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Abstract—Two approaches for model development of a smart 

acoustic box are suggested in this paper: the finite element (FE) 
approach and the subspace identification. Both approaches result in a 
state-space model, which can be used for obtaining the frequency 
responses and for the controller design. In order to validate the 
developed FE model and to perform the subspace identification, an 
experimental set-up with the acoustic box and dSPACE system was 
used. Experimentally obtained frequency responses show good 
agreement with the frequency responses obtained from the FE model 
and from the identified model. 
 

Keywords—Acoustic box, experimental verification, finite 
element model, subspace identification. 

I. INTRODUCTION 
NGINEERING of smart structures gains more and more 
interest in the recent years due to their characteristics of 

adaptation to changing environmental and working conditions 
owing to integrated active materials used as actuators and 
sensors and implemented control. Development of reliable 
models of active structures is therefore of interest especially in 
the early design stages, since it enables development and 
testing of different control techniques and investigation of the 
structural behavior under different simulated conditions. 

In this paper a smart acoustic box is considered and for its 
modeling two approaches are suggested: numerical modeling 
based on the finite element method (FEM) and experimental 
subspace identification.   

The FEM approach takes into consideration the electro-
mechanical-acoustic effects. After appropriate transformations 
and modal reduction, FEM based state-space model is 
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obtained, which can be used to study different effects. 
Reduced order state-space models are also convenient from 
the controller design point of view. 

Experimental identification using the subspace-based 
algorithm is suggested as another modeling option, which also 
results in a state-space model. It enables a successful 
modeling of multiple-input multiple-output (MIMO) systems 
based on the measurement of the input and output signals. 

Theoretical backgrounds of both approaches are presented 
in this paper and verified on the example of modeling a smart 
acoustic box with attached piezoelectric patches used as 
actuators and sensors. As a result different frequency response 
functions obtained on the basis of developed models are 
shown. Comparison between the model based frequency 
responses and the measured ones shows a good agreement, 
which confirms the feasibility of the suggested modeling 
techniques. 

II. FINITE ELEMENT FORMULATION 
Engineering of smart structures with distributed 

piezoelectric patches used as actuators and sensors requires 
adequate numerical simulation tools, which enable 
development of overall smart structure models including 
mechanical, electrical and acoustic effects. For the simulation 
of coupled electro-mechanical-acoustical problems regarding 
interior noise, a FEM based approach proposed by the authors 
[1]−[3] can be used. 

Modeling and simulation of the coupled electro-
mechanical-acoustical problems using the FEM approach is 
performed using the general purpose FEM software package 
COSAR [4], which contains an extensive library of multi-field 
finite elements for 1D, 2D and 3D continua as well as for 
shell-type thin walled structures and acoustic brick-type 
elements in order to simulate piezoelectrically controlled 
vibro-acoustic systems. Considering small displacements and 
regarding acoustic responses as small perturbations to an 
ambient reference state, the derivation of the finite element 
model is based on the mechanical equilibrium, the electric 
equilibrium, the linear coupled electromechanical constitutive 
equations and the linear acoustic wave equation [1]. 

Following the standard FEM procedure described in detail 
in [3] the semi discrete system of coupled equations of the 
electromechanical field and the acoustic field is obtained in 
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the form of the following matrix equation: 
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with mass matrix Mww, proportional damping matrix Cww, 
stiffness matrix Kww, electric matrix Kϕϕ, piezoelectric 
coupling matrix Kwϕ, mechanical load vector fww and electric 
load vector fϕ. The quantities regarding the acoustic field are: 
constant fluid density ρ0, acoustic mass matrix Ma, acoustic 
damping matrix Ca, acoustic stiffness matrix Ka and the 
acoustic load vector due to prescribed normal velocities fa. 
Vibro-acoustic coupling is performed in terms of the coupling 
matrix Cwc arising from an additional load, which acts on the 
fluid-structure interface and originates from the sound 
pressure for the structure and from the normal velocity of the 
structure for the acoustic fluid. Vector w contains all nodal 
mechanical degrees of freedom, ϕ is the vector of nodal 
electric potentials and Φ the fluid velocity potential vector. 

The aim of the overall model development is to obtain a 
suitable basis for further investigations on possibilities for the 
vibration and noise reduction using control techniques. This 
aim requires on one hand a model in an appropriate form (e.g. 
the state-space form, which is convenient for the controller 
design purposes), but on the other hand also a model which 
offers suitable numerical performance of the calculation, 
which in turn enables subsequent real-time controller 
implementation. The finite element model based on (1) 
contains a large number of degrees of freedom. Modal 
truncation based on a reduced number of preselected 
uncoupled eigenmodes represents a common model reduction 
technique, which provides a model with the previously stated 
performances. After a sequence of mathematical 
transformations (for more details see [2], [3]) the modal 
truncation results in a state equation (2) of the standard state-
space model used in the control theory. The state-space model 
is completed with the output (measurement) equation (3). 

)()()()( tttt EfBuAxx ++=  (2) 

)()()()( tttt FfDuCxy ++=  (3) 

Vector x is the vector of modal coordinates (such that 
Qxz = ) obtained through the ortho-normalization, where Q 

represents the modal matrix obtained as a solution of the 
eigenvalue problem of the homogeneous part of the equation 
(1) with the introduced state-space vector: 

[ ]ΦϕΦϕ wwz = . (4) 

Notations in (2) and (3) have the following meanings: A 
denotes the state matrix, B is the control input matrix, E is the 

disturbance coupling matrix, C output matrix, D input-to-
output coupling matrix and F disturbance-to-output coupling 
matrix. Vector f(t) represents the vector of external 
disturbances, u(t) is the vector of the controller influence and 
y(t) the output (measurement) vector. 

Verification of the presented FEM based modeling and 
simulation approach is performed in the subsequent sections 
through the model identification in the state-space form and 
through experimental investigations. 

III. SUBSPACE IDENTIFICATION 
In this paper the subspace identification [5]–[10] is used to 

obtain experimentally the model of the piezoelectric 
mechanical structure influenced by the surrounding acoustic 
fluid in the state-space form. The method of the identification 
is general – it applies to a wide range of model identification 
problems, where based on the measured input and output 
signals a state-space model is to be determined. The 
experimental investigations described in this paper are aimed 
at verification of the suggested FEM based modeling on one 
hand, and on the other hand at obtaining the experimental 
model in the comparable state-space form in order to draw out 
the conclusions regarding the reliability of the models 
obtained using both modeling methods as well as regarding 
the minimal model orders which meet the required 
performances of the frequency responses. 

Since the subspace identification is based on sampled 
input/output measurement signals, the method applies to a 
discrete-time form of the resulting state-space model. Using 
the subspace identification, the model can be identified in a 
general deterministic-stochastic form of a discrete-time state-
space equivalent of the model (2), (3): 
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with discrete-time state and control matrices Φ and Γ, and the 
process and the measurement noise w[k] and v[k], 
respectively. The process noise and the measurement noise 
vector sequences w[k] and v[k] are white noise with zero mean 
and with covariance matrix: 
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The general deterministic-stochastic problem of the subspace 
identification is to determine the order n of the unknown 
system and the system matrices nn×∈RΦ , mn×∈RΓ , 

nl×∈RC , ml×∈RD  as well as the covariance matrices 
nn×∈RQ , ln×∈RS , ll×∈RR  of the noise sequences w[k] 

and v[k]. Subsequent derivations regard the pure deterministic 
case considered in [11]. 

Measured input and output data are organized into block 
Hankel matrices defined in the following form [5]: 
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The output block Hankel matrix 120 −iY  is defined in a 

similar way. For more details on definition of the Hankel 
matrices and the subspace-based identification method see [5], 
[9]–[11]. The measurement data are organized in the form of 
the input-output relation [5]: 

][][][ kkk UΦxΓY αα +=  (8) 

where αΓ  represents the observability matrix for the system 
(5), αΦ  is the Toeplitz matrix [6] of impulse responses from 
u to y: 
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and α is a specified number greater than the state dimension 
but much smaller than the data length. For a deterministic case 
[7], [11] the problem is simplified to determining Γα and Φα 
by computing the singular value decomposition (SVD) of U in 
the first step: 
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If matrix U has dimension m×n and rank r, then the partition 
in (10) is performed as follows: 

[ ] [ ]2111 uumrr PPppppP == +  (11) 
[ ] [ ]2111 uunrr QQqqqqQ == +  (12) 

where pi are the left singular vectors of U [12]. It can be 
shown that they are eigenvectors of UUT. Vectors qi are the 
right singular vectors of U. It can be shown that they are 
eigenvectors of UTU. Multiplying (8) by Qu2, matrix Γα can be 
determined from a SVD of YQu2. Then matrix C is obtained 
as the first row (in a sense of a block-row) of the observability 
matrix Γα, and matrix Φ is calculated from: ΦΓΓ αα =  

applying pseudo inverse, where αΓ  is obtained by dropping 
the last row of Γα. Matrix αΓ  represents the matrix obtained 

by dropping the first row of Γα. For the calculation of Γ and D 
matrices, (8) is multiplied by the pseudo inverse of U on the 
right and by T

2uP  from (10) on the left. Thus the equation is 
reduced to: 

αΦPYUP T
2

1T
2 uu =− . (13) 

After rearranging, (13) can be solved for Γ and D using the 
least squares, see (9). In this way the system parameters in the 
form of state-space matrices of the model (5) are identified 
using the subspace-based identification method. 

IV. EXPERIMENTAL RIG WITH THE ACOUSTIC BOX 
Described procedures for the FEM modeling and subspace 

identification were implemented and tested using the 
experimental set-up with the smart plate with piezoelectric 
patches and the acoustic box with the air as acoustic fluid 
within it. The aim of the experiment is verification of the FEM 
modeling procedure [13] and identification of the state-space 
model using the subspace method and its comparison with the 
numerically developed FEM based state-space model. 

The acoustic box set-up consists of a clamped aluminium 
plate with fifteen piezoelectric patches attached to its inner 
surface (Fig. 1) and of the wooden box comprising the 
acoustic fluid – air. The side of the box opposite to the 
aluminium plate is open. The acoustic box with the 
dimensions used for the numerical modeling is represented in 
Fig. 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1 Inner side of the plate with attached piezo patches 
 
 
 
 
 
 
 
 
 
 

Fig. 2 Acoustic box with dimensions 
 

Dimensions of the plate are: lP1 = 1020 mm, lP2 = 720 mm,  
h = 4 mm, dimensions of the cavity: l1 = 900 mm, l2 = 600 
mm,  
l3 = 1250 mm, dimensions of the patches: 50 mm × 25 mm × 
0.2 mm. 

The plate is excited using a shaker driven by computer 
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generated random noise signals. The impedance head placed 
on the top of the rig connected to the shaker measures the 
shaker force signal. The sound pressure at the predefined 
point of the acoustic box (x1 = 650 mm, x2 = 300 mm, x3 = 
525 mm) is measured using a microphone. Acoustic box is 
placed in the sound low-reflection room in order to eliminate 
environmental influences during the measurements. The 
scheme of the experimental rig with all included measurement 
devices for experimental determining of the frequency 
responses (experimental verification of the FEM model) and 
for the experimental subspace-based model identification is 
shown in Fig. 3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 3 Experimental rig for the frequency response determining and 
the state-space model identification 

 
Excitation signals for the shaker are generated by the 

computer linked to the dSPACE system with ADC and DAC 
boards shown in Fig. 3. Random noise excitation signal from 
the DAC board DS 2102 (range ±5V) of the dSPACE system 
is amplified by the Power Amplifier TIRA E 60 and led to the 
shaker. Excitation force exerted by the shaker is measured 
using the force gauge Impedance Head B&K Type 8001, the 
signal of which is fed to the dSPACE ADC board DS 2001 
(range ±5V) via the Conditioning Amplifier B&K Type 2626, 
which calibrates the force signal. The conditioning amplifier 
outputs 0.1 V per measured unit, in this case per electric 
charge produced by the impedance head of the sensitivity 
369 pC/N, which is also set on the conditioning amplifier. 
Therefore the output of the conditioning amplifier of 0.1V 
corresponds to the shaker force of 1N. The frequency range 
set on the conditioning amplifier is between 1 Hz and 1 kHz. 

Another signal acquired by the ADC board DS 2001 of the 
dSPACE system is the air pressure signal on the microphone. 
The microphone signal is amplified with the gain 10 dB 
through the Dual Microphone Supply Type 5935 L. The 
sensitivity of the microphone is 50.8 mV/Pa. 

Selected piezo patches are used as sensors. Their voltage 
signals are filtered in the predefined frequency range of 1 kHz 

and amplified with the gain of 12 dB through the 
Filter/Amplifier Kemo VBF21M. Signal acquisition of the 
sensor-patches is performed on the MUX_ADC board DS 
2003 (range ±5V) of the dSPACE system using the input 
channels of this board. 

For the identification of the MIMO models of the acoustic 
box the measurement of the excitation signals from the 
selected actuator-patches is required. The piezo patches 
numerated as 5, 6, 8 and 9 (Fig. 1) were selected as actuators 
for the purpose of numerical FEM modeling. For the sake of 
the consistency between the numeric and experimental 
(identified) model, the same patches 5, 6, 8, 9 are used 
respectively as actuators A1, A2, A3, A4 during the data 
acquisition for the model verification and identification 
purposes. Random noise signals generated by the computer 
are output through the DAC board DS2102 (range ±5V) of the 
dSPACE. They are first filtered through the low-pass filter 
Kemo 21ST20 with the cut-off frequency of 1 kHz and 
afterwards amplified through the piezo amplifiers PI E-663 
LVPZT (for the first three channels/actuators) and PI LVPZT 
Model E-500 00 (for the fourth channel/actuator) with the 
gain 10 and offset 50V. For the controller implementation 
purposes the actuator signals of the predefined controller can 
be fed to the piezo actuators in the similar way. 

V. EXPERIMENTAL RESULTS 
Using described experimental set-up the verification of the 

numerical FEM model and the subspace identification were 
performed. 

A. Experimental Frequency Responses and Comparison 
with FEM Results 

The frequency responses of the acoustic box are determined 
experimentally and on the basis of the numerical FEM model. 
Calculated eigenfrequencies of the modally truncated FEM 
based state-space model for the first five structural (index w) 
and acoustic modes (index a) are listed in the Table I. 
 

TABLE I 
CALCULATED EIGENFREQUENCIES OF THE ELASTIC PLATE 

AND OF THE ACOUSTIC CAVITY 

Number i 1 2 3 4 5 
fwi [Hz] 66.7 106.2 163.8 172.1 201.2 

ωwi [rad/s] 419.1 667.3 1029.2 1081.3 1264.2 
fai [Hz] 68.0 200.8 204.0 278.1 291.5 

ωai [rad/s] 427.3 1261.7 1281.8 1747.4 1831.6 
 
Experimental frequency response functions (FRFs) were 
determined based on the selected measured input and output 
signals, i.e. their fast Fourier transforms (FFTs). The FRF 
expresses a frequency domain relationship (in terms of ratio) 
between a response signal (output) and a reference signal 
(input) of a linear time-invariant system, i.e. the ratio of their 
FFTs. For three different sensor-patch constellations (Table II) 
all combinations of the output-to-input FRFs were determined 
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(actuator-to-sensor, shaker-to-sensor, actuator-to-microphone, 
sensor-to-microphone) and compared with the corresponding 
frequency responses determined on the basis of the 
numerically obtained state-space model of the order 20. In the 
numerical state-space model as well as for its experimental 
verification and subspace identification the actuator-patch 
signals were considered as inputs, the shaker force signal as 
measurable disturbance input, and the sensor-patch and 
microphone signals as the measured outputs. For all three 
actuator/sensor constellations the patches 5, 6, 8, 9 were used 
as actuators (consistency with the numerical model, as 
previously stated). Sensor groups for the three constellations 
are shown in Table II. 
 

TABLE II 
 PIEZO PATCHES OF THE THREE SENSOR CONSTELLATIONS 

 Constellation 1 Constellation 2 Constellation 3
Sensor 1 2 3 4 
Sensor 2 4 7 7 
Sensor 3 7 11 10 
Sensor 4 11 12 11 

 
Selected frequency responses are represented in the following 
figures showing a good agreement between the experimental 
and numerical results. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4 Excitation by shaker (valid for all three sensor constellations) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5 Excitation by shaker (constellation 2) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6 Excitation by actuator-patch (constellation 3) 
 

Figs 4 – 6 show the comparison of the experimental and 
numerical results for the single-input single-output (SISO) 
case when the acoustic plate is excited only by a shaker or 
only by a single actuator-patch and the signals are measured 
on the microphone or on the appropriate sensor-patches. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7 Excitation by shaker and actuator-patches 
(constellation 1– MIMO case) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8 Excitation by shaker and actuator-patches 
(constellation 1 – MIMO case) 
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For the investigation of MIMO models the responses of the 
sensor-patches were acquired under excitation by four 
actuator-patches and by the shaker. Selected frequency 
responses obtained experimentally and on the basis of the 
reduced FEM model are compared in the Figs. 7 and 8. First 
the experimental FRFs (solid line) were obtained under 
random excitation by shaker and actuator-patches. During the 
experiment the excitation signals were acquired and saved 
using dSPACE. The same excitations were used for the 
simulation with the reduced FEM based state-space model and 
based on the obtained simulated time responses, using the 
FFTs, the FEM based FRFs were obtained (dashed black line). 

B. Experimental Subspace Identification 
 The MIMO model subspace identification of the acoustic 
box was performed on the basis of the measured input/output 
signals using the experimental rig shown in Fig. 3 and 
applying the identification algorithm (described in section III) 
and the auxiliary Matlab function n4sid [14]. The criterion for 
selection of the model order was to obtain a MIMO state-
space model, from which any of the possible single output-to-
input FRFs (actuator-to-sensor, actuator-to-shaker, 
microphone-to-sensor or microphone-to-shaker) can be 
derived in such a way that they correspond accurately enough 
to the measured SISO FRFs. In this case accurately enough 
means that the eigenfrequencies of interest can be obviously 
recognized from the frequency responses obtained on the basis 
of the identified MIMO model. Through the iterative 
procedure it was found that the identified state-space model of 
the order n=85 fulfills such a condition. Lower model orders 
cannot provide pronounced eigenfrequencies of interest, while 
the higher model orders cause high computational effort 
without obvious improvement of the frequency response 
diagrams. Selected comparative FRFs are shown in the figures 
9 and 10. 

VI. CONCLUSION 
The FEM approach and the system identification are shown 

to be useful tools for the modeling of smart acoustic 
structures. Depending on the available resources each of the 
suggested techniques can be used for a successful modeling. 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9 FRFs sensor 1 – shaker determined experimentally, 
numerically and from the identified model (constellation 1) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 10 FRFs microphone – shaker determined experimentally, 
numerically and from the identified model (constellation 1) 

REFERENCES   
[1] J. Lefèvre, U. Gabbert, “Finite Element Simulation of Smart Structures 

for Active Vibration and Acoustic Control”, PAMM Proc. Appl. Math. 
Mech. 3 (2003), pp. 296–297 DOI 10.1002/pamm.200310420. 

[2] F. Laugwitz, J. Lefèvre, G. Schmidt, T. Nestorović, U. Gabbert, 
“Experimental and numerical investigation of a smart acoustic box”, 
International Conference on Modal Analysis, Noise and Vibration 
Engineering ISMA2006 Leuven, Belgium, in CD-Proceedings of 
ISMA2006, editors P. Sas, M. de Munck, pp. 223–232. 

[3] J. Lefèvre, U. Gabbert, “Finite Element Modelling of Vibro-Acoustic 
Systems for Active Noise Reduction”, Technische Mechanik 25 (3–4), 
2005, pp. 241–247. 

[4] COSAR General Purpose Finite Element Package Manual 1992 
FEMCOS mbH Magdeburg http://www.femcos.de 

[5] P. Van Overschee, B. De Moor, Subspace Identification for Linear 
Systems: Theory, Implementation, Applications, Kluwer Academic 
Publishers, Boston 1996. 

[6] M. Viberg, “Subspace-based methods for the identification of linear 
time-invariant systems”, Automatica 31(12), 1995, pp. 1835–1851. 

[7] T. Nestorović-Trajkov, H. Köppe, U. Gabbert, “Active Vibration 
Control Using Optimal LQ Tracking System with Additional 
Dynamics”, International Journal of Control, vol. 78, no. 15, 15 
October 2005, pp. 1182–1197. 

[8] T. Nestorović, H. Köppe, U. Gabbert, “Subspace Identification for the 
model based controller design of a funnel-shaped structure”, Facta 
Universitatis, Series Mechanics, Automatic Control and Robotics, vol. 4, 
no. 17, 2005, pp. 257–263. 

[9] T. Nestorović-Trajkov, U. Gabbert, “Active control of a piezoelectric 
funnel-shaped structure based on subspace identification”, Structural 
Control and Health Monitoring, vol. 13, no. 6, November/December 
2006, pp. 1068–1079. 

[10] T. Nestorović, Controller Design for the Vibration Suppression of Smart 
Structures (Ph.D. thesis), Fortschritt-Berichte VDI Reihe 8, Nr. 1071, 
Düsseldorf: VDI Verlag 2005. 

[11] G. F. Franklin, J. D. Powell, M. L. Workman, Digital Control of 
Dynamic Systems, third edition, Addison-Wesley Longman, Inc., 1998. 

[12] R. J. Vaccaro, Digital Control: A State-Space Approach, McGraw-Hill, 
Inc., 1995. 

[13] T. Nestorović-Trajkov, U. Gabbert, „Overall virtual design and testing 
of adaptive mechatronic systems“, Proceedings of the conference 
Mechatronische Systeme – Entwurf, Anwendungen und Perspektiven, 
organized in the frame of TEMPUS Project "Restrukturierung und 
Einführung der Mechatronik an den Universitäten in Serbien", 
September 27-28, 2006, Niš, Serbia (to be published). 

[14] Matlab Help, Signal Processing Tooxbox, n4sid, 
http://www.mathworks.com/access/helpdesk/help/toolbox/ident/n4sid.ht
ml 

 


