adopted [20]. 

The evolution equation of the density distribution function 
of the fluid particles can be described by 

( ) ( ), , ( )i i i ig c t t t g t g+ Δ + Δ − = Ωx e x                        (1) 
where ( , )ig tx  is the density distribution function of the 
particle at position x and time t with velocity cei, Δx and Δt are 
the lattice grid spacing and the time step, c=Δx/Δt is the 
particle speed and ei is the direction of the velocity, and Ωi is 
the collision operator which must maintain the total mass and 
momentum of the particle system. The fluid density ρ is then 
obtained from the density distribution function by  

i
i

gρ = ∑                                                                         (2) 

The density distribution function ( , )ig x t  is modified at each 
time step according to the evolution of the particles.  

In the two-dimensional nine-velocity (D2Q9) model, each 
lattice node has eight nearest neighbors connected by eight 
links and the particles move only along the axes or the 
diagonal directions of the lattices (see Fig. 2). The directions 
of the discrete velocity are given by 

( ) ( )( )
( ) ( )( )

(0,0) 0

cos 1 /2 ,sin 1 /2 1,2,3,4

2 cos 5 /2 /4 ,sin 5 /2 /4 5,6,7,8

i

i

i i i

i i i

π π

π π π π

⎧ =⎪
⎪= − − =⎨
⎪
⎪ − + − + =⎩

e
        (3) 

 

 
Fig. 2 Two-dimensional nine-velocity lattice (D2Q9) model 

Bhatnagar, Gross and Krook (BGK) [21] described a 
collision operator to consider the collision effects between 
particles where the collision process was described as a 
relaxation process to the local equilibrium state in the 
following way: 

( ) ( ) ( )01 , ,i i ig t g t
τ

⎡ ⎤Ω = − −⎣ ⎦x x                                        (4) 

where τ  is the non-dimensional relaxation and ( ) ( )0 ,ig tx  is 
an equilibrium distribution function. The equilibrium 
distribution chosen from [20] is defined by 



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:3, No:9, 2009

1121

 

 

( ) ( )
20

, 3 4.5 1.5
2 2

g t pi i i c c c
α ω

⎡ ⎤⋅ ⋅⎢ ⎥= + + −⎢ ⎥
⎢ ⎥⎣ ⎦

2(e u) (e u) ui ix .  (5)                                                                           

Where  

2

2

2

4 0

1, 2,3,4

5,6,7,8

i

i
c

i
c

i
c

σ

λα

γ

⎧− =⎪
⎪
⎪= =⎨
⎪
⎪

=⎪
⎩

    and   

4 0
9
1 1, 2,3,4
9
1 5,6,7,8
36

i

i

i

i

ω

⎧ =⎪
⎪
⎪= =⎨
⎪
⎪

=⎪⎩

     (6) 

and σ, λ, γ are parameters satisfying λ + γ = σ and λ + 2γ = 
1/2.  

The evolution equation of the density distribution function 
is then described by the following single-relaxation-time BGK 
equation 

( ) ( ) ( ) ( ) ( )01, , , ,i i i i ig c t t t g t g t g t
τ

⎡ ⎤+ Δ + Δ = − −⎣ ⎦x e x x x   (7) 

(i=0,1,2,…,8)                                                                   
The incompressible Navier–Stokes equations can be 

recovered from incompressible LBGK models [20, 22]. 
The kinematic viscosity ν can be obtained in the following 

way 
2

2 1
2s

xc
t

ν τ Δ⎛ ⎞= −⎜ ⎟ Δ⎝ ⎠
                                                           (8)   

where
3

c
cs =  is the speed of sound. A careful selection of τ 

is very important in lattice Boltzmann (LB) modeling since 
the numerical stability and computational cost depend on the 
value of τ. The flow velocity and pressure can be obtained by  

8

1
i i

i

c g
=

= ∑u e                                                                   (9) 

 
282

2
1

2
4 3i

i

cp g
cσ =

⎡ ⎤
⎢ ⎥= −
⎢ ⎥⎣ ⎦
∑ u

                                            (10) 

More details can be found in [20]. 

     Inlet boundary: Uniform flow with velocity U∞ is 
incorporated in using the equilibrium particle distribution 
function (PDF) at the inlet boundary where 

u= U∞  and  v=0                                                            (11) 

     Outlet boundary: The computational domain behind the 
cylinder is selected to be large enough so that the flow at the 
outflow boundary can be considered to be fully developed. 
Therefore a zeroth order approximation for PDF is adopted at 
the outlet boundary.  

     Surface of the cylinder: No-slip wall boundary condition is 
applied to the surface, which is; 

u=0  and  v=0.                                                                    (12) 
This is realized using a bounce-back treatment in which all 
particles hitting the solid wall and reflected back to its 
previous position. 

     Top and bottom boundaries: Uniform flow boundary 
condition is applied at both top and bottom boundaries of the 
computational domain. 

u= U∞    and  v=0                                                              (13) 
The total fluid force F on the square cylinder is calculated 
using the momentum exchange method [23]. The force is 
given by; 

( ) ( )
1

, ,
b

N

b b
all x

xF e n x t n x e t t
tβ α α β

α =

Δ⎡ ⎤= + + Δ⎣ ⎦ Δ∑ ∑ .      (14) 

Where N is the number of non-zero lattice velocity vectors, 
the subscript α is the opposite lattice direction of β, i.e. α = β 
=1,2,…,8. To obtain the fluid solid momentum exchange per 
unit time equation (14) is treated at the midpoint for the fluid 
lattice node ( ),f bx x ce t tβ= + Δ  and the solid lattice 

node ( ),b f ax x ce t t= + Δ , where xb denotes the solid nodes 

and xf  represents the fluid nodes. The momentum exchange 
between a solid node at xb and all possible neighboring fluid 
nodes around that solid node can be obtained by the inner 
summation, while the force contribution for all boundary 
nodes at xb is given by the outer summation. 

Reynolds number Re is defined by  

e
U D

R
v
∞=                                                                   (15) 

     Other important parameters are the Strouhal number St, the 
drag coefficient Cd, and the lift coefficient Cl. They are 
defined by the following formulas 

 s
t

f D
S

U∞

=                                                              (16) 

21
2

d
d

F
C

U Dρ ∞

=                                                          (17) 

21
2

I
I

F
C

U Dρ ∞

=                                                           (18) 

where fs is the vortex shedding frequency from the cylinder, 
Fd and Fl are the force components in the in-line and 
transverse directions, respectively.  

Computations are normally terminated when the following 
convergence criteria is satisfied 

2( 1) ( )
, ,

, 6

2( 1)
,

,

1 10

k k
l m l m

l m

k
l m

l m

u u

u

+

−

+

⎡ ⎤−⎣ ⎦
≤ ×
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∑

∑
                                    (19) 

     All the computations are carried out on a Dawning Parallel 
Computer TC4000. 
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IV. RESULTS AND DISCUSSION 
In order to investigate the effects of the spacing ratio, ten 

values of /L D  between 0.5 and 10 are selected. The drag and 
lift coefficients, the vortex shedding frequency and the flow 
structure are analyzed for the purpose. The numerical scheme 
as explained above is validated for the case of single square 
cylinder. Results are compared in Table I. Moreover, Table I 
shows the computed mean drag coefficient and Strouhal 
number. For the uniform approach flow, computed results are 
compared with some available experimental and numerical 
data from open literature and found to be in good agreement. 
 

 

 

 
Fig. 3 (a) Variation of lift and drag coefficient for single square 
cylinder and (b) Fourier spectrum analysis of lift coefficient for 
single square cylinder 

 
 

In Fig. 3(a) shows the solid line represents the drag 
coefficient and the dotted line indicates the lift coefficient. It 
is seen that the periodic vortex shedding behavior is well 
captured by the LBM method. The frequency of the drag 
coefficient is twice that of the lift coefficient. Fig. 3(b) shows 
the spectra of the time-varying lift coefficient obtained by fast 
Fourier transform. The frequency value read directly from the 
spectra give the Strouhal number. 

A. Drag and lift force coefficients 
For the sake of brevity, only two groups of force time 

histories are presented. The first one is illustrated in Fig. 4 
where /L D  is kept at 1.5. The second one is plotted in Fig. 5 
where /L D  is kept at 10.0. The solid line represents the drag 
coefficient and the dotted line indicates the lift coefficient. 
The results show that the vortex shedding becomes irregular, 
and the frequencies of the lift and drag coefficients are not 
periodic for small spacing ratio (see Fig. 4). On the other 
hand, the frequency of the lift coefficient is twice that of the 
drag coefficient for all cylinders for higher spacing ratios such 
as 10.0 (see Fig. 5). However, at spacing ratio 10.0, for the 
drag coefficient for all four cylinders in figure 5, it is not a 
simple sine wave and there seems to be a small modulation in 
shedding frequency for the downstream cylinders 2 and 4 and 
much more modulations for upstream cylinders 1 and 3 as 
compared to downstream cylinders. Such modulation is not 
happened for single square cylinder (see Fig. 3(a)). The reason 
is may be there are upstream cylinders in the wake of 
downstream cylinders. 

 

 

TABLE I 
COMPARISON OF SINGLE SQUARE CYLINDER: STROUHAL NUMBER AND MEAN 

COEFFICIENT OF DRAG RESULTS WITH SIMULATIONS AND EXPERIMENTS 

AT 100eR =   

Author  Mean Drag Coefficient Strouhal number 

Shimizu and 
Tanida [15] exp 

1.5 -- 

Okajima [16] exp -- 0.141-0.145 

Norberg [17] exp -- 0.143 
Sohankar et al. 
[18] num 

1.44  
0.145 

Present 1.3359 0.1472 
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Fig. 4 Variation of lift and drag coefficient for spacing ratio 1.5 (a) 

Cylinder1, (b) Cylinder2, (c) Cylinder3, (d) Cylinder4  
 
 

 

 

 

 
Fig. 5 Variation of lift and drag coefficient for spacing ratio 10.0.  

(a) Cylinder1, (b) Cylinder2, (c) Cylinder3, (d) Cylinder4  
 
     The mean value of drag coefficient, Cdmean, is presented in 
Fig. 6 as a function of /L D . Some experimental and 
numerical data published in the literature for single square 
cylinder are also given in the figure for comparison. It is 
shown that, as spacing ratio increases, the calculated mean 
drag coefficient initially decreases and then increases and 
finally almost constant for upstream and downstream 
cylinders. The calculated mean drag coefficient also shows 
that the computed results of cylinders 1 and 3 and those of 
cylinders 2 and 4 are almost equal (see Fig. (6)). Cylinders 2 
and 4 are mostly located in the wake of cylinders 1 and 3. As 
a result, the free shear layers generated from outside of 
cylinders 1 and 3 reattaches onto cylinders 2 and 4, 
respectively, when the spacing ratio is small. The results 
further show that there is an abrupt increase in mean drag 
coefficient between spacing ratios 2.5 and 4 for cylinders 2 
and 4. This is due to the flow pattern transformation. The 
changes in the flow pattern due to spacing ratio will be 
discussed later in subsequent section. It is also found that 
there is a significant difference for mean drag coefficients 
between cylinders 1, 3 and 2, 4 in the spacing ratio ranging 
from 0.5 to 2.5; this means that the flow experiences a 
significant flow pattern transformation in this region. 
 



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:3, No:9, 2009

1124

 

 

 
Fig. 6 Mean drag coefficient as a function of /L D  for Reynolds 

number 100 
      

The root-mean-square values of drag and lift coefficients, 
Cdrms and Clrms, are illustrated in Figs. 7 and 8, respectively. In 
general, the root-mean-square value of the drag coefficients of 
cylinders 1 and 3are almost equal, so are those of cylinders 2 
and 4. The abrupt changes 1 and 3 and those of cylinders 2 
and 4 for small spacing ratios 0.5, 1.5, 2.5 and 4.0 shows that 
the free shear layers generated from upstream cylinders 1 and 
3 from inner and outer side reattaches onto cylinders 2 and 4. 
However, as spacing ratios increases from 4.0 to 10.0 the root-
mean-square value of the drag coefficient decreases and 
increases for cylinders 2 and 4 for spacing ratios 9 and 10 and 
almost constant for cylinders 1 and 3 for spacing ratios 9 and 
10. This suggests that the effects are caused by changes in the 
formation and shedding of the vortices with the increasing 
presence of spacing ratios (see Fig. 7). 
 

 
Fig. 7 Variations of the root-mean-square values of drag coefficient 

with the spacing ratio /L D . 
      

At small spacing ratios, root-mean-square value of the lift 
coefficient is very low. When the upstream cylinders 1 and 3 
starts to shed vortices, depending on the spacing ratios, root-
mean-square values of the lift coefficient are increased either 
after spacing ratio 1.5 or 2.5. However at any particular 
spacing ratio, with increasing spacing ratio, root-mean-square 
value of the lift coefficient is observed to increase first and 

decrease later and for some cases almost constants. The root-
mean-square values for the upstream cylinders 1 and 3 
observed to be lower than that of downstream cylinders 2 and 
4 for all chosen spacing ratios except that at spacing ratio 0.5 
(see Fig. 8).  

 

 
Fig. 8 Variations of the root-mean-square values of lift coefficient 

with the spacing ratio /L D  

B. Vortex shedding frequency 
Fourier spectrum analysis of the lift coefficients are carried 

out for two spacing ratios 1.5 and 10.0 to obtain the Strouhal 
number. It is to be noted that the Strouhal number is identified 
based on the dominating frequency in the corresponding 
spectra. The results for four cylinders are illustrated in Fig. 9 
for spacing ratio 1.5 and in Fig. 10 for spacing ratio 10.0. Four 
graphs in Fig. 10 show a single dominant peak. This is related 
to the vortex shedding frequency. For small spacing ratios, 
there is definite peak in the spectra, which gives the 
predominant non-dimensional shedding frequency called the 
Strouhal number. Further, a vortex shedding from the 
upstream cylinders 1 and 3 hit the downstream cylinders 2 and 
4 and at the same time the downstream cylinders develops its 
own vortices.  As a result the upstream cylinders 1 and 3 and 
downstream cylinders 2 and 4 interact with each others and 
generate a complicated multi frequency with different values 
and strength in Fig. 9. For higher spacing ratios, both the 
upstream cylinders 1 and 3 and downstream cylinders 2 and 4 
together behave like one cylinder and they get the same single 
dominant peak in the spectra (see Fig. 10). 
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Fig. 9 Fourier spectrum analysis of lift coefficient for spacing ratio 

1.5(a) Cylinder1, (b) Cylinder2, (c) Cylinder3, (d) Cylinder4 
 
 

 

 

 

 
Fig. 10 Fourier spectrum analysis of lift coefficient for spacing ratio 

10.0 (a) Cylinder1, (b) Cylinder2, (c) Cylinder3, (d) Cylinder4 
      

More detailed variations of St with spacing ratios /L D  for 
the chosen Reynolds number are summarized in Fig. 11. Some 
experimental and numerical data published in the literature for 
single square cylinder are also given in the figure for 
comparison. It is noteworthy in general, the Strouhal numbers 
of upstream cylinders 1 and 3 and those of downstream 
cylinders 2 and 4 are almost same for all chosen spacing ratios 
(see Fig. (11)). Figure 11 shows that Strouhal number 
decreases up to spacing ratio 2.5 and then increases up to 
spacing ratio 6.0. But for spacing ratio 7.0, the Strouhal 
number decreases a bit and then increases for remaining 
spacing ratios.  The agreement between the experimentally 
measured Strouhal number and the computational results is 
quite reasonable for all four cylinders when the spacing ratios 
increase from 4.0 to 10.0. There exist some regions in which 
the Strouhal number for all four cylinders is much higher or 
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lower than that for the single square cylinder (see Fig. (11)). 
The results further show that the Strouhal number for all four 
cylinders is lower than that for the single square cylinder at 
the spacing ratio 2.5. 

 

 
Fig. 11 Strouhal number as a function of the spacing ratio for four 

cylinders. 

C. Flow structures in the wake 
     Vortex shedding is a comprehensive physical phenomenon. 
When it occurs, vortices are shed alternatively from the top 
and bottom of the cylinder. The shedding of vortices is always 
accompanied by some physical changes in the local flow and 
more complicated when there are upstream cylinders in the 
wake of downstream cylinders. The vorticity contours in the 
near wake of the cylinder are presented in Fig. 12. The 
negative vorticity (clockwise vortex) is shown by dashed lines 
and the positive one (anticlockwise vortex) by solid lines. For 
indication, instantaneous flow fields for a single square 
cylinder and for four cylinders near to each one are also 
presented in figs. 12(a) and (b), respectively. In the case of a 
single square cylinder, the necessary features of the vortex 
shedding mechanism are similar as those in the circular 
cylinder case, apart from the separation points of the boundary 
layers on the cylinder surface are fixed at the upstream corners 
of the square cylinder (see Fig. 12 (a)).  The results further 
shows that when the cylinders are nearly closed to each one, 
they behave like a single square cylinder (see Fig. 12 (b)). 
Inoue [12] also observed such flow pattern for two side-by-
side square cylinders. In Fig. 12 (c), two inner side free shear 
layers from the upstream cylinders reattach onto the two 
downstream cylinder surfaces. But, the outside free shear 
layers from upstream cylinders 1 and 3 do not reattach on the 
downstream cylinders 2 and 4 surfaces. As a result, the 
downstream cylinders are completely engulfed. It is also 
found from the study that both free shear layers from inner 
and outer side do not show any significant wiggling. This type 
of flow pattern is so called stable shielding flow pattern. One 
of the results from these investigations is shown in Fig. 12 (d) 
for / 2.5L D = . It is found that the two inner side free shear 
layers reattach to the downstream cylinder surface while the 
outer free shear layers do not reattach to the downstream 
cylinder surface. As a result the free shear layers from outer 
side alternately wiggling near the downstream cylinders. Such 

type of flow pattern is referred to as wiggling shielding flow 
pattern. In case of wiggling shielding flow pattern the 
Strouhal number is much less than that for the single square 
cylinder (see Fig. 11). The vortex shedding flow pattern has 
shown in Figs. 12 (e) and (f), respectively. This observation 
shows that the free shear layers on the upstream cylinder roll 
up into mature vortices and then impinge on the downstream 
cylinder.  It is further found that when the spacing ratio is 
large enough the vortex shedding pattern occurs and as a 
result the alternate vortices from upstream cylinders are fully 
developed (see Fig. 12 (f)).  The variation of the wake pattern 
with the spacing shown in Figs. 12(c-e) qualitatively quite 
similar to that observed for the four circular cylinders in an in-
line square configuration numerically by Lam et al [11]. 
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Fig. 12 Instantaneous vorticity contours for some spacing ratios: (a) 

Single square cylinder; (b) / 0.5L D = ; (c) / 1.5L D = ; (d) 
/ 2.5L D = ; (e) / 5.0L D =  and (f) / 10.0L D =  

V. CONCLUSION 
This paper presents a numerical study of a uniform flow 

past four cylinders in an in-line rectangular configuration 
using the lattice Boltzmann method. The calculated results are 
compared with previous experimental and numerical results 
from single square cylinder and four cylinders in square 
configuration for circular cylinders. Four different flow 
patterns around the four cylinders are observed. At spacing 
ratio 0.5, only the single square cylinder flow pattern was 
observed. The stable shielding flow pattern was observed at 
spacing ratio 1.5, wiggling shielding flow pattern was 
observed at spacing ratio 2.5 and a vortex shedding flow 
pattern was observed at an even higher spacing ratio of 5.0. It 
is found that at small spacing ratios, there was more than one 
dominating frequency. It is also found that the Strouhal 
number for all four cylinders are almost equal for all chosen 
spacing ratios even there are more than one dominant 
frequency for small spacing ratios. It is found that there exist 
some regions in which the Strouhal number for all four 
cylinders is much higher at spacing ratio 0.5 and is much 
lower than at spacing ratio 2.5 compared to single square 
cylinder. A jump change in the physical quantities such as 
mean drag coefficient, root-mean-square values of the lift and 
drag coefficients and Strouhal number is the main reason for 
flow pattern transition was also observed. It is apparent that 
the vortex formation depends strongly on the spacing ratio 
between four cylinders in an array. The three dimensional 
numerical investigation for four square cylinders in an in-line 
rectangular configuration will be taken in near future. 
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