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Abstract—In this paper, stabilization of an Active Magnetic 

Bearing (AMB) system with varying rotor speed using Sliding Mode 
Control (SMC) technique is considered. The gyroscopic effect 
inherited in the system is proportional to rotor speed in which this 
nonlinearity effect causes high system instability as the rotor speed 
increases. Also, transformation of the AMB dynamic model into a 
new class of uncertain system shows that this gyroscopic effect lies 
in the mismatched part of the system matrix. Moreover, the current 
gain parameter is allowed to be varied in a known bound as an 
uncertainty in the input matrix. SMC design method is proposed in 
which the sufficient condition that guarantees the global exponential 
stability of the reduced-order system is represented in Linear Matrix 
Inequality (LMI). Then, a new chattering-free control law is 
established such that the system states are driven to reach the 
switching surface and stay on it thereafter. The performance of the 
controller applied to the AMB model is demonstrated through 
simulation works under various system conditions.   
 

Keywords—Active Magnetic Bearing (AMB), Sliding Mode 
Control (SMC), Linear Matrix Inequality (LMI), mismatched 
uncertainty.  

I. INTRODUCTION 
LIDING Mode Control (SMC) has received great 
attention in recent years because of its robustness against 

uncertainties present in system [1], [2] ,[3] and [4]. SMC is a 
nonlinear control technique that is applicable to a wide range 
of dynamic system including the linear, nonlinear, multi-
input/multi-output, discrete-time and large scale systems. 
There are many approaches have been reported and  
considered in the design process of the sliding-mode control 
law, such that the system is robust or even insensitive to 
parametric uncertainties and disturbance. In the practical 
application of SMC, the controller has also been successfully 
adapted in many forms and applied in numerous real-world 
applications such as  robot manipulator [5], active suspension 
system [6], magnetic suspension system and magnetic 
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bearings [7][8]. 
 The design of SMC controller involves two crucial steps 
which are commonly referred to as the reaching phase and the 
sliding phase [1][2]. In this paper, the design of both the 
sliding surface and control law based on SMC theory and its 
application to a five-degree-of-freedom (DOF) AMB system 
reported in [8] are considered. The AMB system contains the 
gyroscopic effect in which this nonlinearity causes the system 
to be unstable and the magnitude is proportional to the 
rotating speed of the rotor. Also, in this work, the linearized 
current-force factor of the AMB system is allowed to be 
varied by 20% of its nominal value. This relaxed condition is 
introduced to accommodate some variations in the range of 
the value of this parameter that is originally obtained through 
experimental set-up. After transforming the system into a 
regular form, a new class of dynamic system is formed in 
which it is shown that the gyroscopic effect belongs to 
mismatched uncertainty while the uncertain value of current-
force factor is matched. Based on this new system model, a 
sufficient condition is established such that the reduced-order 
system with the present of these uncertainties, when restricted 
to the switching surface, is guaranteed to achieve global 
stability. This sliding condition is formulated in term of Linear 
Matrix Inequality (LMI) in which various powerful semi-
definite programming methods are available to find the 
desired optimal solution, which consequently yields fully 
parameterized sliding surface.  Subsequently, a new control 
law is designed such that the system states are driven to the 
sliding surface and to remain on it thereafter. In order to make 
the controller to be more practical, the boundary layer 
technique is also adapted in the nonlinear switching term in 
which the input chattering is eliminated while the robustness 
of the system is still maintained. 
 The outline of this paper is as follows: In Section II, the 
model of the AMB system based on [8] is illustrated and 
represented in its deterministic form which serves as a tool for 
the controller design. Section III covers the detail design of 
SMC control algorithm wherein both the parameterization of 
sliding surface in term of LMIs and the development of 
nonlinear control law are shown. The stability of the system 
under the designed controller is also shown. Then, in Section 
IV, the performances on the AMB system under the designed 
controller are illustrated through simulation works under 
various system conditions. Finally, the conclusion in Section 
V summarizes the contribution of the work. 
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II. MODELING OF AN ACTIVE MAGNETIC BEARING SYSTEM 
 In order to synthesize the proposed sliding surface with the 
controller, a vertical shaft AMB system model for the 
application of turbo molecular pump system is re-derived 
based on the work done in [8]. 

A. Mathematical Model 

 
Fig. 1 Vertical Active Magnetic Bearing System 

 
The gyroscopic effect that causes the coupling between two 

axes of motions (pitch and yaw). Fig. 1 illustrates the five 
DOF vertical magnetic bearing in which the vertical axis (z-
axis) is assumed to be decoupled from the system and hence 

controlled separately. The top part of the rotor of the system in 
Fig. 1 is controlled actively by the magnetic bearing, labeled 
as AMB, in which the coil currents are the inputs. The bottom 
part of the rotor however is levitated to the center of the 
system by using two sets of permanent magnets labeled as 

PMB.  The rotation of rotor around the z-axis is supplied by 
external driving mechanism and considered as a time-varying 
parameter.  

Fig. 2 illustrates the free-body diagram of the rotor which 
shows the total forces produced by the AMB and PMB of the 
system. Based on the principle of flight dynamics [9], the 
equations of motion of the rotor-magnetic bearing system is as 
follows: 

     
bu xxg ffxm +=  

     
bu xbxuzar fLfLJJ −+−= αωβ  

     
bu yyg ffym +=    

     
bu ybyuzar fLfLJJ +−= βωα   

 
The gyroscopic effect is represented by the term αωzaJ−  
and βωzaJ , where it can be noticed that this will cause the 
coupling between the axes of motions proportional to the 
speed. The control forces produced by the AMB are given by 
the following equations: 
 

     xiuduugduxu IKKLxKf 222 ++= β  
     yiuduugduyu IKKLyKf 222 +−= α  

  

where xulxurxu fff −=  and yulyuryu fff −= are the net forces 
produced by the AMB on each x- and y-axis respectively (the 
same net force for bottom PMB as well). This is possible by 
having the AMB coil wound to produce differential current 
mode. For the PMB, the net forces produced are given by the 
following equations: 
 

            ββ bbgbbbgbxb LKxKLCxCf 2222 +−+−=  
            αα bbgbbbgbyb LKyKLCyCf 2222 −−−−=  
 

Equations (1), (2) and (3) can be integrated to produce the 
AMB model in the following form: 
 
       )()()()( tBUtXAtX += ω  
 
where T

gggg yxyxX ],,,,,,,[ αβαβ=  are the states of the 

system, 88)( xA ℜ∈ω  is the system matrix, 28xB ℜ∈  is the input 
matrix, T

yx IItU ][)( =  the input currents. The nonzero 
elements of the matrices are shown in the appendix. In, this 
study, the current-to-force parameter, Kix, is allowed to vary 
about 20% from its nominal value. This condition is 
introduced since the parameter value is obtained from a 
linearized relation wherein some inaccuracies might occur. 
With this newly introduced condition, the controller designed 
in the following section is formulated to be robust towards not 
only the gyroscopic effect, but also this parametric 
uncertainty. Since the parameter,  Kix, is in the input matrix, 
the new AMB model can be represented as follows: 
 
    )()]([)()]([)( tUKBBtXAAtX ixΔ++Δ+= ω             (5) 
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where ΔA(ω)  and ΔB(Kix) represent the uncertainties due to 
gyroscopic effect and parameter variation, respectively. 
 

B. AMB Mode in Deterministic Form 
In order to synthesize the controller, the AMB model is 

treated as an uncertain system in which deterministic approach 
to classify the system is used based on [10]. The model shown 
in (5) is readily in the uncertain class of system in which 
matrices A and B are the nominal constant matrices of the 
system. The decomposition into this deterministic form is 
possible due to the fact that the maximum and minimum 
values of the rotational rotor speed and the bound of the 
parameter variation are known. For this AMB model 
specifically, the elements of the ΔA(ω,t) can be calculated 
based on these available bounds. The rotational speed is given 
as follows: 
 

           rpmrpm 000,200 ≤≤ ω .                        (6) 

 
TABLE I 

PARAMETER FOR AMB SYSTEM [8] 

Symbol Parameter     Value  Unit 

m Mass of Rotor 1.595         kg 
Ja Moment of Inertia 

about rotational 
axis 

1.61 × 10-3    kg.m2 

Jr Moment of Inertia 
about radial axis 

3.83 × 10-3   kg.m2 

Lu Distance of upper 
AMB to G 

0.0128          m 

Lb Distance of lower 
PMB to G 

0.0843          m 

Kiu Linearized 
force/current factor 

200               N/A 

Kdu Linearized 
force/displ.  factor 

2.8 × 105      N/m 

Kb Stiffness coefficient 
of PMB 

1.0 × 105      N/m 

Cb Damping 
coefficient of PMB 

48                kg/s 

mun Static imbalance 0.6 × 10-3     m 
l Distance of 

unbalance mass 
from G 

0.02             m 

ω Rotor rotational 
speed 

0 – 1047 
(0 – 10000) 

rad/sec 
(rpm) 
 

 
 

Then, by using these bounds and the other system parameter 
values as shown in Table I, each element of the system matrix 
can be calculated and specified in the following form: 

                              ijijij ataa ≤≤ ),(ω                       (7)  

for i = 1, …, 8, and j = 1, …, 8, where aij(ω,t) are the element 
of ΔA(ω,t) matrix. The upper and lower bars indicate the 
maximum and minimum values of the elements. The element 
of matrix A and ΔA(ω,t) can be calculated based on these 
bounds by using the following equation: 

 

     
2

),( ijij

A

aa
jia

+
= , ),(),( jiaajia AijA −=Δ    (8) 

 

for i-th row,j-th column elements of A and ΔA(ω,t). 

 For the uncertainty due to the parametric variation, ΔB(Kix), 
as it is assumed in this work that the value is varied by 20% of 
its nominal value and this value represents the highest bound 
of the uncertainty. Thus this is adequate for the controller 
design.  

III. SLIDING MODE CONTROL DESIGN 
 Consider a class of uncertain systm 
 

)()),,(()()),,(()( tutpxBBtxtpxAAtx Δ++Δ+=           (9) 
 

where ntx ℜ∈)(  is the system states, mtu ℜ∈)(  is the control 
input and p is any time-varying scalar function. A and B is the 
system and input matrices, respectively, and B is of full rank. 
ΔA(x,p,t)  and ΔB(x,p,t) represent the uncertainties in the 
system matrix and input matrices. To complete the description 
of the uncertain dynamical system, the following assumptions 
are introduced and assumed to be valid. 
 
A1) For existence purposes, ΔA (·,·,·) and ΔB (·,·,·)  are   
        continuous on their arguments. 
A2) There exist known positive scalars γ 1 and γ2 and a    
     function h(x,p,t) such that 
 
            1),,( γ≤Δ tpxA , 
       ),,(),,( tpxBhtpxB =Δ , 
          1),,( 2 <≤ γtpxh . 
 
A3) The pair (A,B) is controllable. 
 
Define a linear switching surface as 
 
            σ = Sx = 0           (10) 
 
where nmS ×ℜ∈  is of full row rank m. By referring to previous 
results [1][2][4], the switching surface parameter matrix S 
should be selected such that  
E1) The matrix SB is nonsingular 
E2) The reduced (n-m) order system of the system (9)  
  restricted on the switching surface Sx=0 is globally    
  exponentially stable for all allowable uncertainties    
  satisfying assumption A2). 
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A. The Design of the Sliding Surface 

 Let )( mnn −×ℜ∈Φ  be any full column rank matrix such that 
0=ΦTB and mn

T I −=ΦΦ . Then it can be established that  
 

          [ ] ⎥
⎦

⎤
⎢
⎣

⎡
=Φ⎥

⎦

⎤
⎢
⎣

⎡ Φ −
−

m

mn
TT

T

I
I

B
BBB 0

0
)( 1

      (11a) 

 
or equivalently 
 
                              n

TTT IBBBB =+ΦΦ −1)( .       (11b) 
 
From this, it is obvious that the nonsingular transformation 
matrix can be defined as follows: 
 

               ⎥
⎦

⎤
⎢
⎣

⎡ Φ
=

− TT

T

BBB
T 1)(

               (12) 

 
Substituting (12) into system (9) gives 
 

  
}),,(()(

)()],,({[)()),,(()(
1 xtpxABBB

tutpxhIBtxtpxAAtx
TT

T

Δ+

++ΔΦΦ+=
−

 

 
This new system representation has mapped the uncertainties 
into the matched and mismatched components in which it is 
obvious that ΔA(x,p,t) and ΔB(x,p,t) belong to the mismatched 
and matched components, respectively. This, however, will be 
more obvious as the stability analysis of the system on the 
switching surface is performed next. 
 
Theorem 1.  Consider the system (9) and suppose 
assumption (A1)-(A3) hold. Then there exist a matrix S 
satisfying (E1) and (E2), if there is a matrix P > 0 and 
positive scalar δ such that 
 

      
0)()()( 2

1
11

1

21

<+ΦΦ−

+ΦΦ+ΦΦ

−
−−

−

mn
TTTT

TTT

IPABBBABP

PAPPA

δγδγ

δ
 

 
where γ 1 is given in assumption (A2). Moreover, the matrix S 
can be proposed to be as follows: 
 
    ))(()( 12

1
1 TT

n
TT PAIBBBS ΦΦ+= −− δγ     (15) 

 
Proof  From (15) and 0=ΦTB , it is obvious that SB = Im 

and therefore condition (E1) is satisfied. And from 

mn
T I −=ΦΦ , it is also true that  

       PABBBS TTT Φ=Φ −12
1 )(δγ       (16) 

 
By using the nonsingular transformation (12) in which a new 
state variable can be introduced such that z = Tx = 
[ ] [ ]TTTTTTT zzBBBxx 21

1 ,)(, =Φ − , system (9) can be transformed 
into the following regular form: 
 

   xtpxAABzzAz TTT ),,(211 ΔΦ+Φ+ΦΦ=  

   
utpxhIxtpxABBB

ABzBBBzABBBz

m
TT

TTTT

)),,((),,()(

)()(
1

2
1

1
1

2

++Δ+

+Φ=
−

−−

 

 
When the system (17) is restricted on the switching surface 
(10), then from z = Tx it is known that SM-1z = 0, i.e. 

.021 =+Φ SBzzS With SB = Im, it is obtained that 12 zSz Φ−= . 
Then the reduced-order system (17) on the surface (10) is  
 
    xtpxAzABSAz TTT ),,()( 11 ΔΦ+ΦΦ−ΦΦ=       (18) 
 
where it is apparently clear that the uncertainty ΔA(x,p,t) 
present in (18) affects the stability of the system. Then, take 

111 )( PzzzV T=  as a Lyapunov candidate function, then the 
derivative of )( 1zV  along (18) is derived to be 
 

xtpxAPz

zABSAPPABSAzzV
TT

TTTTTT

),,(2

)]()[)(

1

111

ΔΦ+

ΦΦ−ΦΦ+ΦΦ−ΦΦ=
 

 
From 21

1 BzzzMx +Φ== − and 12 zSz Φ−= , it can be shown 
that 1)( zSBx Φ−Φ= . Together with 0=ΦTB  
and mn

T I −=ΦΦ , the last term of (19) can be reduced as 
follows: 
 

1
2
1

2
1

21
1

1111
2

1
1

11
2

1

22
1

2
1

11

1

)(

)()(

1

),,(1

),,(),,(1
),,(2

zBSBSIPz

zSBSBzzPz

xxzPz

xtpxAzPz

xtpxAtpxAxPzPz

xtpxAPz

TTT
mn

T

TTT

TT

T

TTTT

TT

ΦΦ++=

Φ−ΦΦ−Φ+=

+≤

Δ+≤

ΔΔ+ΦΦ≤

ΔΦ

−
−

−

δγδγδ

δγδ

δγ
δ

δ
δ

δ
δ

 

 
where δ is any positive scalar. Thus, the derivative of the 
Lyapunov candidate function (19) is 
 
           111 )( zzzV T Σ≤        (20) 
 
where 
 

)(
)()(

2
1

2
1

21 ΦΦ+++

ΦΦ−ΦΦ+ΦΦ−ΦΦ=Σ

−
− BSBSIP

ABSAPPABSA
TTT

mn

TTTTT

δγδγδ
 

ΦΦ−ΦΦ+

ΦΦ−++ΦΦ+ΦΦ= −
−

ABSPBSBS

PABSIPAPPA
TTTT

TTTT
mn

TTT

2
1

2
1

21

δγ

δγδ
 

})(

)]{(}[)(

{)()(

12
1

2
1

12
1

112
1

2
1

21

PABBB

SBBBBABP

SPABBBABP

IPAPPA

TTT

TTT

TTTTTT
mn

TTT

Φ−

ΦΦ−

Φ+ΦΦ−

++ΦΦ+ΦΦ=

−

−

−−

−
−

εγ

δγδγ

δγ

δγδ

 

(13) 

(14) 

(17) 

(19) 
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By using (16), this is further reduced to 
 

.)()( 112
1

2
1

21

PABBBABP

IPAPPA
TTTT

mn
TTT

ΦΦ−

++ΦΦ+ΦΦ=Σ
−−

−
−

δγ

δγδ
 

 
Thus, (20) together with (14) and P > 0 implies that the 
reduced-order system (18) achieves global exponential 
stability when sliding on the surface (10). This completes the 
proof of Theorem 1.                       ⁬  
 Finding the solution of the Riccati inequality (14) usually 
gives a non-unique solution such that the conditions set are 
met. This however can be improved in which the solution not 
only fulfill (14) but also the trace of the solution is minimized. 
This is proven to be advantageous particularly for AMB 
system since the control effort is also reduced. This problem 
can be reformulated in term of LMI and stated in the 
following lemma. 
 
Lemma 1. The existence solution (14) is equivalent to 
solving the following LMI set which is: 
 

      01 <⎥
⎦

⎤
⎢
⎣

⎡

Φ
Φ++

−VP
PCAPPA TT

          (21) 

             P > 0            (22) 
 
where 
         ΦΦ= AA T , 
         mnIC −= 2

1δγ , 

     112
1 )( −− −= δδγ TTT ABBBABV . 

 
Proof  From (14) and mn

T I −=ΦΦ , the following inequality 
is produced 
 

   
0])()[(

)(
111

1

2
1

<ΦΦ−ΦΦ−

+ΦΦ+ΦΦ
−−−

−

PABBBABP

IAPPA
TTTTT

mn
TTT

δδγ

δγ
 

   
.0])()[(

)(][][
111

1

2
1

<Φ−Φ−

+ΦΦ+ΦΦ
−−−

−

PABBBABP

IAPPA
TTTT

mn
TTT

δδγ

δγ
 

 
By using Schur complement [11][12], the above LMI set is 
obtained and this complete the proof.         ⁬ 
 

B. Synthesis of Control Law 
 To find the control law such the trajectories of system (9) 
are driven to the designed sliding surface and to remain on the 
surface for the subsequent time, the following reachability 
condition is used [2][4] 

        σβσσ −≤T                 (23) 
 
where β  is a positive scalar and σ is the sliding surface 
defined by (10). With this reaching condition the following 
theorem can be introduced. 
 

Theorem 2.  Consider system (9) with the assumption A1) 
and A2). If the LMI set (21) and (22) has a solution and the 
sliding surface S is solvable given by (15), the reachability 
condition (23) is satisfied by employing the control law given 
below: 
 

    
σ
σβγγ

γ
}]{[

)1(
1)( 21

2

++
−

−−= xSASSAxtu     (24) 

 
where S is given by (15) and  β  is a designed positive scalar. 
 
Proof  To proof this theorem, the reachability condition 
(23) for system (9) with control law (24) and SB = Im is used. 
From (23), it can be shown that 
 

))],,([)],,(([ utpxhIBxtpxAAS m
TT ++Δ+= σσσ  

)),,(),,(( utpxhuxtpxASSAxT ++Δ+= σ  

)}]{[
)1(

1
),,(),,((

21
2 σ

σβγγ
γ

σ

++
−

−−

+Δ+=

xSASSAx

utpxhxtpxASSAxT

 

σβ
γ

σγ

γ
γ

σ

)1(
1]

[
)1(

1)),,(),,((

2
2

1
2

−
−+

−
−+Δ=

xSA

SutpxhxtpxAST

 

σβ
γ

σγ

γ
γ

σσ

)1(
1]

[
)1(

1),,(),,(

2
2

1
2

−
−+

−
−+Δ≤

xSA

SutpxhxtpxAS
 

 
From (24), it is known that  
 

    .
)1(

1][
)1(

1

2
21

2

β
γ

γγ
γ −

++
−

+≤ xSASxSAu  

 
With this inequality, the reachability condition can further be 
simplified to be 
 

σ
γ

γ
σγγ

γ
γ

σβ
γ

γ
σγσ

γ
γγ

σσ

xSAxSAS

xSAxST

)1(
)(

)1(

)1()1(

2

2
21

2

2

2

2
2

2

21

−
−+

−
+

−
++

−
−≤

 

           σβ
γ )1(

1

2−
−  

        σβ
γ

γ
σ

γ
γ

γ
γ

γ
)1(
)1(

)
)1()1(

(
2

2

2

2

2

2

2
2

−
−

+
−

−
−

+≤ xSA  

        σβ−≤  
Thus, the reachability condition (23) is satisfied and the proof 
of Theorem 2 is complete.                    ⁬ 

It is well known that the discontinuous control term in (24) 
introduces high chattering effect which is undesirable in any 
dynamic system due to its infinite switching frequency. This 
high frequency switching input can excite any high-frequency 
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unmodelled dynamics in the system and cause system 
instability [1][2]. To overcome this chattering effect, the 
boundary layer technique is used instead of the discontinuous 
term as covered in [13]. The new control law adapting the 
boundary layer techniques is as below: 
 

 )(}]{[
)1(

1)( 21
2 Π

++
−

−−=
σβγγ

γ
satxSASSAxtu     (25) 

 
where П is the thickness of the boundary layer. The detail of 
the selection of the П value and its relation towards the trade-
off of the robustness of the system is discussed in detail in 
[13] and intentionally omitted in this work. The adaptation of 
the method is purely to produce a control law that is 
chattering-free which is more practical for actual application. 
 

IV. SIMULATION ON AMB SYSTEM AND DISCUSSION 
The simulation work is performed by using MATLAB® and 

Simulink®. For solving the LMI problem (21) and (22), 
instead of using standard LMI Toolbox in Matlab, 
YALMIP/SeDuMi convex problem solver for semi-definite 
problem is used [14][15]. YALMIP/SeDuMi is among the 
newly developed convex problem solver which is proven to 
produce a less conservative solution and a higher convergence 
rate. This makes it very attractive especially for designing the 
controller which in nature a reduced conservatism is 
practically preferable. After transformation of the AMB model 
into the deterministic form, the procedure of designing the 
controller and its application on the system is outlined as 
follows: 
 
Step 1: Compute the norm for the system matrix uncertainty 
ΔA(ω,t):    

                            1223.440=ΔA   2.0),,( ≤tpxh   
 

Note that the variation of parameter Kix is already assumed to 
be 20% varying from its nominal value. Thus, it is explicitly 
known that the norm for the function, ),,( tpxh , which bound 
the uncertainty in the B matrix is 0.2. With these norm 
bounded values, the constant in assumption A2) are as 
follows: 
 
        γ1 = 440.1223, γ2 = 0.2. 
 
Step 2:  Solve LMI sets (21) and (22) for P (with δ = 1) to 
parameterize the sliding surface, S in (15).  
 
By using the YALMIP/SeDuMi LMI solver, the value for the 
matrix P is as follows: 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

××××
×××

××
×

=

000000
*00000
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where (*) indicates the symmetrical values. With this P, the 
surface parameter is calculated to be as follows: 
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Step 3:  Select parameter β and П for controller (25). 
 
Parameter β = 0.2 is chosen. Any small positive value such 
that reachability is met is adequate for the design. For the 
boundary layer, П, it does affect the performance of the 
control in which the bigger the value is, the less chattering 
will occur in the control current Ix. However, the trade-off is, 
less robustness is noticed since instead of reaching the stable 
sliding surface, the states trajectories enter and oscillate in the 
given boundary [13]. For this work two П values are chosen 
which are П = 105 and П =103 to illustrate the effect on the 
system. 
  
 The initial values of the states are set at 

T
gggg yxyx ],,,,,,,[ αβαβ  = [2×10-4 m,-2×10-5 rad,1×10-4 

m,0,0,0,0,0]T. Fig. 3 shows the trajectories of states X and Y 
settle to zero when the rotor speed, ω = 10,000rpm is set, the 
nominal value rotor speed. Also, the current-to-force 
parameter, Kix, is set to its nominal value with no variation of 
its value. All other states also converge to zero but only X and 
Y values are shown due to their relatively large initial values. 
 In Fig. 4, the variation of 20% of Kix value is introduced 
into the AMB model and it is proven that the system is robust 
under the new control law as the trajectories of X and Y in 
which the difference is hardly noticeable compared to Fig. 3. 
As the rotor speed is increased to its maximum value, 
20,000rpm, the magnitude of the oscillations of X and Y at the 
beginning stage is insignificantly higher as shown in Fig. 5. 
With the results shown in these three figures, it is proven that 
under the control law (25), the system is robustly stable in a 
wide range of rotor speed as well as variation occurs in the Kix 
value. 
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Fig. 3 X and Y trajectories with ω = 10krpm, γ2 = 0 
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Fig. 4 X and Y trajectories with ω = 10krpm, γ2 = 0.2 
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Fig. 5 X and Y trajectories with ω = 20krpm, γ2 = 0.2 

 
 When the boundary value П is reduced from 105 to 103, the 
system will be more sensitive toward the uncertainties and this 
result is shown in Fig. 6 in which X and Y oscillate at higher 
amplitudes and take a longer time to settle to zero. The control 
current, Ix, for both of these boundary values are shown in 
Fig. 7 where it can be noticed the control effort for П = 103 is 
higher in order to bring the states to zero. Finally, when the 

ideal switching control term (24) is used, a very high 
chattering effect can be seen as shown in Fig. 8. Although this 
control law provides the highest robustness of the system, as 
discussed earlier, it is very ‘expensive’ in term of practicality.  
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Fig. 6 X and Y trajectories with ω = 20krpm, γ2 = 0.2 and boundary 

layer П = 1000 
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Fig. 7 Current Ix with П = 1000 (top) and П = 100000 (bottom) 
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Fig. 8 Current Ix with discontinous term (signum function) 
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Remark  Note that the norm of the control input is known 
to be as follows: 
 

  .
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++
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and the term SA  and ][
)1(

1
21

2

SAS γγ
γ

+
−

 which contain 

the surface parameter S, contribute significantly to the upper 
bound of the control effort. The Table II shows the values of 
these terms obtained from solving LMIs and algebraic Riccati 
equation (ARE) in which it shows that parameterization with 
the LMI solution produce a desirably lower control effort. 
 

TABLE II 
COMPARISON BETWEEN LMI AND ARE 

Control term LMI ARE 

SA  4.5708×103 4.5917×103    

][
)1(

1
21

2

SAS γγ
γ

+
−

 1.1442×103 1.1494×103    

 

V. CONCLUSION 
In this work, a new chattering-free SMC controller is 

proposed for stabilization of a five-DOF AMB system in 
which sliding surface is designed based solving a set of LMIs. 
The proposed controller is proven to be able to achieve 
asymptotic stability at a wide range of rotational rotor speed 
although with the present of mismatched and matched system 
uncertainty. The performance of the controller is demonstrated 
through various simulation works.   

APPENDIX 
The nonzero elements of matrix A(ω,t), B where i and j 

indicate the i-th and j-th entry of each element. 
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