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A Finite Volume Procedure on Unstructured Meshes
for Fluid-Structure Interaction Problems

P I Jagad, B P Puranik, and A W Date

Abstract—Flow through micro and mini channels requires rel-
atively high driving pressure due to the large fluid pressure drop
through these channels. Consequently the forces acting on the walls of
the channel due to the fluid pressure are also large. Due to these forces
there are displacement fields set up in the solid substrate containing
the channels. If the movement of the substrate is constrained at some
points, then stress fields are established in the substrate. On the other
hand, if the deformation of the channel shape is sufficiently large
then its effect on the fluid flow is important to be calculated. Such
coupled fluid-solid systems form a class of problems known as fluid-
structure interactions. In the present work a co-located finite volume
discretization procedure on unstructured meshes is described for
solving fluid-structure interaction type of problems. A linear elastic
solid is assumed for which the effect of the channel deformation
on the flow is neglected. Thus the governing equations for the
fluid and the solid are decoupled and are solved separately. The
procedure is validated by solving two benchmark problems, one from
fluid mechanics and another from solid mechanics. A fluid-structure
interaction problem of flow through a U-shaped channel embedded
in a plate is solved.

Keywords—Finite volume method, flow induced stresses, fluid-
structure interaction, unstructured meshes.

I. INTRODUCTION

WHEN a fluid flows through a channel it exerts forces
on the walls of the channel due to its pressure. These

forces set up displacement fields in the solid substrate contain-
ing the channel. If the movement of substrate is constrained
at some points, say by clamping or by screwing, then stress
fields are also set up in the substrate. When the pressure of
the fluid is high it is important to determine the displacement
and the stress fields in the substrate since these may lead to
failure of the system. On the other hand if the deformation
of the channel due to the fluid pressure forces is sufficiently
large then it is important to determine its effect on the fluid
flow as well. Such coupled fluid structure systems constitute
what are known as fluid-structure interaction type of problems.
Some examples of fluid-structure interaction problems include
mini and micro channel heat exchangers, electronics cooling,
cooling of gas turbine blades, etc.

The finite volume method is of interest due to its suitability
for solving the non-linear fluid flow problems. When dealing
with fluid-structure interaction type of problems, it is conve-
nient to use for solving the governing equations in the solid
as well. There are very few studies found in literature on
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finite volume methods for fluid-structure interaction type of
problems. Demirdzic et al. [1] proposed a numerical method
for coupled fluid flow, heat transfer and stress analysis using
unstructured moving meshes with cells of arbitrary topology.
A finite volume discretization procedure was developed using
a co-located grid arrangement. Use of the method was demon-
strated by solving a few problems involving fluid-solid coupled
situations. Schafer et al. [2] presented a multigrid finite volume
method for the prediction of the coupled fluid-solid problems
in complex geometries. A unified finite volume approach based
on the concept of block structured grid was used for handling
the complexity of the geometry and the fluid solid-coupling.
To investigate the performance of the method a few problems
were solved involving pure solid mechanics as well as coupled
fluid-solid situations.

To solve fluid structure-interaction type of problems the
governing equations for the fluid and for the solid need to be
solved simultaneously. However, within the elastic limit of the
solid material usually the effect of the channel deformation on
the fluid flow is neglected. Hence the governing equations for
the fluid flow and that for the solid can be solved separately.
This approach is used in the present work. A co-located finite
volume discretization procedure is described for the solution.
The flow is considered to be laminar and a linear elastic
behavior for the solid is assumed. To validate the procedure
two benchmark problems, one from fluid mechanics and
another from solid mechanics, are solved. The first problem
consists of flow of a fluid over a backward facing step. The
second benchmark problem includes a flat plate with a circular
hole subjected to a uniform tension. Finally a fluid-structure
interaction type of problem is solved. The problem consists
of flow of a fluid through a U-shaped channel embedded
in a plate. All problems solved in this work assume two-
dimensional behavior.

II. MATHEMATICAL FORMULATION AND DISCRETIZATION

The governing transport equations (continuity and momen-
tum) for the fluid as well as for the solid under steady state
can be expressed as

∂ (ρuj)

∂xj
= 0, (1)

and

∂ (ρujui)

∂xj
−

∂σij

∂xj
= ρfi, (2)

where uj is the velocity vector, σij is the stress tensor, fi is the
resultant body force per unit mass in i-direction and xj is the
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cartesian coordinate vector. In solids usually the displacement
vector is considered as a variable of interest. The velocity
vector is expressed in terms of the displacement vector δuj as

uj =
∂ (δuj)

∂t
. (3)

For the fluid the Stokes’ law for a Newtonian fluid is
invoked to relate the stress tensor with the rate of strain tensor
as

σij = −pδij + 2μεij + δijλεkk, (4)

where p is the pressure, δij is the Kronecker delta, μ is the
coefficient of dynamic viscosity, λ = − 2

3μ is the second
coefficient of viscosity and εij is the rate of strain tensor.
The εij is expressed in terms of the velocity gradients as

εij =
1

2

(
∂ui

∂xj
+

∂uj

∂xi

)
. (5)

Invoking the Hooke’s law for the solid for relating the stress
tensor with the strain tensor, we have

σij = 2μεij + δijλεkk, (6)

where μ is the shear modulus and λ is the Lame’s constant.
Assuming the material to be homogeneous and isotropic they
are expressed as

μ =
E

2(1 + ν)
, (7)

λ =
νE

(1 + ν)(1− 2ν)
, (8)

where E is Young’s modulus and ν is Poisson’s ratio.
For small displacements the strain tensor is expressed in

terms of displacement gradients as

εij =
1

2

(
∂ (δui)

∂xj
+

∂ (δuj)

∂xi

)
. (9)

Introducing the constitutive relations ((4) and (6)) and the
kinematic relations ((5) and (9)) into the momentum equations,
i.e., into (2), we get

∂ (ρujui)

∂xj
−

∂

∂xj

[
−pδij + μ

(
∂ui

∂xj
+

∂uj

∂xi

)
+ λδij

∂uk

∂xk

]

= ρfi for the fluid, (10)

and

∂ (ρujui)

∂xj
−

∂

∂xj

[
μ

(
∂ (δui)

∂xj
+

∂ (δuj)

∂xi

)
+ λδij

∂ (δuk)

∂xk

]

= ρfi for the solid. (11)

Equations (10) and (11) can be expressed in terms of a
general variable φ as

∂ (ρujφ)

∂xj
−

∂

∂xj

[
μφ

(
∂φ

∂xj

)]
= Sφ, (12)

where Sφ is the source term. The general variable φ stands
for the velocity vector in the fluid and for the displacement
vector in the solid. Incompressible flow and constant dynamic
viscosity are assumed for the fluid. The source terms are
expressed as

Sφ = ρfi −
∂p

∂xi
for the fluid, (13)

and

Sφ = ρfi+
∂

∂xj

[
μ

(
∂ (δuj)

∂xi

)
+ λδij

∂ (δuk)

∂xk

]
for the solid.

(14)
The continuity equation, i.e., (1) is redundant and need not

be considered for the solid as an elastic solid is assumed.
Also it is reasonable to assume for most of the applications
in practice that the strains, displacements, velocities and the
accelerations are very small. Hence the convective terms are
neglected in the solid.

The convective and diffusive terms in the transport equation
(12) are discretized using the procedure proposed by Date [3].
This procedure uses the SIMPLE algorithm of Patankar [4]
for calculating the velocity and the pressure fields and the
smoothing pressure correction algorithm proposed by Date [5]
for velocity-pressure coupling. Discretization of the additional
terms appearing in the source term for the solid is explained
here. The present procedure is an extension of the procedure
proposed by Date [3] for solving fluid flow problems. Only the
additional work is reported here. Integrating the source term
over an arbitrary control volume (CV) or cell, we get

∫
�V

(Sφ) dV =

∫
�V

(ρfi) dV+

∫
�V

[
∂

∂xj

[
μ

(
∂ (δuj)

∂xi

)
+ λδij

∂ (δuk)

∂xk

]]
dV, (15)

where �V is the volume of the CV. The volume integral of
the body force is expressed assuming an averaged value of this
term stored at the centroid of the CV. To express the volume
integrals of the remaining terms Gauss’ theorem is used. The
volume integrals are converted to the surface integrals to get

∫
�V

(Sφ) dV = ρfi�V+

∫
S

[
μ

(
∂ (δuj)

∂xi

)
+ λδij

∂ (δuk)

∂xk

]
· dS, (16)

where S represents the surface area of the CV. The surface
area consists of the CV faces. The surface integrals in (16)
are approximated by summations over the CV faces. The flux
through a CV face is assumed as an averaged value over the
face passing through the face center. Therefore, we get

∫
�V

(Sφ) dV = ρfi�V+
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Nk∑
k=1

[
μ

(
∂ (δuj)

∂xi

)
+ λδij

∂ (δuk)

∂xk

]
ck

njckAfk, (17)

where k on the summation sign represent the kth CV face,
Nk is the number of faces enclosing the CV, njck is the
unit outward facing normal to the kth face, with subscript ck
representing the face center of the kth face. Afk represents
the area of the kth face. Equation (17) is rearranged as

∫
�V

(Sφ) dV = ρfi�V +

Nk∑
k=1

[
μ

(
∂ (δuj)

∂xi

)
nj

]
ck

Afk+

Nk∑
k=1

[
λ
∂ (δuk)

∂xk
ni

]
ck

Afk. (18)

The displacement gradients at the face center in (18) are
calculated assuming a curvilinear coordinate system for each
CV face locally. Consider a CV face ABC common between
two tetrahedral CVs ABCD and ABCF as shown in Fig.
1. For this face the local coordinate system consists of the
directions ξ1 along the line joining the adjacent CV centers P
and E and ξ2 and ξ3 along two of the sides of the face, say CA
and CB respectively. Then using the coordinate transformation
between the local curvilinear coordinates ξj and the global
cartesian coordinates xj , we have

∂ (δui)

∂xi
=

1

J

[
βi
j

∂ (δui)

∂ξj

]
, (19)

where J stands for the Jacobian of the matrix evolving during
the transformation process. It is expressed as

J =
∂x1

∂ξj
β1
j . (20)

The geometric coefficients βi
j are expressed as

βi
j =

∂xp

∂ξr

∂xq

∂ξs
−

∂xq

∂ξr

∂xp

∂ξs
, (21)

where i, p, q are cyclic and j, r, s are cyclic.
Consider again the CV face ABC common between the two

tetrahedral CVs ABCD and ABCF as shown in Fig. 1. The
gradients of displacements with respect to the local coordinates
ξj in (19) are expressed as

∂ (δui)

∂ξ1
=

δui,E − δui,P

lPE
, (22)

∂ (δui)

∂ξ2
=

δui,A − δui,C

lAC
, (23)

and

∂ (δui)

∂ξ3
=

δui,B − δui,C

lBC
, (24)

where δui is the ith component of the displacement vector
δuj . l stands for the length. The δui at the face vertices A,
B and C in (22), (23) and (24) are expressed in terms of the

values at the CV centers P and E assuming linear variation
in the neighbourhood of the nodes P and E. For example, at
the vertex A

δui,A =
1

2

[
δui,P +

(
∂ (δui)

∂xj

)
P

(xj,A − xj,P )

]
+

1

2

[
δui,E +

(
∂ (δui)

∂xj

)
E

(xj,A − xj,E)

]
. (25)

The gradients ∂ (δui) /∂xj at the CV centers P and E in
(25) are calculated using the method of least squares [1].

There are three type of boundary conditions possible for the
solid region. They are:

(i) The displacement vector is prescribed (Dirichlet type
boundary condition). This is expressed as

δuj (rj) = δuj,B , rj ∈ S, (26)

where rj is the position vector, δuj,B is the prescribed
displacement vector at the boundary and S is the boundary
surface. When the displacement vector is known at the bound-
aries it is directly substituted into the discretized governing
equations.

(ii) The forces per unit area vector or traction vector is pre-
scribed (Neumann type boundary condition). Mathematically
this is written as

tj (rj) = tj,B , rj ∈ S, (27)

where tj is the traction vector and tj,B is the prescribed
traction vector at the boundary. The boundary on which the
traction condition is known is excluded from the discretization
process. The traction vector acting on the boundary is used to
calculate the force vector acting on the boundary which is then
added to the source term.

(iii) The boundary lies on the plane of symmetry of the
domain (Symmetry boundary condition). For this boundary
condition the information known is

δun = 0,
∂δut

∂n
= 0, (28)

where n is the normal to the symmetry plane. δun and δut

are the displacement components in the normal and tangential
directions to the symmetry plane respectively. When symmetry
condition is known the displacement vector at the boundary
is calculated from (28). Then it becomes Dirichlet type of
boundary condition.

III. SOLUTION PROCEDURE

The solution domain is discretized by mapping the whole
solution domain comprising of the fluid flow and the solid
with a mesh consisting of a finite number of contiguous
CVs. The mesh generation is carried out using an educational
version of the commercial code ANSYSTM. The number of
CVs in the fluid region is Nf . Hence, there are Nf linear
equations obtained by discretization of the governing equations
for each variable (pressure and three velocity components) in
the fluid region. The set of linear equations for each variable is
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Fig. 1: Local coordinate system

solved using the point-by-point Gauss-Seidel algorithm. The
converged solution is assumed when the mass and momentum
residuals are reduced below 10−5 for each CV . The pressure
field obtained from the flow solution is used as one of the
boundary conditions for the solid. Now the displacement field
in the solid is calculated. For that the three components of
the displacement vector along the three coordinate directions
need to be determined. There are Ns linear equations obtained
by discretization of the governing equations for each variable
in the solid region, where Ns is the number of CVs in the
solid region. This set of linear equations is solved using the
point-by-point Gauss-Seidel algorithm. When the residuals are
reduced below 10−3 for each CV, the converged solution
is assumed. Once the displacement field is known the stress
field is calculated using the constitutive relation (6) and the
kinematic relation (9).

IV. VALIDATION OF THE PROCEDURE

To validate the discretization procedure proposed here two
benchmark problems are solved, one from fluid mechanics and
another from solid mechanics. They are described below.

A. Flow over a backward facing step

As shown in Fig. 2, the computational domain consists
of a rectangular region of height H and length 30H. At the
beginning of this region a step of height H/2 is provided.
A fully developed flow enters the region through the inlet of
height H/2 above the step. Both velocity components are zero
on all solid walls including the step. It is assumed that the
flow becomes fully developed at the exit as sufficient length
of the channel is considered. Normal gradient of all dependent
variables is set equal to zero at the exit. A standard test case
of Reynolds number (Re) equal to 800 is considered. The
Reynolds number is based on the height H and the mean
velocity of the fluid at the inlet ūin. The dimension-less form
of the governing equations is used to solve the problem. The
dimension-less coordinates X and Y are obtained by dividing
the dimensional coordinates x and y respectively by H. To
obtain the dimension-less x and y velocities, i.e., U and V,
the dimensional velocities u and v are divided by ūin. Central
Difference Scheme (CDS) dominating blend (0.9 CDS ) of
Upwind Difference Scheme (UDS) and Central Difference
Scheme is used as the advection scheme. CDS is used for
the diffusion terms. The flow streamlines are shown in Fig. 3.

Fig. 2: Computational domain for flow over a backward facing
step

X

Y

0 5 10 15 20 25 30

0

1

2

3

Stream lines

Re = 800

Triangular mesh, 5760 elements

Fig. 3: Streamlines for flow over a backward facing step

The flow entering above the step separates from the lower wall
/ step-wall downstream of the step. The flow then re-attaches
to the lower wall at a length of approximately 6H. This forms
a recirculation zone in the step corner. The length of this zone
is calculated to be 6.03 using the present procedure as against
5.94 obtained by Karki et al. [6]. Due to sudden expansion
at the inlet, the pressure of the fluid decreases. Recovery of
the pressure takes place along the downstream up to a certain
length. In this region, separation of the flow from the upper
/ no step-wall is also seen due to adverse pressure gradient.
Further downstream, the flow reattaches. This forms another
recirculation zone. The length of this zone is calculated as
5.53; it is equal to 5.51 reported by Karki et al. [6]. The x-
velocity profiles in the sections at different axial locations are
shown in Fig. 4. The results are found to be in good agreement
with that of Karki et al. [6].

B. Flat plate with a circular hole subjected to uniform tension

A case of an infinite flat plate with a small circular hole in
its center and subjected to a uniform tension in one direction is
considered. The schematic of the model is shown in Fig. 5. For
this problem an analytical solution is available [7]. To solve
the problem, finite dimensions of the plate are considered such
that the hole is still considered to be small. One quarter of the
domain, i.e., ABCDE is used due to symmetry. At the top and
right edges, CD and BC respectively, of the domain the stresses
obtained using the analytical solution are used as the boundary
condition. Symmetry boundary condition is used at the left
and bottom edges, i.e., at DE and AB respectively. The value
used of the uniform tension tx in the x-direction is 104 Pa.
The material properties assumed are E=107 Pa and υ = 0.3.
Figure 6 shows the overlapping plots of the stresses in the
plate calculated using the present procedure and that obtained
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Fig. 4: The x-velocity profiles for flow over a backward facing
step

Fig. 5: Schematic of the model problem for stress analysis

using the analytical solutions. Good agreement between the
two is seen.

V. FLOW THROUGH A U-SHAPED CHANNEL EMBEDDED IN

A PLATE AND THE RESULTANT STRESSES IN THE PLATE

The schematic of the model is shown in Fig. 7. Flow of
a fluid through an eccentric plane channel embedded in a
plate is considered. Due to the fluid pressure forces acting
on the channel walls, a displacement field is set up in the
plate. It is assumed that the plate is clamped on the outer
periphery. Hence, a stress field is also set up in the plate. The
flow field in the channel is calculated and the displacement
field and the stress field in the plate are calculated. Water
(ρ = 1000 kg/m3, μ = 7.69× 10−4 Pa− s) is considered as
the fluid. Aluminum (E = 6.9 × 1010, υ = 0.33) is selected
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Fig. 6: Stress fields for the model problem for stress analysis

as the plate material. It is assumed that the water enters the
channel with a velocity of 1 m/s. The pressure of water equal
to zero is assumed at the exit. The channel hydraulic diameter
is 2 mm. The flow Reynolds number is equivalent to 2600.
The assumption that the flow is two-dimensional implies that
the plate is thick. Hence, plane strain assumption is used for
calculating the displacements and the stresses in the plate.

The mesh used is shown in Fig. 8. The contours of the
fluid pressure are shown in Fig.9. Figure 10 shows profiles of
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Fig. 7: Schematic of the U-shaped channel problem
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Fig. 8: Mesh used for the U-shaped channel problem
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Fig. 9: Pressure contours for the U-shaped channel problem

y-velocity in a few horizontal sections at different locations
along the flow. In Fig. 11 the x-velocity profile is shown in the
vertical section through the lowermost point of the channel.
The displacement contours are shown in Fig. 12. It is seen
that the portion of the plate circumscribed by the channel
experiences larger displacements. Since the pressure of the
fluid in the left limb of the channel is higher than that in the
right limb, this portion of the plate is subjected to a net force
in the positive x-direction. Consequently, the x-displacements
are positive. Also, since this portion is clamped at the top
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Fig. 10: y-velocity profiles for the U-shaped channel problem
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Fig. 11: x-velocity profile in a vertical section through the
lowermost point of the Ushaped channel

edge, the x-displacements increase from the clamped edge
towards the channel bend. In addition, this portion is also
subjected to a compressive force due to the fluid pressure in
the left and right limbs of the channel. This causes the material
within this portion to move along the limbs constituting the y-
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Fig. 12: Displacement contours for the U-shaped channel
problem

displacements. The y-displacements are negative near the left
limb and are positive near the right limb. This is due to the
combined effect of the pressure forces in the left limb, in the
bend, in the right limb and zero displacement at the top edge.
The contours of the stress fields are shown in Fig. 13. It is
seen that σxx is larger near the left limb than near the right
limb due to the fluid pressure being higher in the left limb.
The stresses are maximum in the region of the plate near the
inlet and the outlet where the displacements are minimum.
The behaviour of the stresses is consistent with that of the
displacements.

VI. CONCLUSIONS

A co-located finite volume procedure is developed for the
solution of fluid-structure interaction type of problems. The
procedure is validated by solving a few benchmark problems
and comparing the results with those available in the literature.
Two-dimensional cases are presented for simplicity. A fluid
structure interaction problem is solved wherein the flow of a
fluid through an eccentric U-shaped plane channel embedded
in a plate is considered. The resulting stress and displacement
fields in the plate are analyzed and found to be qualitatively
correct based on physical grounds.
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Fig. 13: Stress contours for the U-shaped channel problem
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