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Abstract—Artificial Immune System is applied as a Heuristic 
Algorithm for decades. Nevertheless, many of these applications 
took advantage of the benefit of this algorithm but seldom proposed 
approaches for enhancing the efficiency. In this paper, a 
Self-evolving Artificial Immune System is proposed via developing 
the T and B cell in Immune System and built a self-evolving 
mechanism for the complexities of different problems. In this 
research, it focuses on enhancing the efficiency of Clonal selection 
which is responsible for producing Affinities to resist the invading of 
Antigens. T and B cell are the main mechanisms for Clonal 
Selection to produce different combinations of Antibodies. 
Therefore, the development of T and B cell will influence the 
efficiency of Clonal Selection for searching better solution. 
Furthermore, for better cooperation of the two cells, a co-evolutional 
strategy is applied to coordinate for more effective productions of 
Antibodies. This work finally adopts Flow-shop scheduling 
instances in OR-library to validate the proposed algorithm. 
 

Keywords—Artificial Immune System, Clonal Selection, 
Flow-shop Scheduling Problems, Co-evolutional strategy 

I. INTRODUCTION 
OMBINATORIAL optimization problems (COPs) are 
usually problems with high complexity, numerous 

algorithms were proposed for applying to this specific 
problem. Tsai et al. [3] and Chun et al. [2] had mentioned the 
algorithms for global optimization problems are of increasing 
importance in modern engineering design and systems 
operation in various areas. In solving global optimization 
problems, the particular challenge is that an algorithm may be 
trapped in the local optima of the objective function when the 
dimension is high and there are numerous local optima. 
Genetic algorithms Holland [31] and Goldberg [32], powerful 
tools based on biological mechanisms and natural selection 
theory, have received considerable attention regarding its 
potential as an optimization technique for complex problems 
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and have been successfully applied in various areas. The main 
feature of the GAs as an optimization method is their implicit 
parallelism, which is a result of the evolutionary process. 

However, there are two major issues in GAs; one is lack of 
the global search ability and another is the premature 
convergence. Therefore, numerous of algorithms were 
proposed for solving the phenomenon. Initially, the 
improvements in the GAs have been sought in the optimal 
proportion and adaptation of the main parameters, namely 
probability of mutation, probability of crossover, population 
size, and crossover operator. Therefore, some researchers 
have proposed several GA-based approaches to solve the 
phenomenon, one of these proposed GA-based algorithm is 
hybrid Genetic Algorithm and Immune System. The 
organisms named antibodies in the immune system which are 
responsible for protecting the body to against harmful 
organisms named antigen. Campelo [1] mentioned the 
immune system is able to detect a huge number of antigens 
using a fairly limited repertory of gene combinations. To 
carry out this recognition task, segments of genes are 
combined to accomplish the specificity of almost all the 
invader antigens known. A self-recognition task keeps the 
immune system from attacking itself, because immune cells 
are capable of recognizing themselves. 

Also, upon repeated exposure to a certain antigen, the 
immune system develops more effective and faster responses 
over time. From an information processing perspective, the 
immune system can be seen as a parallel and distributed 
adaptive system. It is capable of learning; it has memory and 
is capable of associative information retrieval in recognition 
and classification tasks. Particularly, it learns to recognize 
patterns, it remembers patterns that it has been shown in the 
past and its global behavior is an emergent property of many 
local interactions. All these features of the immune system 
provide, in consequence, great robustness, fault tolerance, 
dynamism, and adaptability. These are precisely the 
properties of the immune system that encourage researchers 
to try to emulate it in a computer, proposed by Coello [7]. 

Artificial immune systems (AIS) began in the mid 1980s 
with Farmer et al. [8] and Bersini et al. [9] on immune 
networks. However, it was only in the mid 90s that AIS 
became a subject area in its own right. Kephart et al. [5] 
published their first papers on AIS in 1994, and Dasgupta [12] 
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conducted extensive studies on Negative Selection 
Algorithms. De Castro and Von Zuben's [30] and Nicosia [29] 
& Cutello's [4] work (on Clonal selection) became notable in 
2002. AIS are new ideas, such as danger theory and 
algorithms inspired by the innate immune system, are also 
now being explored. Although some doubt that they are yet 
offering anything over and above existing AIS algorithms, 
this is hotly debated, and the debate is providing one the main 
driving forces for AIS development at the moment. 

AIS are computational systems inspired by the principles 
and processes of the vertebrate immune system. The 
algorithms typically exploit the immune system's 
characteristics of learning and memory to solve a problem. 
AIS is concerned with abstracting the structure and function 
of the immune system to computational systems, and 
investigating the application of these systems towards solving 
computational problems from mathematics, engineering, and 
information technology. AIS are adaptive systems, inspired 
by theoretical immunology and observed immune functions, 
principles and models, which are applied to problem solving 
[6]. AIS is distinct from computational immunology and 
theoretical biology that are concerned with simulating 
immunology using computational and mathematical models 
towards better understanding the immune system, although 
such models initiated the field of AIS and continue to provide 
a fertile ground for inspiration. Finally, the field of AIS is not 
concerned with the investigation of the immune system as a 
substrate computation, such as DNA computing. 

II. FLOW-SHOP SCHEDULING PROBLEMS 

A. Relative Literatures of Flow-shop Scheduling Problems 
Base on [11], we can induct flow-shop scheduling problem 

is one of the most well studied combinatorial problems in the 
area of scheduling in the operations research. Baker [15] 
summarized the assumptions of permutation flow-shop 
scheduling problems. Therefore, most of the research works 
emerged to develop effective heuristics and meta-heuristics. 
Chang [10] developed a two-phase sub population genetic 
algorithm to solve the parallel machine-scheduling problem. 
In the first phase, the population will be decomposed into 
many sub-populations and each sub-population is designed 
for a scalar multi-objective. In the second phase, 
non-dominant solutions will be combined after the first phase 
and all sub-population will be unified as one big population. 
Not only the algorithm merges sub-populations but the 
external memory of Pareto solution is also merged and 
updated. Framinan et al. [16] reported a review and the 
classification of the heuristics for permutation flow-shop 
scheduling problems. Hejazi and Saghafian [18] presented a 
complete survey of flow-shop scheduling problems and 
contributions from 1954 to 2004. This survey considered 
some exact methods, constructive heuristics, meta-heuristics, 
and evolutionary approaches. This paper is a good reference 
for n/m/p/Cmax. Ruiz and Maroto [19] provided a 

comprehensive review and evaluation of permutation 
flow-shop heuristics. Through our reading these review 
articles, we found it apparent that heuristics developed for 
PFSPs have proposed a remarkable contribution. 

Heuristics are developed for some specified situations. 
They may not work in some unexpected situations. Among 
the meta-heuristics, genetic algorithms have attracted a lot of 
attention because of many convincing results. Some 
researches did the pioneering work by applying genetic 
algorithms in solving flow-shop scheduling problems. Iyer 
and Saxena [21] proposed an improved genetic algorithm to 
solve permutation flow-shop scheduling problem. It is not 
difficult to search for more related genetic algorithm 
applications in the field of PFSPs. Wang and Cheng [22] 
considered the two-machine flow-shop problems with setups 
in a no-wait processing environment to minimize the 
maximum lateness. Some dominance properties were derived 
which worked as a heuristic. As a result, the performance of 
their proposed heuristic is able to work efficiently although 
those applications are similar in algorithmic structures. For 
the more detailed information about the review of the 
flow-shop scheduling, please refer to Ruiz and Maroto [19] 
who did an extensive comparison in the flow-shop scheduling 
problems, including tabu search, simulated annealing, genetic 
algorithms, iterated local search and hybrid techniques. 

If the flow-shop scheduling problem with multiple 
objectives is considered, it becomes even more complicated. 
Therefore, researchers have started to develop effective 
heuristics and meta-heuristics to solve this problem. Genetic 
algorithms have attracted a lot of attention among the 
meta-heuristics. Jaszkiewicz [23], Ishibuchi et al. [24], 
Reeves [13], Murata et al. [25], and Chen [26] did the 
pioneering works by employing genetic algorithms in solving 
flow-shop scheduling problems. Reeves and Yamada [20], 
Zheng and Wang [17], and Chang [27] hybridized other 
techniques with genetic algorithms to improve the genetic 
search. Chang [28] studied bi-criterion single machine 
scheduling with a learning effect by a parametric analysis. 
From the parametric analysis, a minimum set of Pareto 
solutions is obtained. It follows that it could be treated as 
initial solutions for MO algorithms since the parametric 
analysis doesn't guarantee the algorithm to find out all Pareto 
solutions. 

B. Definition of Flow-shop Scheduling Problems 
Flow-shops are useful tools in modeling manufacturing 

processes. A permutation flow-shop is a job processing 
facility, which consists of several machines and several jobs 
to be processed on the machines on different machines. In a 
permutation flow-shop, all jobs follow the same processing 
order. Our objective is to find a set of compromise solutions 
so that the makespan is minimized. The flow-shop scheduling 
problem is a typical assembly line problem where n different 
jobs have to be processed on m different machines. All jobs 
are processed on all the machines in the same order. The 
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processing time of the jobs on machines are fixed regardless 
of the order in which the processing is conducted. The 
problem is characterized by a matrix P = (pij), i = 1… n, j = 
1… m, of processing time. Each machine processes exactly 
one job at a time and each job is processed on exactly one 
machine at a time. The problem then is to find a sequence of 
jobs of minimizing the makespan which is the completion 
time of the last job in the sequence on the last machine. If Ci 
denotes the completion time for job i, we are trying to 
minimize max Ci. There are many other criteria that can be 
considered for the purpose of optimization. We refer the 
reader to Bagchi [14] for a detailed discussion of scheduling 
using GA. For details of the flow-shop and other scheduling 
and sequencing problems we refer the reader to Baker. The 
flow-shop scheduling can be formerly defined as follows: if p 
(i, j) is the processing time for Job i on Machine j, and a job 
permutation {π1, π2,…, πn}, where there are n jobs and m 
machines, accordingly the completion times C (πi, j) is 
calculated as follows which are proposed by Reeves [13]:  
 
C (π1, 1) = p (π1, 1)                                                                                (1) 
C (πi, 1) = C (πi-1, 1) + p (πi, 1), for i = 2,…, n                             (2) 
C (π1, j) = C (π1, j-1) + p (π1, j), for j = 2,…, m                           (3) 
C (πi, j) = max{C (πi-1, j), C (πi, j-1)} + p (πi, j)                           (4) 

for i = 2,…, n;  for j = 2,…, m 
 
The makespan is finally defined as: 
 

Cmax(π) = C(πn, m)                                                                              (5) 
 
Subsequently, the objective is to find a permutation π* in 

the set of all permutations ∏ so that 
 

Cmax(π*) ≦  Cmax(π) ∀π∈∏                                                       (6) 
 
A more general flow-shop scheduling problem can be 

defined by allowing the permutation of jobs to be different on 
each machine. However, what work has been done to show 
on the more general flow-shop scheduling problem has 
tended to small improvement in solution quality over the 
permutation flow-shop scheduling problems (PFSP) while 
increasing the complexity of the problem substantially. The 
size of the solution space increases from n! to (n!)m. Other 
objective functions for the PFSP also received a lot of 
attention. For example, the mean flow-time (the time a job 
spends in the process), or the mean tardiness (assuming some 
deadline for each job) are to be minimized. 

Other real problems from the manufacturing industries 
such as their jobs may have non-identical release dates, and 
there may be sequence-dependent setup times, and limited 
buffer storage between machines and so on. These 
characteristics of the real world problems will make the 
problem more complicated to be solved within a reasonable 
time frame. However, GA approaches provide a more 
realistic view to the problem. Since it can generate 

alternatives of sequences (in the evolving process, each 
chromosome represents a feasible solution to the problem) to 
the decision maker, a more applicable sequence can be 
decided to solve the current problem with satisfactory results. 

III. SELF-EVOLVING ARTIFICIAL IMMUNE SYSTEM 
Permutation Flow-shop sequencing problem as mentioned 

by Reeves [13] is known to be NP-hard. This kind of 
problems usually needs high computational time and the 
solution quality decreases very rapidly when the problem 
complexity rises gradually. Meta heuristics are usually 
applied for this kind of problems however they may get 
trapped in the early convergence problem. AIS in this work 
consists of two major mechanisms which are T cell and B cell. 
This paper proposes a architecture to make these two cells 
cooperate for better solutions, named Self-evolving Artificial 
Immune System (SEAIS), the architecture chart is shown as 
Figure 1. 

 

 
 

After the initial Antibodies are generated, the Antibody 
colonies start to identify Antigen. The Antibody with best 
objective value will be selected to be the winner in this 
iteration, which is so-called Antigen in this paper. This phase 
will decide the candidate to enter T-cell for neighboring 
searching. The remaining Antibodies will enter the B-cell for 
widespread searching. Therefore, this research applies the 
two cells for evolving respectively in Local and Global search. 
In T-cell, there are three major tasks, which are generating T 
Cytotoxic cell (TC), or called T killer cell and generating T 
Helper cell (TH) and T Suppressor cell (TS). TC in T-cell is 
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Fig. 1 The Architecture of SEAIS 
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responsible producing the cell with the ability of eliminating 
Antigen. TH and TS are the controlling cells used to adjust 
based on the convergence pressure. From Figure 2, TH is 
responsible to stimulate cells active when the evolving 
iterations have not reach the specific value. TS in T-cell is to 
restrain the cells’ division when the evolving is ineffective. 
This is called co-evolutional strategy in this work. The 
purpose of this mechanism is used for the cooperativeness of 
controlling T and B cell. 

 

 
 
In B-cell, two major tasks are concerned. One is to 

produce the Memory cell which is used to eliminate when the 
similar Antigen appears. Another one is to generate Plasma 
cells, which is used to produce Antibodies. In this research, 
Plasma cells are from the archive of TH and TS. The Plasma 
cells and Memory cells will be gathered into an archive stores 
new Antibody colony. The pseudo codes of SEAIS are 
described in the following: 

 
To compute the Affinity between Antibody and Antigen, 

the diversities should be considered respectively. Based on 
the definition of Antigen and Antibody of AIS as shown in 
Gong et al. (2008), two criterions governing the relationship 
between Antigen and Antibody are explained as follows: 

A. Affinity between Antibody and Antibody population 
An Antibody is regarded as of a candidate solution of an 

Antigen. The colony of Antibodies is defined as Abi=(Abi1, 
Abi2,…, Abil), and the length of amount is defined as l. Abl is the 
coding of variable x, which is denoted by Abl=e(x), and Abi is 
called the decoding of Antibody bilA , expressed as Abi= 
e-1(Abil). 

Set biA  is called Antibody space, namely Abil  Abi. An 
Antibody population is an n-dimensional group of 
Antibody bilA , where the positive integer n is the Antibody 
population size. 

 
1 2( , ,..., ),  bi b l b l bnl bnl biA A A A A A= ∈                                     (7) 

 

B. Affinity between Antigen and Antibody population 
The affinity between an Antibody and an Antigen is used 

to evaluate the identification of Antibody for Antigen. The 
Ab-Ag affinity is defined as lξ , which is between Antibody 
b=e(x) and the Antigen Ag formula (11) is defined as: 
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Base on the definition of Affinity above, we set δi,j to 

record the difference between Ag and Abi on specific position 
of gene strings. We continuously sum up all δi,j to be the 
diversity between Ag and Abi which is regarded as the 
reciprocal of Similarity (shown as Figure 3). 

 

 
 
Therefore, the greater value of Diversity, the smaller 

value of Similarity, which means, the increasing value of 
Affinity represents the value of Diversity decreased. The 
mathematical models are described as follows: 

 
, , , inti j i j g jx x for iδ = − ∀ ∈                                                   (9)  

 
1

,
1

m

i i j
j

ξ δ
−

=

= ∑                                                                           (10) 

 
Affinity ξ is applied to control the injection of T-cell, 

therefore it should be computed in advance as shown as 
equation (14). ξ is composed by two differences, one is 

gA

iAb

,1gx ,2gx ,g jxL L ,g mx

,1ix ,2ix L ,i jx L ,i mx

,1δ i ,2δ i ,δ i j ,δ i m  
Fig. 3 The schematic diagram for Affinity computation between 

Antigen and Antibody Colony 

1.   Generate initialize population (Abs) 
2.   While not terminal condition do 
3.   Compute obj_function(Abs) 
4.   Assign Ag=Ab with minimal obj_function in Abs 
5.   For each Ab in population 
6.    If Objective value of Ab superior in population*10% then put into 

a pool 
7.   End for 
8.   While the stopping criteria do 
9.       Select the current Ag to do Swap Mutation 
10. If the obj_value of the new_Ab < the current min then put into the 

best_pool 
11. Else  put them into diverse_pool 
12. End if 
13. End while 
14. If generation % K ==0 then put best_pool into population 
15. Else put diverse_pool into population 
16. End if 
17. Select the Ab of the population to do Scramble Mutation 
18. Compute the Affinity of every Ab 
19. If (Affinity of < τ) then put the Ab into population 
20. population= some Abs of Scramble Mutation + best_pool or 

diverse_pool  
21. End if 
22. End while 

 
Fig. 2 Co-evolutional strategy for T and B cell 
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between Antibody and the Antigen that is defined as 
δ , ( , )i m sAg Ab . Another difference is between the best 
Antibody and Antibodies that is defined asδ , ( , )i m winner sAb Ab . 

 
ξ δ δ∑ ∑= +, ,,

[ ( , ) ( , )]i m s i m winner si i m
Ag Ab Ab Ab                          (11) 

 

IV. EXPERIMENTAL RESULTS 
In Table I, the test instances are rec01~rec11 from 

Reeves’s instances. The objective function is to minimize the 
Completion times for sequencing n jobs on m machines are 
defined as C*, each algorithm test the same instances for 
comparing the quality of solution. 

 

 
 
In the result of Table I, the first series of instances rec03 

and rec09 are compared with SGA and SA, which are plotted 
in Figure 4. In this series, the efficiencies are better than 
SGA. 

 

 
 
The second series is belong to middle complexity of 

instances, which are from rec13~rec29. From the observation 
of Table II, the error rates of SEAIS are the smallest among 
all algorithms. Compare to the result of series 1, the error 
rates are significantly smaller. From this result, the efficiency 
of SEAIS is better when the complexities of problems are 
higher. 

  

 
 
Fig. 5 shows SEAIS is effective when search the solution 

in rec13 and rec27. 
 

 
 
The final series of instances are from rec31~rec41, which 

with the largest complexity. Form Table III, the minimal 
objective values SEAIS searched are better than the other 
algorithms. The error rates of SEAIS are also the best among 
the compared algorithms. 

 

 
 

In Figure 6, the result shows that SGA is better than SEAIS 
when meet the instance rec39. Nevertheless, when we check 
from Table III, we found the error rate of SEAIS is smaller 
than SGA. This represents that the solution qualities of 

 

 
Fig. 5 The convergence effect of rec13 and rec27 

TABLE III EXPERIMENTAL RESULT FOR REC31~ REC41 
SGA SA SEAIS 

Instance n,m C* Min Error 
Rate Min Error 

Rate Min Error 
Rate 

rec31 50,10 3045 3210 5.42 3194 4.89 3131 2.82 
rec33 50,10 3114 3169 1.77 3177 2.02 3128 0.45 
rec35 50,10 3277 3284 0.21 3306 0.88 3277 0.00  
rec37 75,20 4951 5281 6.67 5337 7.80  5206 5.15 
rec39 75,20 5087 5301 4.21 5396 6.07 5234 2.89 
rec41 75,20 4960 5270 6.25 5371 8.29 5180 4.44 

TABLE II EXPERIMENTAL RESULT FOR REC13~ REC29 
SGA SA SEAIS 

Instance n,m C* Min Error 
Rate Min Error 

Rate Min Error 
Rate 

rec13 20,15 1930 1970 2.07 1966 1.87 1937 0.36 
rec15 20,15 1950 1992 2.15 1973 1.18 1966 0.82 
rec17 20,15 1902 1963 3.21 1922 1.05 1933 1.63 
rec19 30,10 2093 2164 3.39 2158 3.11 2120 1.29 
rec21 30,10 2017 2069 2.58 2050 1.64 2050 1.64 
rec23 30,10 2011 2082 3.53 2068 2.83 2036 1.24 
rec25 30,15 2513 2630 4.66 2599 3.42 2563 1.99 
rec27 30,15 2373 2468 4.00  2455 3.46 2417 1.85 
rec29 30,15 2287 2392 4.59 2394 4.68 2339 2.27 

 

 
Fig. 4 The convergence effect of rec03 and rec09 

TABLE I EXPERIMENTAL RESULT FOR REC01~ REC11 
SGA SA SEAIS 

Instance n,m C* Min Error 
Rate Min Error 

Rate Min Error 
Rate 

rec01 20,5 1247 1249 0.16 1249 0.16 1249 0.16 
rec03 20,5 1109 1111 0.18 1111 0.18 1111 0.18 
rec05 20,5 1242 1245 0.24 1245 0.24 1245 0.24 
rec07 20,10 1566 1584 1.15 1584 1.15 1584 1.15 
rec09 20,10 1537 1567 1.95 1547 0.65 1537 0.00  
rec11 20,10 1431 1469 2.66 1453 1.54 1441 0.70  



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:4, No:5, 2010

636

 
 

 

SEAIS are better than SGA. 
 

 

V. CONCLUSION 
SEAIS proposed in this paper is validated that it is 

effective for solving combinatorial problems. In this research, 
the improvement of the AIS is possible by collecting a set of 
antibody candidates in the archive is introduced. The 
experimental results in this paper validate the philosophy of 
SEAIS has introduced a good mechanism for Clonal selection 
in AIS. In this work, two mechanisms respectively evolve for 
local and global search. The proposed co-evolutional strategy 
can help each other for reasonable searching, such as 
adjusting the convergence pressure. The extension research 
on the technique of mining data structure will be done in the 
near future which will help the T-cell produce more effective 
Cytotoxic cells to make B-cell gather better Plasma cells for 
better solutions. 
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