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Abstract—Fuzzy C-means Clustering algorithm (FCM) is a 

method that is frequently used in pattern recognition.  It has the 
advantage of giving good modeling results in many cases, although, 
it is not capable of specifying the number of clusters by itself. In 
FCM algorithm most researchers fix weighting exponent (m) to a 
conventional value of 2 which might not be the appropriate for all 
applications. Consequently, the main objective of this paper is to use 
the subtractive clustering algorithm to provide the optimal number of 
clusters needed by FCM algorithm   by optimizing the parameters of  
the subtractive clustering algorithm by an iterative search approach 
and then to find an optimal weighting exponent (m)  for the FCM 
algorithm. In order to get an optimal number of clusters,  the iterative 
search approach is used to find the optimal single-output Sugeno-
type Fuzzy Inference System (FIS) model by optimizing the  
parameters of the subtractive clustering algorithm that give minimum 
least square error between the actual data  and the Sugeno fuzzy 
model. Once the number of clusters is optimized, then two 
approaches are proposed to optimize the weighting exponent (m) in 
the FCM algorithm, namely, the iterative search approach and the 
genetic algorithms. The above mentioned approach is tested on the 
generated data from the original function and optimal fuzzy models 
are obtained with minimum error between the real data and the 
obtained fuzzy models. 
 

Keywords—Fuzzy clustering, Fuzzy C-Means, Genetic 
Algorithm, Sugeno fuzzy systems.  
 

I. INTRODUCTION 
ATTERN recognition is a field concerned with machine 
recognition of meaningful regularities in noisy or complex 

environments. In simpler words, pattern recognition is the 
search for structures in data. In pattern recognition, group of 
data is called a cluster [1]. In practice, the data are usually not 
well distributed; therefore the "regularities" or "structures" 
may not be precisely defined. That is, pattern recognition, by 
its very nature, an inexact science. To deal with the ambiguity, 
it is helpful to introduce some "fuzziness" into the formulation 
of the problem. For example, the boundary between clusters 
could be fuzzy rather than crisp; that is, a data point could 
belong to two or more clusters with different degrees of 
membership. In this way, the formulation is closer to the real-
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world problem and therefore better performance may be 
expected. This is the first reason for using fuzzy models for 
pattern recognition: the problem by its very nature requires 
fuzzy modeling (in fact, fuzzy modeling means more flexible 
modeling-by extending the zero-one membership to the 
membership in the interval [0,1], more flexibility is 
introduced). 

The second reason for using fuzzy models is that the 
formulated problem may be easier to solve computationally. 
This is due to the fact that a non-fuzzy model often results in 
an exhaustive search in a huge space (because some key 
variables can only take values 0 and 1), whereas in a fuzzy 
model all the variables are continuous, so that derivatives can 
be computed to find the right direction for the search. A key 
problem is to find clusters from a set data points. 

Fuzzy C-Means (FCM) is a method of clustering which 
allows one piece of data to belong to two or more clusters. 
This method was developed by Dunn [2] in 1973 and 
improved by Bezdek [3] in 1981 and is frequently used in 
pattern recognition.   

Thus what we want from the optimization is to improve the 
performance toward some optimal point or points [4]. Luus 
[5] identifies three main types of search methods: calculus-
based, enumerative and random. 

Hall, L. O., Ozyurt, I. B. and Bezdek, J. C. [6] describe a 
genetically guided approach for optimizing the hard (J1) and 
fuzzy (Jm) c-means functional used in cluster analysis. Our 
experiments show that a genetic algorithm ameliorates the 
difficulty of choosing an initialization for the c-means 
clustering algorithms. Experiments use six data sets, including 
the Iris data, magnetic resonance and color images. The 
genetic algorithm approach is generally able to find the lowest 
known Jm value or a Jm associated with a partition very similar 
to that associated with the lowest Jm value. On data sets with 
several local extreme, the GA approach always avoids the less 
desirable solutions. Deteriorate partitions are always avoided 
by the GA approach, which provides an effective method for 
optimizing clustering models whose objective function can be 
represented in terms of cluster centers. The time cost of 
genetic guided clustering is shown to make series of random 
initializations of fuzzy/hard c-means, where the partition 
associated with the lowest Jm value is chosen, and an effective 
competitor for many clustering domains. 

The main differences between this work and the one by 
Bezdek et al [6] are: 
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• This work used the least square error as an objective 
function for the genetics algorithm but Bezedek [6] 
used Jm as an objective function. 

• This work optimized the weighting exponent m 
without changing the distance function but Bezdek 
[6] keeps the weighting exponent m =2.00 and uses 
two different distance functions to find an optimal 
value.  

II. THE SUBTRACTIVE CLUSTERING  
The subtractive clustering method assumes each data point 

is a potential cluster center and calculates a measure of the 
likelihood that each data point would define the cluster center, 
based on the density of surrounding data points. The 
algorithm:  
 

• Selects the data point with the highest potential to be 
the first cluster center 

• Removes all data points in the vicinity of the first 
cluster center (as determined by radii), in order to 
determine the next data cluster and its center location 

• Iterates on this process until all of the data is within 
radii of a cluster center 

•  
The subtractive clustering method [7] is an extension of the 

mountain clustering method proposed by R. Yager [8]. 
The subtractive clustering is used to determine the number 

of clusters of the data being proposed, and then generates a 
fuzzy model. However, the iterative search is used to optimize 
the least square error from the model being generated and the 
test model. After that, the number of clusters is taken to the 
Fuzzy C-Means Algorithm. 

III. THE FUZZY C-MEANS CLUSTERING ALGORITHM  
Fuzzy C-Means (FCM) is a method of clustering which 

allows one piece of data to belong to two or more clusters. 
This method is frequently used in pattern recognition. It is 
based on minimization of the following objective function: 
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Where m is any real number greater than 1, it was set to 2.00 
by Bezdek. 

uij is the degree of membership of xi in the cluster j; xi is the 
ith of d-dimensional measured data ; cj is the d-dimension 
center of the cluster  and ||*|| is any norm expressing the 
similarity between any measured data and the center. 

Fuzzy partitioning is carried out through an iterative 
optimization of the objective function shown above, with the 
update of membership uij and the cj cluster centers by: 
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This iteration will stop when  
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Where ε is a termination criterion between 0 and 1 and k are 
the iteration steps. 
 
This procedure converges to a local minimum or a saddle 
point of Jm. 
The algorithm is composed of the following steps: 
 
1.  Initialize U = [ uij] matrix, U(0) 
2.  At k-step: calculate the centers vectors C(k)=[cj] with U(k) 
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3.  Update U(k) , U(k+1) 
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If || U(k+1) - U(k)||<ε then STOP; otherwise return to step 2. 

IV. THE GENETICS ALGORITHM  
The GA is a stochastic global search method that mimics 

the metaphor of natural biological evolution. GAs operates on 
a population of potential solutions applying the principle of 
survival of the fittest to produce (hopefully) better and better 
approximations to a solution [9, 10]. At each generation, a 
new set of approximations is created by the process of 
selecting individuals according to their level of fitness in the 
problem domain and breeding them together using operators 
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borrowed from natural genetics. This process leads to the 
evolution of populations of individuals that are better suited to 
their environment than the individuals that they were created 
from, just as in natural adaptation.  

V. RESULTS AND DISCUSSION  
A complete program using MATLAB programming 

language was developed to find the optimal value of the 
weighting exponent. It starts by performing subtractive 
clustering for input-output data, build the fuzzy model using 
subtractive clustering and optimize the parameters by 
optimizing the least square error between the output of the 
fuzzy model and the output from the original function by 
entering a tested data. The optimizing is carried out by 
iteration. After that, the genetics algorithms optimized the 
weighting exponent of FCM. The same way, build the fuzzy 
model using FCM then optimize the weighting exponent m by 
optimizing the least square error between the output of the 
fuzzy model and the output from the original function by 
entering the same tested data. Fig. 1 at Appendix A shows the 
flow chart of the program. 

The best way to introduce results is through presenting four 
examples of modeling of four highly nonlinear functions. 
Each example is discussed, plotted. Then compared with the 
best error of original FCM with weighting exponent (m 
=2.00). 
 

A.  Example 1 - Modeling a Two Input Nonlinear Function 
In this example, a nonlinear function was proposed: 

 

y
y

x
xz )sin(*)sin(

=
                           (7)                                  

 
The range X ∈  [-10.5, 10.5] and Y ∈  [-10.5. 10.5] is the 
input space of the above equation, 200 data pairs are obtained 
randomly (Fig. 2). 
 

 
 

Fig. 2 Random data points of equation (7); blue circles for the data to 
be clustered and the red stares for the testing data 

 

First, the best least square error was obtained for the FCM of 
weighting exponent (m =2.00) which is (0.0126 with 53 
clusters). Next, the optimized least square error of the 
subtractive clustering is obtained by iteration that is (0.0115 
with 52 clusters). We could see here that the error improves 
by (10%).  Then, the clusters number is taken to the FCM 
algorithm, the error is optimized to (0.004 with 52 clusters) 
that means the error improves by (310%) and the weighting 
exponent (m) is (1.4149). Results are better shown in Table I 
at Appendix A. 
 

B.  Example 2 - Modeling a One Input Nonlinear Function 
In this example, a nonlinear function was proposed also but 

with one variable x: 
 

x
xy )sin(

=
                    (8)                   

 
The range X ∈  [-20.5, 20.5] is the input space of the above 
equation, 200 data pairs were obtained randomly and shown 
in Fig. 3.  
 

 
Fig. 3 Random data points of equation (8); blue circles for the data to 

be clustered and the red stares for the testing data 
 

First, the best least square error is obtained for the FCM of 
weighting exponent (m =2.00) which is (5.1898*e-7 with 178 
clusters). Next, the least square error of the subtractive 
clustering is obtained by iteration which was (1*e-10 with 24) 
clusters since this error pre-defined if the error is less than 
(1*e-10). Then, the clusters number is taken to the FCM 
algorithm, the error is (1.2775*e-12) with 24 clusters and the 
weighting exponent (m) is (1.7075). The improvement is 
(4*e7) % and the number of clusters improved by 741%. 
Results are better shown in Table 2 at the Appendix. 
 

C. Example 3 - Modeling a One Input Nonlinear Function 
In this example, a nonlinear function was proposed: 

( ) 103 3 −−= xy                            (9)                   
 
The range X ∈  [1, 50] is the input space of the above 
equation, 200 data pairs were obtained randomly and are 
shown in Fig. 4.  
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Fig. 4 Random data points of equation (9); blue circles for the data to 
be clustered and the red stares for the testing data 

 
First, the best least square error is obtained for the FCM of 

weighting exponent (m =2.00) which is (3.3583*e-17 with 
188 clusters). Next, the least square error of the subtractive 
clustering is obtained by iteration which is (1.6988*e-17 with 
103 clusters) since the least error can be taken from the 
iteration. Then, the clusters number is taken to the FCM 
algorithm, the error was (2.2819*e-18 with 103 clusters) and 
the weighting exponent (m) is 100.8656. Here we could see 
that the number of clusters is reduced from 188 to 103 clusters 
that mean the number of rules is reduced and the error is 
improved by 14 times. Results are better shown in Table III at 
Appendix A. 

The whole results are better shown in Table IV at Appendix 
A. 

VI. CONCLUSION  
In this work, the subtractive clustering parameters, which 

are the radius, squash factor, accept ratio, and the reject ratio 
are optimized using the GA. 

The original FCM proposed by Bezdek is optimized using 
GA and another values of the weighting exponent rather than 
(m =2) are giving less approximation error. Therefore, the 
least square error is enhanced in most of the cases handled in 
this work.  Also, the number of clusters is reduced. 

The time needed to reach an optimum through GA is less 
than the time needed by the iterative approach. Also GA 
provides higher resolution capability compared to the iterative 
search due to the fact that the precision depends on the step 
value in the “for loop function” which is max equal to 0.001 
for the radius parameter in the subtractive clustering 
algorithm, but for GA, it depends on the length of the 
individual and the range of the parameter whish is 0.00003 for 
the radius parameter also. So GA gives better performance 
and has less approximation error with less time.     

Also it can be concluded that the time needed for the GA to 
optimize an objective function depends on the number and the 
length of the individual in the population and the number of 
parameter to be optimized.
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APPENDIX 
 

 
Fig. 1 The flowchart of the software 

 
TABLE I 

THE RESULTS OF EQUATION (7): M IS THE WEIGHTING EXPONENT AND TIME IN SECONDS 
Error Clusters Iteration 

M=2.00 0.0126 53 
Subtractive clustering FCM Time 
Error Clusters Error m 

Iteration for the 
subtractive and GA 
for FCM 0.0115 52 0.004 1.4149 

19857.4 

   
 

TABLE II 
THE RESULTS OF EQUATION (8): M IS THE WEIGHTING EXPONENT AND TIME IN SECONDS 

Error Clusters Iteration 
m=2.00 5.1898 e-7 178 

Subtractive clustering FCM Time 
Error Clusters Error M 

Iteration for the 
subtractive and GA 
for FCM 1 e-10 24 1.2775 e-10 1.7075 

3387.2 

 
 

TABLE III 
THE RESULTS OF EQUATION (9): M IS THE WEIGHTING EXPONENT AND TIME IN SECONDS 

Error Clusters Iteration 
M=2.00 3.3583 e-17 188 

Subtractive clustering FCM Time 
Error Clusters Error m 

Iteration for the 
subtractive and GA 
for FCM 1.6988 e-17 103 2.2819 e-18 100.8656 

21440 

 

Original Data 

Subtractive clustering model 
 

Testing data 

Original 
function results 

Least squares 
error 

Change lest 
squares 
parameters 

Store results: 
centers 

To 
FCM

Original Data Testing data 

Original 
function results FCM clustering model 

Least squares 
error 

The weighting exponent of 
the optimal least squares 

Change the weighting 
exponent by GA if the 
number of generations is 
not reached 
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TABLE IV 
THE FINAL LEAST SQUARE ERRORS AND CLUSTERS NUMBER FOR THE ORIGINAL FCM AND FOR THE FCM WHICH THEIR NUMBERS OF CLUSTERS WERE GOT 

FROM THE ITERATIVELY OR GENETICALLY OPTIMIZED SUBTRACTIVE CLUSTERING 
The original FCM (m=2) Iteration then genetics The function 
Error Clusters Error Clusters New (m) 

Eq (7) 0.0126 53 0.004 52 1.4149 
Eq (8) 5.1898 e-7 178 1.2775 e-10 24 1.7075 
Eq (9) 3.3583 e-18 188 2.2819 e-18 103 100.8656 
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