
International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:4, No:5, 2010

631

Abstract—Artificial Immune System is applied as a Heuristic
Algorithm for decades. Nevertheless, many of these applications
took advantage of the benefit of this algorithm but seldom proposed
approaches for enhancing the efficiency. In this paper, a
Self-evolving Artificial Immune System is proposed via developing
the T and B cell in Immune System and built a self-evolving
mechanism for the complexities of different problems. In this
research, it focuses on enhancing the efficiency of Clonal selection
which is responsible for producing Affinities to resist the invading of
Antigens. T and B cell are the main mechanisms for Clonal
Selection to produce different combinations of Antibodies.
Therefore, the development of T and B cell will influence the
efficiency of Clonal Selection for searching better solution.
Furthermore, for better cooperation of the two cells, a co-evolutional
strategy is applied to coordinate for more effective productions of
Antibodies. This work finally adopts Flow-shop scheduling
instances in OR-library to validate the proposed algorithm.

Keywords—Artificial Immune System, Clonal Selection,
Flow-shop Scheduling Problems, Co-evolutional strategy

I. INTRODUCTION
OMBINATORIAL optimization problems (COPs) are
usually problems with high complexity, numerous

algorithms were proposed for applying to this specific
problem. Tsai et al. [3] and Chun et al. [2] had mentioned the
algorithms for global optimization problems are of increasing
importance in modern engineering design and systems
operation in various areas. In solving global optimization
problems, the particular challenge is that an algorithm may be
trapped in the local optima of the objective function when the
dimension is high and there are numerous local optima.
Genetic algorithms Holland [31] and Goldberg [32], powerful
tools based on biological mechanisms and natural selection
theory, have received considerable attention regarding its
potential as an optimization technique for complex problems

Pei-Chann Chang is with the Department of Information Management,
Yuan Ze University, Taoyuan 32026, Taiwan, R.O.C.

(Corresponding Author’s E-mail: iepchang@saturn.yzu.edu.tw).
Wei-Hsiu Huang is with the Department of Industrial Engineering and

Management, Yuan Ze University, Taoyuan 32026, Taiwan, R.O.C.
Ching-Jung Ting is with the Department of Industrial Engineering and

Management, Yuan Ze University, Taoyuan 32026, Taiwan, R.O.C.
Hwei-Wen Luo is with the Department of Information Management, Yuan

Ze University, Taoyuan 32003, Taiwan, R.O.C.
Yu-Peng Yu is with the Department of Information Management, Yuan

Ze University, Taoyuan 32003, Taiwan, R.O.C.

and have been successfully applied in various areas. The main
feature of the GAs as an optimization method is their implicit
parallelism, which is a result of the evolutionary process.

However, there are two major issues in GAs; one is lack of
the global search ability and another is the premature
convergence. Therefore, numerous of algorithms were
proposed for solving the phenomenon. Initially, the
improvements in the GAs have been sought in the optimal
proportion and adaptation of the main parameters, namely
probability of mutation, probability of crossover, population
size, and crossover operator. Therefore, some researchers
have proposed several GA-based approaches to solve the
phenomenon, one of these proposed GA-based algorithm is
hybrid Genetic Algorithm and Immune System. The
organisms named antibodies in the immune system which are
responsible for protecting the body to against harmful
organisms named antigen. Campelo [1] mentioned the
immune system is able to detect a huge number of antigens
using a fairly limited repertory of gene combinations. To
carry out this recognition task, segments of genes are
combined to accomplish the specificity of almost all the
invader antigens known. A self-recognition task keeps the
immune system from attacking itself, because immune cells
are capable of recognizing themselves.

Also, upon repeated exposure to a certain antigen, the
immune system develops more effective and faster responses
over time. From an information processing perspective, the
immune system can be seen as a parallel and distributed
adaptive system. It is capable of learning; it has memory and
is capable of associative information retrieval in recognition
and classification tasks. Particularly, it learns to recognize
patterns, it remembers patterns that it has been shown in the
past and its global behavior is an emergent property of many
local interactions. All these features of the immune system
provide, in consequence, great robustness, fault tolerance,
dynamism, and adaptability. These are precisely the
properties of the immune system that encourage researchers
to try to emulate it in a computer, proposed by Coello [7].

Artificial immune systems (AIS) began in the mid 1980s
with Farmer et al. [8] and Bersini et al. [9] on immune
networks. However, it was only in the mid 90s that AIS
became a subject area in its own right. Kephart et al. [5]
published their first papers on AIS in 1994, and Dasgupta [12]

Self-evolving Artificial Immune System via
Developing T and B Cell for Permutation

Flow-shop Scheduling Problems
Pei-Chann Chang, Wei-Hsiu Huang, Ching-Jung Ting, Hwei-Wen Luo, Yu-Peng Yu

C

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:4, No:5, 2010

632

conducted extensive studies on Negative Selection
Algorithms. De Castro and Von Zuben's [30] and Nicosia [29]
& Cutello's [4] work (on Clonal selection) became notable in
2002. AIS are new ideas, such as danger theory and
algorithms inspired by the innate immune system, are also
now being explored. Although some doubt that they are yet
offering anything over and above existing AIS algorithms,
this is hotly debated, and the debate is providing one the main
driving forces for AIS development at the moment.

AIS are computational systems inspired by the principles
and processes of the vertebrate immune system. The
algorithms typically exploit the immune system's
characteristics of learning and memory to solve a problem.
AIS is concerned with abstracting the structure and function
of the immune system to computational systems, and
investigating the application of these systems towards solving
computational problems from mathematics, engineering, and
information technology. AIS are adaptive systems, inspired
by theoretical immunology and observed immune functions,
principles and models, which are applied to problem solving
[6]. AIS is distinct from computational immunology and
theoretical biology that are concerned with simulating
immunology using computational and mathematical models
towards better understanding the immune system, although
such models initiated the field of AIS and continue to provide
a fertile ground for inspiration. Finally, the field of AIS is not
concerned with the investigation of the immune system as a
substrate computation, such as DNA computing.

II. FLOW-SHOP SCHEDULING PROBLEMS

A. Relative Literatures of Flow-shop Scheduling Problems
Base on [11], we can induct flow-shop scheduling problem

is one of the most well studied combinatorial problems in the
area of scheduling in the operations research. Baker [15]
summarized the assumptions of permutation flow-shop
scheduling problems. Therefore, most of the research works
emerged to develop effective heuristics and meta-heuristics.
Chang [10] developed a two-phase sub population genetic
algorithm to solve the parallel machine-scheduling problem.
In the first phase, the population will be decomposed into
many sub-populations and each sub-population is designed
for a scalar multi-objective. In the second phase,
non-dominant solutions will be combined after the first phase
and all sub-population will be unified as one big population.
Not only the algorithm merges sub-populations but the
external memory of Pareto solution is also merged and
updated. Framinan et al. [16] reported a review and the
classification of the heuristics for permutation flow-shop
scheduling problems. Hejazi and Saghafian [18] presented a
complete survey of flow-shop scheduling problems and
contributions from 1954 to 2004. This survey considered
some exact methods, constructive heuristics, meta-heuristics,
and evolutionary approaches. This paper is a good reference
for n/m/p/Cmax. Ruiz and Maroto [19] provided a

comprehensive review and evaluation of permutation
flow-shop heuristics. Through our reading these review
articles, we found it apparent that heuristics developed for
PFSPs have proposed a remarkable contribution.

Heuristics are developed for some specified situations.
They may not work in some unexpected situations. Among
the meta-heuristics, genetic algorithms have attracted a lot of
attention because of many convincing results. Some
researches did the pioneering work by applying genetic
algorithms in solving flow-shop scheduling problems. Iyer
and Saxena [21] proposed an improved genetic algorithm to
solve permutation flow-shop scheduling problem. It is not
difficult to search for more related genetic algorithm
applications in the field of PFSPs. Wang and Cheng [22]
considered the two-machine flow-shop problems with setups
in a no-wait processing environment to minimize the
maximum lateness. Some dominance properties were derived
which worked as a heuristic. As a result, the performance of
their proposed heuristic is able to work efficiently although
those applications are similar in algorithmic structures. For
the more detailed information about the review of the
flow-shop scheduling, please refer to Ruiz and Maroto [19]
who did an extensive comparison in the flow-shop scheduling
problems, including tabu search, simulated annealing, genetic
algorithms, iterated local search and hybrid techniques.

If the flow-shop scheduling problem with multiple
objectives is considered, it becomes even more complicated.
Therefore, researchers have started to develop effective
heuristics and meta-heuristics to solve this problem. Genetic
algorithms have attracted a lot of attention among the
meta-heuristics. Jaszkiewicz [23], Ishibuchi et al. [24],
Reeves [13], Murata et al. [25], and Chen [26] did the
pioneering works by employing genetic algorithms in solving
flow-shop scheduling problems. Reeves and Yamada [20],
Zheng and Wang [17], and Chang [27] hybridized other
techniques with genetic algorithms to improve the genetic
search. Chang [28] studied bi-criterion single machine
scheduling with a learning effect by a parametric analysis.
From the parametric analysis, a minimum set of Pareto
solutions is obtained. It follows that it could be treated as
initial solutions for MO algorithms since the parametric
analysis doesn't guarantee the algorithm to find out all Pareto
solutions.

B. Definition of Flow-shop Scheduling Problems
Flow-shops are useful tools in modeling manufacturing

processes. A permutation flow-shop is a job processing
facility, which consists of several machines and several jobs
to be processed on the machines on different machines. In a
permutation flow-shop, all jobs follow the same processing
order. Our objective is to find a set of compromise solutions
so that the makespan is minimized. The flow-shop scheduling
problem is a typical assembly line problem where n different
jobs have to be processed on m different machines. All jobs
are processed on all the machines in the same order. The

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:4, No:5, 2010

633

processing time of the jobs on machines are fixed regardless
of the order in which the processing is conducted. The
problem is characterized by a matrix P = (pij), i = 1… n, j =
1… m, of processing time. Each machine processes exactly
one job at a time and each job is processed on exactly one
machine at a time. The problem then is to find a sequence of
jobs of minimizing the makespan which is the completion
time of the last job in the sequence on the last machine. If Ci
denotes the completion time for job i, we are trying to
minimize max Ci. There are many other criteria that can be
considered for the purpose of optimization. We refer the
reader to Bagchi [14] for a detailed discussion of scheduling
using GA. For details of the flow-shop and other scheduling
and sequencing problems we refer the reader to Baker. The
flow-shop scheduling can be formerly defined as follows: if p
(i, j) is the processing time for Job i on Machine j, and a job
permutation {π1, π2,…, πn}, where there are n jobs and m
machines, accordingly the completion times C (πi, j) is
calculated as follows which are proposed by Reeves [13]:

C (π1, 1) = p (π1, 1) (1)
C (πi, 1) = C (πi-1, 1) + p (πi, 1), for i = 2,…, n (2)
C (π1, j) = C (π1, j-1) + p (π1, j), for j = 2,…, m (3)
C (πi, j) = max{C (πi-1, j), C (πi, j-1)} + p (πi, j) (4)

for i = 2,…, n; for j = 2,…, m

The makespan is finally defined as:

Cmax(π) = C(πn, m) (5)

Subsequently, the objective is to find a permutation π* in

the set of all permutations ∏ so that

Cmax(π*) ≦ Cmax(π) ∀π∈∏ (6)

A more general flow-shop scheduling problem can be

defined by allowing the permutation of jobs to be different on
each machine. However, what work has been done to show
on the more general flow-shop scheduling problem has
tended to small improvement in solution quality over the
permutation flow-shop scheduling problems (PFSP) while
increasing the complexity of the problem substantially. The
size of the solution space increases from n! to (n!)m. Other
objective functions for the PFSP also received a lot of
attention. For example, the mean flow-time (the time a job
spends in the process), or the mean tardiness (assuming some
deadline for each job) are to be minimized.

Other real problems from the manufacturing industries
such as their jobs may have non-identical release dates, and
there may be sequence-dependent setup times, and limited
buffer storage between machines and so on. These
characteristics of the real world problems will make the
problem more complicated to be solved within a reasonable
time frame. However, GA approaches provide a more
realistic view to the problem. Since it can generate

alternatives of sequences (in the evolving process, each
chromosome represents a feasible solution to the problem) to
the decision maker, a more applicable sequence can be
decided to solve the current problem with satisfactory results.

III. SELF-EVOLVING ARTIFICIAL IMMUNE SYSTEM
Permutation Flow-shop sequencing problem as mentioned

by Reeves [13] is known to be NP-hard. This kind of
problems usually needs high computational time and the
solution quality decreases very rapidly when the problem
complexity rises gradually. Meta heuristics are usually
applied for this kind of problems however they may get
trapped in the early convergence problem. AIS in this work
consists of two major mechanisms which are T cell and B cell.
This paper proposes a architecture to make these two cells
cooperate for better solutions, named Self-evolving Artificial
Immune System (SEAIS), the architecture chart is shown as
Figure 1.

After the initial Antibodies are generated, the Antibody
colonies start to identify Antigen. The Antibody with best
objective value will be selected to be the winner in this
iteration, which is so-called Antigen in this paper. This phase
will decide the candidate to enter T-cell for neighboring
searching. The remaining Antibodies will enter the B-cell for
widespread searching. Therefore, this research applies the
two cells for evolving respectively in Local and Global search.
In T-cell, there are three major tasks, which are generating T
Cytotoxic cell (TC), or called T killer cell and generating T
Helper cell (TH) and T Suppressor cell (TS). TC in T-cell is

Generate
Initial

Antibodies

Identify
Antigen

Scramble

New Antibody
Colony

Termination
Condition

End

Yes

Generate T
Cytotoxic celL

(TC) via Multiple
Swap

Obj.<Min

Yes

No

If ξ < τ

Pick the best as Antigen

No

NoT Helper cell
(TH)

T Suppressor
cell (TS)

T-Cell B-Cell

Obj. of Abs in
Top 10%

No

Memory
Cell

Yes

Better than Abs in
Elite Pool

Yes

G <
Iteration*λ

TH

TS

Yes

Yes No

Yes

No

Plasma Cell

No

Fig. 1 The Architecture of SEAIS

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:4, No:5, 2010

634

responsible producing the cell with the ability of eliminating
Antigen. TH and TS are the controlling cells used to adjust
based on the convergence pressure. From Figure 2, TH is
responsible to stimulate cells active when the evolving
iterations have not reach the specific value. TS in T-cell is to
restrain the cells’ division when the evolving is ineffective.
This is called co-evolutional strategy in this work. The
purpose of this mechanism is used for the cooperativeness of
controlling T and B cell.

In B-cell, two major tasks are concerned. One is to

produce the Memory cell which is used to eliminate when the
similar Antigen appears. Another one is to generate Plasma
cells, which is used to produce Antibodies. In this research,
Plasma cells are from the archive of TH and TS. The Plasma
cells and Memory cells will be gathered into an archive stores
new Antibody colony. The pseudo codes of SEAIS are
described in the following:

To compute the Affinity between Antibody and Antigen,

the diversities should be considered respectively. Based on
the definition of Antigen and Antibody of AIS as shown in
Gong et al. (2008), two criterions governing the relationship
between Antigen and Antibody are explained as follows:

A. Affinity between Antibody and Antibody population
An Antibody is regarded as of a candidate solution of an

Antigen. The colony of Antibodies is defined as Abi=(Abi1,
Abi2,…, Abil), and the length of amount is defined as l. Abl is the
coding of variable x, which is denoted by Abl=e(x), and Abi is
called the decoding of Antibody bilA , expressed as Abi=
e-1(Abil).

Set biA is called Antibody space, namely Abil Abi. An
Antibody population is an n-dimensional group of
Antibody bilA , where the positive integer n is the Antibody
population size.

1 2(, ,...,), bi b l b l bnl bnl biA A A A A A= ∈ (7)

B. Affinity between Antigen and Antibody population
The affinity between an Antibody and an Antigen is used

to evaluate the identification of Antibody for Antigen. The
Ab-Ag affinity is defined as lξ , which is between Antibody
b=e(x) and the Antigen Ag formula (11) is defined as:

1

1 1 1
1 2

(,) (())

((()), (()),..., (()))
i

i i i

l b g b

T
b b p b

A A F e A

f e A f e A f e A

ξ −

− − −=

� (8)

Base on the definition of Affinity above, we set δi,j to

record the difference between Ag and Abi on specific position
of gene strings. We continuously sum up all δi,j to be the
diversity between Ag and Abi which is regarded as the
reciprocal of Similarity (shown as Figure 3).

Therefore, the greater value of Diversity, the smaller

value of Similarity, which means, the increasing value of
Affinity represents the value of Diversity decreased. The
mathematical models are described as follows:

, , , inti j i j g jx x for iδ = − ∀ ∈ (9)

1

,
1

m

i i j
j

ξ δ
−

=

= ∑ (10)

Affinity ξ is applied to control the injection of T-cell,

therefore it should be computed in advance as shown as
equation (14). ξ is composed by two differences, one is

gA

iAb

,1gx ,2gx ,g jxL L ,g mx

,1ix ,2ix L ,i jx L ,i mx

,1δ i ,2δ i ,δ i j ,δ i m
Fig. 3 The schematic diagram for Affinity computation between

Antigen and Antibody Colony

1. Generate initialize population (Abs)
2. While not terminal condition do
3. Compute obj_function(Abs)
4. Assign Ag=Ab with minimal obj_function in Abs
5. For each Ab in population
6. If Objective value of Ab superior in population*10% then put into

a pool
7. End for
8. While the stopping criteria do
9. Select the current Ag to do Swap Mutation
10. If the obj_value of the new_Ab < the current min then put into the

best_pool
11. Else put them into diverse_pool
12. End if
13. End while
14. If generation % K ==0 then put best_pool into population
15. Else put diverse_pool into population
16. End if
17. Select the Ab of the population to do Scramble Mutation
18. Compute the Affinity of every Ab
19. If (Affinity of < τ) then put the Ab into population
20. population= some Abs of Scramble Mutation + best_pool or

diverse_pool
21. End if
22. End while

Fig. 2 Co-evolutional strategy for T and B cell

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:4, No:5, 2010

635

between Antibody and the Antigen that is defined as
δ , (,)i m sAg Ab . Another difference is between the best
Antibody and Antibodies that is defined asδ , (,)i m winner sAb Ab .

ξ δ δ∑ ∑= +, ,,

[(,) (,)]i m s i m winner si i m
Ag Ab Ab Ab (11)

IV. EXPERIMENTAL RESULTS
In Table I, the test instances are rec01~rec11 from

Reeves’s instances. The objective function is to minimize the
Completion times for sequencing n jobs on m machines are
defined as C*, each algorithm test the same instances for
comparing the quality of solution.

In the result of Table I, the first series of instances rec03

and rec09 are compared with SGA and SA, which are plotted
in Figure 4. In this series, the efficiencies are better than
SGA.

The second series is belong to middle complexity of

instances, which are from rec13~rec29. From the observation
of Table II, the error rates of SEAIS are the smallest among
all algorithms. Compare to the result of series 1, the error
rates are significantly smaller. From this result, the efficiency
of SEAIS is better when the complexities of problems are
higher.

Fig. 5 shows SEAIS is effective when search the solution

in rec13 and rec27.

The final series of instances are from rec31~rec41, which

with the largest complexity. Form Table III, the minimal
objective values SEAIS searched are better than the other
algorithms. The error rates of SEAIS are also the best among
the compared algorithms.

In Figure 6, the result shows that SGA is better than SEAIS
when meet the instance rec39. Nevertheless, when we check
from Table III, we found the error rate of SEAIS is smaller
than SGA. This represents that the solution qualities of

Fig. 5 The convergence effect of rec13 and rec27

TABLE III EXPERIMENTAL RESULT FOR REC31~ REC41
SGA SA SEAIS

Instance n,m C* Min Error
Rate Min Error

Rate Min Error
Rate

rec31 50,10 3045 3210 5.42 3194 4.89 3131 2.82
rec33 50,10 3114 3169 1.77 3177 2.02 3128 0.45
rec35 50,10 3277 3284 0.21 3306 0.88 3277 0.00
rec37 75,20 4951 5281 6.67 5337 7.80 5206 5.15
rec39 75,20 5087 5301 4.21 5396 6.07 5234 2.89
rec41 75,20 4960 5270 6.25 5371 8.29 5180 4.44

TABLE II EXPERIMENTAL RESULT FOR REC13~ REC29
SGA SA SEAIS

Instance n,m C* Min Error
Rate Min Error

Rate Min Error
Rate

rec13 20,15 1930 1970 2.07 1966 1.87 1937 0.36
rec15 20,15 1950 1992 2.15 1973 1.18 1966 0.82
rec17 20,15 1902 1963 3.21 1922 1.05 1933 1.63
rec19 30,10 2093 2164 3.39 2158 3.11 2120 1.29
rec21 30,10 2017 2069 2.58 2050 1.64 2050 1.64
rec23 30,10 2011 2082 3.53 2068 2.83 2036 1.24
rec25 30,15 2513 2630 4.66 2599 3.42 2563 1.99
rec27 30,15 2373 2468 4.00 2455 3.46 2417 1.85
rec29 30,15 2287 2392 4.59 2394 4.68 2339 2.27

Fig. 4 The convergence effect of rec03 and rec09

TABLE I EXPERIMENTAL RESULT FOR REC01~ REC11
SGA SA SEAIS

Instance n,m C* Min Error
Rate Min Error

Rate Min Error
Rate

rec01 20,5 1247 1249 0.16 1249 0.16 1249 0.16
rec03 20,5 1109 1111 0.18 1111 0.18 1111 0.18
rec05 20,5 1242 1245 0.24 1245 0.24 1245 0.24
rec07 20,10 1566 1584 1.15 1584 1.15 1584 1.15
rec09 20,10 1537 1567 1.95 1547 0.65 1537 0.00
rec11 20,10 1431 1469 2.66 1453 1.54 1441 0.70

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:4, No:5, 2010

636

SEAIS are better than SGA.

V. CONCLUSION
SEAIS proposed in this paper is validated that it is

effective for solving combinatorial problems. In this research,
the improvement of the AIS is possible by collecting a set of
antibody candidates in the archive is introduced. The
experimental results in this paper validate the philosophy of
SEAIS has introduced a good mechanism for Clonal selection
in AIS. In this work, two mechanisms respectively evolve for
local and global search. The proposed co-evolutional strategy
can help each other for reasonable searching, such as
adjusting the convergence pressure. The extension research
on the technique of mining data structure will be done in the
near future which will help the T-cell produce more effective
Cytotoxic cells to make B-cell gather better Plasma cells for
better solutions.

REFERENCES
[1] F. Campelo, F. G. Guimar˜aes, and H. Igarashi, “Overview of Artificial

Immune Systems for Multi-objective Optimization,” EMO 2007,
Lecture Notes in Computer Science, pp. 937-951, 2007.

[2] J. S. Chun, H. K. Jung and S. Y. Hahn, “A Study on Comparison of
Optimization Performances between Immune Algorithm and other
Heuristic Algorithms,” IEEE Transactions on Magnetics, vol. 34, No.
5, September 1998.

[3] J. T. Tsai, W. H. Ho, and T. K. Liu, and J. H. Chou, “Improved immune
algorithm for global numerical optimization and job-shop scheduling
problems,” Applied Mathematics and Computation 194 (2007) pp.
406-424, 2007.

[4] V. Cutello, G. Nicosia, M. Pavone, J. Timmis, “An Immune Algorithm
for Protein Structure Prediction on Lattice Models,” IEEE Transactions
on Evolutionary Computation, vol. 11, no. 1, pp. 101-117, 2007.

[5] J. O. Kephart, “A biologically inspired immune system for computers,”
Proceedings of Artificial Life IV: The Fourth International Workshop
on the Synthesis and Simulation of Living Systems, MIT Press.
pp. 130–139, 1994.

[6] L. N. de Castro, J. Timmis, “Artificial Immune Systems: A New
Computational Intelligence Approach,” Springer. pp. 57–58, 2002.

[7] C.A.C. Coello, N.C. Cortés, “Hybridizing A Genetic Algorithm with
An Artificial Immune System for Global Optimization,” Engineering
Optimization, Volume 36, Number 5, pp. 607-634(28), 2004.

[8] J. D. Farmer, N. Packard, A. Perelson, “The immune system, adaptation
and machine learning,” Physica D, vol. 2, pp. 187-204, 1986.

[9] H. Bersini, F. J. Varela, “Hints for adaptive problem solving gleaned
from immune networks,” Parallel Problem Solving from Nature, vol.
496, pp. 343-354, 1991.

[10] P.C. Chang, S.H. Chen and K.L. Lin, ” Two Phase Sub-Population
Genetic Algorithm for Parallel Machine Scheduling problem” Expert
Systems with Applications, vol. 29(3), pp. 705-712, 2005.

[11] S. H. Chen, “The Self-Guided Genetic Algorithm,” PhD thesis, Yuan Ze
University, Taoyuan, 2008.

[12] D. Dasgupta (Editor), “Artificial Immune Systems and Their
Applications,” Springer-Verlag, Inc. Berlin, January 1999.

[13] C. R. Reeves, “A Genetic Algorithm for Flowshop Sequencing,”
Computers and Operations Research, vol. 5, pp. 5-13, 1995.

[14] T. Bagchi, “Multiobjective Scheduling by Genetic Algorithms,”
Springer ,1999.

[15] K. Baker, “Introduction to sequencing and scheduling,” Wiley, 1974.
[16] J. Framinan, J. Gupta, R. Leisten, “A review and classification of

heuristics for permutation flow-shop scheduling with makespan
objective,” Journal of the Operational Research Society, vol. 55(12),
pp.1243-1255, 2004.

[17] D. Zheng, L. Wang, “An Effective Hybrid Heuristic for Flow Shop
Scheduling,” The International Journal of Advanced Manufacturing
Technology, vol. 21(1), pp. 38-44, 2003.

[18] S. R. Hejazi, S. Saghafian, “Flowshop-scheduling problems with
makespan criterion: a review,” International Journal of Production
Research, vol. 43(14), pp. 2895-2929, 2005.

[19] R. Ruiz, C. Maroto, “A comprehensive review and evaluation of
permutation flowshop heuristics,” European Journal of Operational
Research, vol. 165(2), pp. 479-494, 2005.

[20] C. Reeves, T. Yamada, “Genetic Algorithms, Path Relinking, and the
Flowshop Sequencing Problem,” Evolutionary Computation, vol. 6(1),
pp. 45-60, 1998.

[21] S. Iyer, B. Saxena, “Improved genetic algorithm for the permutation
flowshop scheduling problem,” Computers and Operations Research,
vol. 31(4), pp. 593-606, 2004.

[22] X. Wang, T. C. E. Cheng, “A heuristic approach for tow-machine
no-wait flowshop scheduling with due dates and class setups,”
Computers and Operations Research, vol. 33(5), pp. 1326-1344, 2006.

[23] A. Jaszkiewicz, “Genetic local search for multi-objective combinatorial
optimization,” European Journal of Operational Research, vol. 137(1),
pp. 50-71, 2002.

[24] H. Ishibuchi, T. Yoshida, T. Murata, “Balance between genetic search
and local search in memetic algorithms for multiobjective permutation
flowshop scheduling,” Evolutionary Computation, IEEE Transactions
on vol. 7(2), pp. 204-223, 2003.

[25] T. Muruta, H. Ishibuchi, “Performance evolution of genetic algorithms
for flowshop scheduling problems,” Proceedings of First IEEE
International Conference on Evolutionary Computation, 1994.

[26] C. L. Chen, R. V. Neppalli, N. Aljaber, “Genetic algorithms applied to
the continuous flow shop problem,” Computers & Industrial
Engineering, vol. 30(4), pp. 919-929, 1996.

[27] P. C. Chang, J. C. Hsieh, C. H. Liu, “A case-injected genetic algorithm
for single machine scheduling problems with release time,”
International Journal of Production Economics, vol. 103(2), pp.
551-564, 2006.

[28] P. C. Chang, S. H. Chen, V. Mani, “Parametric Analysis of Bi-criterion
Single Machine Scheduling with a Learning Effect,” International
Journal of Innovative Computing, Information and Control, vol. 4(8),
pp. 2033-2043, 2008.

[29] V. Cutello and G. Nicosia, “An Immunological Approach to
Combinatorial Optimization Problems,” Lecture Notes in Computer
Science, Springer vol. 2527, pp. 361-370, 2002.

[30] L. N. de Castro and F. J. Von Zuben, “Artificial Immune Systems: Part
I -Basic Theory and Applications,” School of Computing and Electrical
Engineering, State University of Campinas, Brazil, No. DCA-RT 01/99,
1999.

[31] J. H. Holland, “Genetic Algorithms and the Optimal Allocation of
Trials,”. SIAM J. Comput, vol. 2(2), pp. 88-105, 1973.

[32] D. E. Goldberg, “Genetic Algorithms in Search, Optimization and
Machine Learning,” Addison-Wesley, Reading, MA , 1989.

Fig. 6 The convergence effect of rec35 and rec39

