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Abstract—A predictive clustering hybrid regression (pCHR) 
approach was developed and evaluated using dataset from H2-
producing sucrose-based bioreactor operated for 15 months. The aim 
was to model and predict the H2-production rate using information 
available about envirome and metabolome of the bioprocess. Self-
organizing maps (SOM) and Sammon map were used to visualize the 
dataset and to identify main metabolic patterns and clusters in 
bioprocess data. Three metabolic clusters: acetate coupled with other 
metabolites, butyrate only, and transition phases were detected. The 
developed pCHR model combines principles of k-means clustering, 
kNN classification and regression techniques. The model performed 
well in modeling and predicting the H2-production rate with mean 
square error values of 0.0014 and 0.0032, respectively. 

Keywords—Biohydrogen, bioprocess modeling, clustering 
hybrid regression. 

I. INTRODUCTION

ODERN systems biology approaches [1]–[3] have been 
successfully applied in the fields of pharmaceuticals and 

health sciences. The complexity of bioprocesses involved in 
environmental biotechnology and fermentation processes 
throws a new challenge [4], [5]. One of such bioprocesses is 
anaerobic digestion of sugar (usually glucose and sucrose) to 
produce H2 as an energy carrier [6]. 

The fossil fuel dependency of energy economy today 
results in global warming, air pollution and environmental and 
health problems. Hydrogen (H2) produced from renewable 
energy sources offers a clean alternative for the fossil fuels 
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[7], [8]. Today, several techniques for sustainable H2-
production exist including microbiological fermentation 
processes [9].

Microbiological dark fermentation, involving mixed 
microbial cultures, can be used to produce H2 from biomass or 
organic waste materials [10], [11]. H2 production is an 
intermediate step in the anaerobic degradation of organic 
material, where H2 and CO2, and organic acids and alcohols 
are the end-products of the bioprocess [12], [13].  The 
fermentative biohydrogen research aims at manipulating and 
guiding the anaerobic digestion process in such a way that H2

is produced as a major product. It is achieved by inhibiting the 
hydrogen consumers and methane producers; and controlling 
the various physical, chemical, biochemical and biological 
parameters [14]. 

In the growing ome-onyms, [15] introduces the term 
envirome for the state vector containing all relevant extra-
cellular variables, e.g. concentrations of chemical compounds, 
control and operational physical variables. The interactions 
between envirome and other omes can be schematically 
represented as in Fig. 1. The biochemical information flow 
from genome to metabolome is shown as solid arrow. Other 
possible interactions are represented as dashed arrows. The 
metabolome interacts with the envirome via excretion or 
uptake of metabolites. The metabolome does not define the 
envirome in the same manner as the genome defines the 
transcriptome. The dashed arrow is used to indicate this 
difference.

The successful application of systems biology approach to 
biohydrogen process requires optimizing the envirome such 
that high and sustainable H2-production rates are achieved 
[16]–[18]. The optimal conditions at envirome level are 
desired so that H2-production is maximal and is also 
sustainable. During this stage, metabolome data is also 
analyzed for better understanding and control of bioreactor. 
Once the optimal envirome conditions are known for a desired 
metabolic profile with high H2-production rates, more –omics 
related information could be included to better optimize, 
control and engineer the bioprocess.  

In modeling and control of complex systems such as 
biotechnological processes, it is usually assumed that a global, 
analytical system model can be defined [19]. The kinetic and 
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stoichiometric models [20]-[23] and models based on 
Anaerobic Digestion Model 1 (ADM1) [24]-[27] have been 
successfully used to describe the anaerobic bioprocesses. 
These models, however, require detailed a priori knowledge 
of the bioprocess [13], [23]. In bioprocesses involving mixed 
cultures, it is not always possible to establish detailed a priori
knowledge about the bioprocess. It is very challenging to 
achieve the species specific growth and death rates in a mixed 
microbial community. 

Fig. 1 Schematic representation of interactions between envirome 
and other omes. Adapted from [15]. 

In our earlier studies [28], [29], we have developed a 
clustering hybrid regression (CHR) approach which does not 
require detailed a priori knowledge of the bioprocess. The 
CHR approach offers means to reveal hidden patterns in 
bioprocess data; and to provide information for the 
optimization of H2 production bioprocesses. The CHR 
approach has been successfully applied to xylose [28] and 
glucose [29] based fermentative H2-producing bioprocesses. 
The clustering techniques (Self-Organizing Maps (SOM) and 
K-means) were applied to mine and cluster the end-products 
of fermentative H2 production. The piecewise multiple linear 
regressions were used to model the H2-production for each 
cluster.

In this study, we have extended the CHR approach by 
adding the prediction capabilities to it. The classification step 
(not included in CHR approach) has been added to provide the 
prediction capabilities. The developed predictive clustering 
hybrid regression (pCHR) approach models and predicts the 
H2-production rate. The applicability of pCHR model was 
evaluated using dataset from H2-producing sucrose-based 
bioreactor.

II. COMPUTATIONAL METHODS

A. Nonlinear Projection Pursuit 
Projection pursuit (PP) methods [30]–[33] are 

computational techniques for extracting statistically 
significant features from high-dimensional datasets. PP 
techniques automatically determine the low-dimensional 
projections of such datasets and highlight any inherent 
clusters. Self-organizing maps and Sammon maps represent 
one subset (nonlinear projection pursuit) of more general PP 
techniques. 

1) Self Organizing Maps (SOM) 
The SOM (also known as Kohonen’s map) [34] is a data 

exploration tool for the analysis and visualization of 
nonlinear, high-dimensional data, and is generally used in the 
data understanding phase of the model development. It is a 
neural network algorithm based on unsupervised learning in a 
data-driven way, and combines the tasks of vector 
quantization and data projection [34], [35]. SOM has proven 
to be a valuable tool in data mining and knowledge discovery. 
It has been successfully applied in various engineering 
applications like image analysis, pattern recognition, chemical 
process monitoring and control, and fault diagnosis [34]–[38]. 
The capabilities of SOM in finding biologically meaningful 
clusters have also been demonstrated. The SOM has been used 
in clustering gene expression patterns from yeast or C. elegans
[39]-[41] and also in cancer dataset [42]. The SOM has also 
found applications in nonlinear system identification and 
control [43]. In this study, SOM was used to reveal and 
visualize the relevant metabolic patterns and clusters in the 
bioprocess dataset. 

SOM transforms an incoming signal pattern of arbitrary 
dimension into a one- or two- dimensional discrete map. The 
elements of the SOM are called neurons (also referred as map 
units or cells). Each neuron contains a reference vector 
(codebook vector), which is of the same dimension as the 
number of features (variables) in bioprocess data. The result 
of SOM is a topographic map of the input patterns in which 
the spatial locations (i.e., coordinates) of the neurons in the 
lattice are indicative of intrinsic statistical features contained 
in the input bioprocess dataset [34], [35]. 

SOM is optimized based on the quantization error (defined 
as equation 1) in the reference vector space. Let AX:
denote the SOM mapping from an input space X to the 
discrete reference vector space A. Further, let 

1*nXx  be a bioprocess data sample, where n is the 

dimension of the bioprocess dataset. Let 1*n
i Am  be 

i:th reference vector. The input bioprocess data sample (x) is 
connected to all neurons (mi) in SOM, and the distances 

),( imxd  between input bioprocess data sample and 
reference vectors are computed. The neuron having the closest 
reference vector (mc) to the current input pattern is declared as 
winner (also referred as best matching unit) according to 
equation 1: 
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)),((min),( iic mxdmxd             (1) 

The winner is normally surrounded by a (topological) 
neighborhood region, Nc, and all neurons belonging to the 
neighborhood are updated. The updating is controlled by 
neighborhood function, hci, which is centered to the neuron 
having closest reference vector mc. Let the number of 
reference vectors be L, then a distortion measure is defined as 
equation 2. 

L

i
ici mxdhxe

1

),()(                 (2) 

In this study, free open source SOMPAK toolbox [44], [45] 
for MATLAB was used to plot SOM. The a priori parameters 
for SOM were set for default values as presented in [45]. 

2) Sammon Maps 
Sammon's mapping (also referred to as non-linear mapping 

or NLM) is an iterative method based on a gradient search 
[46]. It is a non-linear mapping that maps a set of input points 
from a high-dimensional vector space onto a low-dimensional 
output space. The method attempts to preserve the inherent 
structure of the data when the patterns are projected from a 
high-dimensional space to low-dimensional space. The 
Sammon mapping is determined by the optimization of an 
error, or ‘STRESS’, measure which attempts to preserve all 
inter-point distances under the projection [47], [48]. The 
Sammon STRESS is defined as equation 3:

1
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where n is the number of patterns. The inter-pattern 
distances between pattern and pattern  in the input space is 

),(* vd and in the projected output space is ),( vd ,
respectively. These distance measures are generally Euclidean 
but need not be strictly so.

Sammon's mapping can be applied directly to multivariate 
data sets, but is computationally very intensive. It is thus 
applied when the SOM algorithm has already achieved a 
substantial data reduction by replacing the original data 
vectors with a smaller number of representative prototype 
codebook vectors. The resulting Sammon visualization depicts 
clusters in input space as groups of data points mapped close 
to each other in the output space. Thus, the inherent structure 
of the input patterns can be told from the structure detected in 
the 2-dimensional visualization.  

In this study, Sammon function implementation in free open 

source SOMPAK toolbox [44], [45] for MATLAB was used 
to plot Sammon map. The a priori parameters for Sammon 
were set for default values as presented in [45].  

B. K-means clustering 
K-means [49] clustering is a simple unsupervised learning 

algorithm used to solve clustering problems. It classifies a 
given dataset into a certain number of clusters (k) which are 
fixed a priori [50], [51]. In this research, SOM and Sammon 
visualizations were used to guide in choosing this k value.  

Steps of K-means clustering include: (i) Choosing the 
number of clusters (k), (ii) randomly choosing the k cluster 
centers (known as centroids), (iii) measuring the distance of 
objects to centroids and grouping them based on minimal 
distances, (iv) if any objects moves the group, go back to step 
(ii).  K-means is a simple algorithm that has been adapted to 
many problem domains. The algorithm is significantly 
sensitive to the initial randomly selected centroids. Thus, the 
K-means algorithm should be run multiple times to reduce this 
effect.

Several distance metrics exist for calculating the distances 
of objects to centroids [50], [51]. It is a difficult decision to 
choose the distance measure when using a clustering 
algorithm. The standard choice is the Euclidean distance, as its 
simple. There are many situations in bioprocess data analysis 
where Euclidean distance may not be the best choice. The 
reason being, that from a biotechnological point of view, the 
direction of the change in metabolic profile is very often more 
important than the difference between the ratios [29]. 
Euclidean distance is incapable to take direction into account. 
The correlation distance measure is capable of taking also 
directions of the changes in profile into account. 

To cluster the dataset, MATLAB v. 7.3 function kmeans,
with correlation as distance measure was used.  

C. K-Nearest Neighbor (kNN) Classifier 
K-nearest neighbor (kNN) algorithm [52], a variation of 

nearest-neighbor, is an instance-based nonparametric 
classification technique with successful applications in 
statistical pattern recognition problem. The kNN is well suited 
for multi-modal classes (i.e., consists of objects whose 
independent variables have different characteristics for 
different subsets) as its classification decision is based on a 
small neighborhood of similar objects [53], [54]. 

Let myyyyy ,...,, 321  be an unlabelled input pattern 

to be classified to one of the class iccccc ,...,, 321 . Let 

nxxxxx ,...,, 321  be a pattern (already clustered dataset 
in our case) which have label c. In nearest neighbor only the 
point x that is closest to y is computed and the class ci of x is 
the class of y. In kNN, k points that are closest to y are 
calculated. The unlabelled input pattern y is assigned to the 
class ci, if ci has the biggest similarity score (or majority 
score) to y among all classes. Equations 4 and 5 are the widely 
used strategies for kNN classification.
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where yi is an unlabelled input pattern, xj is one of the 
computed k nearest neighbors, 1,0),( kj cxl  indicates 

whether xj belongs to class ck and ),( ji xysim  is the 

similarity function for yi and xj. Equation (4) means that the 
winner class will be the class that has the largest number of 
members in the k nearest neighbors; whereas equation (5) 
means the class with maximal sum of similarity will be the 
winner.  

To classify the dataset, MATLAB v. 7.3 function 
knnclassify, with correlation as distance measure was used. 

D. Silhouette Plots 
Silhouette plots were used to display and evaluate the 

clustering and classification results. Consider a node vi that 
belongs to cluster Cj. Let Ch be the closest (according to 
average distance) cluster to node vi. The silhouette index [55], 
[56] is defined as equation 6. 

),(),,(max
),(),(

)(
hiji

jihi
i CvdCvd

CvdCvd
vs           (6)

 and 1)(1 ivs

where d(vi,Cj) is the average dissimilarity of vi object to all 
other objects in the same cluster; and d(vi,Ch) is the minimum 
of average dissimilarity of vi object to all objects in other 
cluster (in the closest cluster). 

When s(vi) is close to 1, vi is said to be “well clustered”. 
When s(vi) is close to 0, vi is said to be intermediate between 
two clusters. When s(vi) is close to -1, vi is said to be “badly 
clustered”. The largest overall average silhouette indicates the 
best clustering (the number of clusters). 

The clusters were validated using silhouette function in 
MATLAB v. 7.3.

E. Predictive Clustering Hybrid Regression (pCHR) 
The proposed pCHR model is an extension to the CHR 

approach [28], [29]. In pCHR approach, the prediction 
capabilities have been introduced by adding classification step 
to the CHR approach. The pCHR approach combines the ideas 
from clustering [50], [51], classification [52]-[54] and 
regression techniques [57]–[60]. 

1) General schema 
Fig. 2 presents the general schema and idea of pCHR 

approach. The dataset is divided into two parts for training 
and testing (prediction) purposes. Training dataset is sub-
grouped into clusters based on their statistical (or functional, if 
known) features. The modeling approach is chosen and 
applied to the clusters obtained. Based on the clusters, testing 

dataset is then classified (class label is predicted). The 
parameters of the model chosen in training phase are applied 
to classified dataset and criterion variable is predicted using 
predictor variables. 

Fig. 2 General schema for pCHR approach. 

The idea of pCHR model doesn’t restrict to computational 
techniques applied in this study. The neural networks based 
techniques (adaptive resonance theory and multi layer 
perceptrons) for clustering/classification of glucose based H2-
dataset have been evaluated [61]. The models based on SOM 
clustering have also been evaluated for H2-dataset [29]. For H2

production datasets [28], [29], K-means clustering gives 
optimal and stable clustering results. K-means clustering is 
used in this study, to keep the computational complexity low. 
Several other clustering and classification techniques [50]-
[54] can be applied and need to be evaluated. The modeling 
paradigm (here piecewise multiple linear regression) is also an 
open choice, depending on the properties of the dataset 
available, and the objective of modeling [16], [62]. 

2) Algorithm of pCHR 
Fig. 3 presents the flow chart of pCHR algorithm as applied 

in this study. The k-means clustering was used to cluster the 
training dataset, while kNN classifier was used to classify test 
dataset. Multiple piecewise linear regression was used to 
obtain local regression models for each cluster. 

Piecewise linear regression is a local modeling approach 
that proposes different straight-line relationships for different 
intervals over the range of data [57]. Breakpoints which 
define the interval boundaries are the values where the slope 
of the linear function changes. The regression function at the 
breakpoint maybe discontinuous, but a model can be written 
in such a way that the function is continuous at all points 
including the breakpoints [59].  

In pCHR approach, clusters obtained (for training dataset) 
from K-means clustering define these intervals (subsets of 
data). The relationships between the response and the 
explanatory variables are then modeled. The model has 
different regression parameter values for different clusters. 
For each of the clusters obtained, multiple regressions are 
done to analyze the relationship between variables. The 
computational problem that needs to be solved in multiple 
regression analysis is to fit a straight line (or plane in an n-
dimensional space, where n is the number of independent 
variables) to a number of points [58], [60]. The mathematical 
form of pCHR model is given as equation 7. 
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where k is the number of clusters and n is the number of 
predictor variables.  is the parameters of the model, X is the 
predictor variable and  is the noise term. 

Fig. 3 Algorithm of pCHR model as used in this study.

To evaluate the prediction capabilities, unseen testing 
dataset was used. The unseen dataset is presented to the 
model. The kNN classifier is used to determine the class labels 
of the incoming samples. The parameters (  and  obtained 
earlier) corresponding to the class label are used to predict the 
criterion variable.   

In this study, applicability of pCHR approach to predict 
sucrose-based H2 production (experimental setup described in 
next section) was evaluated. H2 production rate was modeled 
as a function of metabolome (CO2-production rate, 
concentrations of acids and alcohols) and envirome (pH, 
hydraulic retention time (HRT), oxidation-reduction potential 
(ORP), alkalinity, recycle ratio, sucrose concentration, sucrose 
degradation and biomass). The bioprocess dataset consisted of 

278 sample points. Table I describes the composition and 
dynamic ranges of the dataset. 

TABLE I COMPOSITION, DYNAMIC RANGES AND MEASUREMENT UNITS OF THE 
BIOPROCESS DATA USED IN THE STUDY

Variables Min Mean Max 

Recycle ratio (%) 0 29.24 100 

HRT (h) 2 10.20 12 
sucrose conc. (g 

COD/l) 20 23.79 40 

sucrose degr. (%) 44.39 87.62 100 

Biomass (g VSS/l) 1.33 3.89 6.81 

pH 5.59 6.64 7.19 
ALK (mg/L as 

CaCO3) 2680 4810.16 7290 

ORP (mV) -613 -444.55 -216 
EtOH (mg 
COD/L) 136.13 2810.60 8796.14 

HAc (mg COD/L) 183.78 2335.62 4583.09 

HPr (mg COD/L) 0 739.43 3520.29 

HBu (mg COD/L) 446.79 5334.11 14000 

H2PR (l/h/l) 0 0.22 0.92 

CO2PR (l/h/l) 0 0.30 0.88 

HRT: hydraulic retention time, conc.: concentration, degr.: 
degradation, ALK: alkalinity, ORP: oxidation-reduction 
potential, EtOH: ethanol, HAc: acetate, HPr: propionate, HBu: 
butyrate, H2PR: hydrogen production rate, CO2PR: carbon 
dioxide production rate, Min: minimum, Max: maximum. 

The function regstats from MATLAB was used to estimate 
the parameters (  and ) of the model. The parameter values 
obtained for pCHR model are shown in Table II. 

III. CASE STUDY: SUCROSE-BASED BIOHYDROGEN
PRODUCTION

To evaluate the applicability of pCHR approach, sucrose-
based fermentative biohydrogen dataset was used as a case 
study. The dataset was obtained by operating a laboratory-
scale experimental system as shown in Fig. 4.  The details of 
the seed sludge, substrate, reactor setup, assessing protocol 
and analyses methods are presented below.  

A. Seed Sludge 
The Li-Ming Municipal Sewage Treatment Plant 

(Taichung, Taiwan) supplied the seed sludge for this study. 
The seed sludge was collected from the final sedimentation 
tank. The collected sludge was screened with a No. 8 mesh 
(diam. 2.35 mm) and was heated at 100oC for 45 minutes to 
inhibit methanogen or other microorganisms’ bioactivity. 

B. Substrate 
The seed sludge was acclimated with sucrose at a 

concentration of 20000 mg COD/L. The substrate contained 
sufficient inorganic [63] (mg/L): NH4HCO3 5240, K2HPO4

125, MgCl2·6H2O 100, MnSO4·6H2O 15, FeSO4·7H2O 25, 
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CuSO4·5H2O 5, CoCl2·5H2O 0.125, NaHCO3 6720. The 
substrate was stored at 4oC.

TABLE II PCHR MODEL PARAMETERS VALUES OBTAINED USING THE 
MATLAB REGSTATS FUNCTION

parameters cluster 1 cluster 2 cluster 3 
1.2737 -0.0954 0.1923 

Recycle ratio -6.3685 0.0002 0.0008 

HRT -0.0872 -0.0201 0.0026 

sucrose conc. 0.0105 0.0043 -0.0016 

sucrose degr. 0.0045 0.0081 -0.0004 

Biomass 0.043 -0.0205 -0.0028 

pH 0.6193 -0.1055 -0.0242 

ALK -0.0001 0 0 

ORP -0.0008 0 0.0001 

EtOH 0.0001 0 0 

HAc -0.0002 0 0 

HPr 0.0001 0 -0.0001 

HBu 0.0001 0 0 

CO2PR -0.0491 0.6894 0.938 

HRT: hydraulic retention time, conc.: concentration, degr.: 
degradation, ALK: alkalinity, ORP: oxidation-reduction 
potential, EtOH: ethanol, HAc: acetate, HPr: propionate, HBu: 
butyrate, CO2PR: carbon dioxide production rate 

Fig. 4 Configuration of an anaerobic bioreactor for continuous H2
production.

C. Completely Stirred Tank Reactor (CSTR) 
The CSTR (Fig. 4), with a working volume of 4.0 L, was 

operated for 15 months. The reactors were placed in a water-
bath tank and maintained the operating temperature 35±1 oC.
The substrate was drawn out with a peristaltic pump from the 
refrigerator through the 35 oC water-bath tank then into CSTR. 
The overflow and digestion biogas were drawn out with a 
diaphragm motor (air pump) from reactor. When the overflow 
and digestion biogas passed through the gas/liquid separator, 
the overflow was collected and the biogas was circulated in 
the reactor. Each reactor was connected to a gas collection 
cylinder placed in a saturated salt solution.  Each cylinder is 
same working volume (300 mL) and equipped with a counter 

that used to calculate the total volume of produced biogas. 
The effluent was collected in an Effluent Collector from 
which the settled sludge was recycled into the reactor to 
maintain biomass concentrations. The effluent recycle ratio 
was defined as recycle velocity dived by the influent velocity 
[64].  

D. Assessing Protocol 
Initial CSTR operation was in a continuous feeding mode 

and hydraulic retention time (HRT) was 12 h. pH was 
controlled around 6.7 which was found to be favorable for 
hydrogen production [65], [66]. When a steady-state condition 
was reached and the desired data were obtained the recycle 
ratio or substrate concentration or HRT was reduced. At each 
run, the CSTR was operated for more than ten times of the 
HRT to develop a steady-state condition. Steady-state 
conditions reached when the product concentrations such 
hydrogen gas content, biogas volume and metabolite 
concentrations were stable (less than 10 % variation). For each 
steady-state data measurement, 6-10 samples were 
determined. 

During the experimental operation of this study, the reactor 
was routinely monitored for pH, alkalinity, oxidation-
reduction potential (ORP), gas production and composition, 
sucrose concentration, ethanol concentration, volatile fatty 
acid (VFA) distribution and VSS concentrations. The gas 
volumes were corrected to a standard temperature (0 oC) and 
pressure (760mmHg) (STP). 

E. Bioprocess Monitoring Analyses 
The mixed liquors sampled were centrifuged (900 g, 15 

min) and the supernatants were taken for metabolite analysis. 
VFA and ethanol were analyzed with a gas chromatograph 
having a flame ionization detector (Shimadze GC-14, Japan). 
Biogas volume was determined by a gas meter (Ritter, 
Germany). Biogas composition except hydrogen sulfide was 
analyzed with a gas chromatograph having and a thermal 
conductivity detector (China Chromatograph 8700T, Taiwan). 
Hydrogen sulfide gas was analyzed with a gas chromatograph 
having a flame photometric detector (capillary column, 150
oC; injection temperature, 150 oC; carrier gas, N2). Other 
analytical details for the VFA, ethanol and biogas assays were 
the same as those in [67], [68]. Anthrone-sulfuric acid method 
was used to measure sucrose [69]. The ORP value was 
measured using a pH/ORP Controller with a silver chloride 
electrode (Suntex, Taiwan). Other water quality parameters 
were measured according the procedures of Standard Methods 
[70].  
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IV. RESULTS AND DISCUSSION

A. Bioprocess data analyses 

Fig. 5 SOM visualization (with colored component planes) of 
bioprocess dataset. Dark red represents the highest value observed 
for the variable. Dark blue represents the lowest value observed for 
the variable. Two metabolic patterns of acetate coupled with other 

metabolites, and butyrate alone are highlighted. Remaining neurons 
represent the transition state. 

SOM maps with colored component planes (Fig. 5) were 
used to visualize and identify the metabolic patterns and 
clusters of the fermentation process during the CSTR 
operation. Colored component planes were formed from the 
SOM reference vector by splitting it to n components, where n 
(for our dataset n = 14) is dimension of the reference vector. 
In context of bioprocess data, component plane corresponds to 
a feature (variable) in the dataset. Neurons in the component 
planes were color shaded. The shades of red correspond to 
high values for the variable, the shades of yellow to moderate 
values and the shades of blue to low values. 

Hydrogen production is accompanied with VFAs or solvent 
production during a dark fermentation. These liquid 
metabolites change in concentration distributions and fractions 
when the operation conditions such as cultivation pH, 
temperature, HRT and substrate concentration are changed 
[6], [8], [14]. Even when the operational conditions are fixed, 
the change in the microbial community structure also changes 
the metabolic profile and distributions [71], [72]. Liquid 
product analysis shows that the major VFAs were acetate, 
propionate and butyrate, with butyrate as the major 
component. Moreover, the liquid metabolite concentrations 
varied when HRT and recycle ratio were changed. 

Fig. 6 Sammon map visualization of nine metabolic profiles 
observed. t: transition phase, C: carbon dioxide, P: propionate, E:
ethanol coupled with acetate, A: acetate alone, å: butyrate coupled 
with acetate, B: butyrate alone, h: hydrogen coupled with butyrate, 

and H: hydrogen alone. 

SOM analyses suggested three distinct metabolic patterns 
(clusters): 1) acetate coupled with other metabolites (ethanol 
and butyrate), 2) butyrate alone, and 3) transition state when 
no metabolite was dominating. High H2-production rates are 
usually seen with high butyrate production. In our case, H2

production rates were moderate during high butyrate phase. 
This maybe likely due to H2 consuming species present during 
this metabolic phase. Acetate, propionate and ethanol are not 
high H2 producing reactions [6], [8], [14], and it can also be 
seen from SOM analyses. In our case study, best H2

production rates (0.92 l/h/l) were observed when the HRT was 
6 hrs, alkalinity was 4870 (mg/l as CaCO3), ORP was -409 
mV, pH was around 6.7 and with lower concentrations of 
sucrose (20 gCOD/l). High concentrations of substrate may 
inhibit the metabolism [13]. Also substrate degradation of 
around 76% and low biomass (3.5 gVSS/l) was observed 
during high H2 production phase. Theoretically, high substrate 
degradation and high biomass is associated with high H2

production [6], [8], [14], [72]. High biomass (in mixed 
microbial community) not always signifies high H2

production. It also depends on the microbial structure of the 
community [71]. The dynamics of the microbial community 
structure during the bioprocess operation needs to be analyzed 
to understand the relationships between several metabolites.  

SOM clusters were further analyzed to obtain insight into 
the three dominant metabolic clusters. The closer analyses of 
the metabolic clusters suggested nine metabolic profiles. 
These metabolic profiles were, however, not considered to be 
separate clusters, as they were found to be topologically close 
to each other in SOM and Sammon map. The profiles 
observed were: 1) transition phase (t), 2) carbon dioxide, (C) 
3) propionate (P), 4) ethanol coupled with acetate (E), 5) 
acetate alone (A), 6) butyrate coupled with acetate (å), 7) 
butyrate alone (B), 8) hydrogen coupled with butyrate (h), and 
9) hydrogen alone (H). The profiles are in the sequence as 
presented in Fig. 8, where the numbers of nine metabolic 
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patterns (marked on Y-axis of Fig. 8) corresponds to these 
profiles. The symbolic code in parentheses is used for 
representation in the Sammon map (Fig. 6), used to visualize 
these metabolic profiles. 

Fig. 7 Shepard plot (with Sammon stress as scaling criterion) of the 
dataset.  The distances in scaling approximate the disparities (the 

scatter of blue circles about the red line), and the disparities reflect 
the ranks of the dissimilarities (the red line is linear but increasing 

and becomes slightly nonlinear at the tail). 

Fig. 8 Time series visualization of metabolic profiles and their 
transitions in bioprocess data. The nine metabolic profiles observed 
are marked in following sequence on Y-axis: 1: transition phase, 2: 
carbon dioxide, 3: propionate, 4: ethanol coupled with acetate, 5: 

acetate alone, 6: butyrate coupled with acetate, 7: butyrate alone, 8: 
hydrogen coupled with butyrate, and 9: hydrogen alone. 

The Shepard plot (with Sammon stress as scaling criterion) 
was used to visualize the distances/disparities and the ranks of 
the dissimilarities in the dataset. The Shepard plot is a scatter-
plot of the interpoint distances vs. the original dissimilarities, 
and is used to determine the goodness of fit. Fig. 7 shows a 
linear pattern and a small scatter of data points. It implies that 
the distance in Sammon visualization is a good reflection of 
dissimilarity in our dataset. 

Fig. 9 Silhouette plots (A) K-means clustering over training dataset 
(mean silhouette value 0.69), (B) kNN classification over test dataset 

(mean silhouette value 0.65) 

Time series of the bioprocess dataset was analyzed. In this 
study, we were interested in understanding the dominant 
metabolic state changes. Instead of plotting each metabolite 
separately, the dominant metabolic profiles as observed were 
plotted as time series. SOM best matching units were used to 
label each input pattern to one of the 9 observed profiles. 
These metabolic profiles are plotted as time series in Fig. 8.  
The numbers on the Y-axis of Fig. 8 represents the observed 
metabolic profiles. As shown in the Fig. 8, the bioprocess 
started with butyrate (marked as 7 on Y-axis) and butyrate 
coupled with acetate (marked as 6 on Y-axis). Later it moved 
to acetate dominating metabolic phase (marked as 5 on Y-
axis). After few transition states (marked as 1 on Y-axis), the 
bioprocess shifted to ethanol coupled with acetate state 
(marked as 4 on Y-axis). The transition again occurred and 
bioprocess moved to butyrate dominating state (marked as 7 
on Y-axis) and butyrate coupled with hydrogen state (marked 
as 8 on Y-axis). At this phase, the high H2-production state 
(marked as 9 on Y-axis) was observed. Finally the bioprocess 
moved to carbon dioxide producing state (marked as 2 on Y-
axis). The bioprocess operation was terminated when 
propionate (marked as 3 on Y-axis) started to appear in high 
amounts. The study of the microbial community dynamics is 
required to better understand the metabolic transitions during 
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bioreactor operation [71]. 

Fig. 10 pCHR model results (A) training dataset (MSE = 0.0014), (B)
model predictions (MSE = 0.0032). 

B. pCHR model  
The bioprocess dataset (consist of 278 samples) was 

divided into two parts for training (139 samples) and testing 
(139 samples) purposes. The clusters in training dataset were 
obtained using K-means clustering algorithm with correlation 
as distance measure (Fig. 9a). SOM and Sammon analyses 
suggested three distinct metabolic clusters, thus k=3 were 
chosen for K-means clustering. The clusters were evaluated 
using Silhouette index, and the mean silhouette value obtained 
was 0.69 when k was chosen to be 3. Increasing or decreasing 
the value of k resulted in poor mean silhouette values. The 
clusters thus obtained were used to classify the data patterns in 
testing dataset. The classification of test dataset (Fig. 9b) was 
done using kNN classifier (with correlation as distance 
measure and number of nearest neighbors as 6) and the mean 
silhouette value obtained was 0.65.  

The parameters for pCHR model were obtained by applying 
multiple regressions over clustered training dataset. The 
parameters, thus obtained, were used for predicting H2

production rates. The results show that pCHR model (Figs. 
10a, b) performed very well in predicting the H2-production 
rate. The mean square error (MSE) for training was 0.0014 
and 0.0032 for testing 

V. CONCLUSIONS

A predictive clustering hybrid regression (pCHR) approach 
was used to model and predict H2-production rate based on the 
metabolic data, control parameters and envirome variables. 
SOM component planes and Sammon map were used to 
visualize clusters and to study correlations between bioprocess 
data samples (envirome and metabolome). SOM and Sammon 
analyses detected nine distinct metabolic profiles (acetate, 
acetate coupled with ethanol, acetate coupled with butyrate, 
butyrate, butyrate coupled with hydrogen, hydrogen, carbon 
dioxide, propionate and transition state). Three clusters 
(acetate coupled with other metabolites, butyrate and 
transition phase) were observed in the bioprocess dataset. The 
optimal envirome conditions obtained for this bioprocess 
were: HRT of 6 hrs, alkalinity as 4870 (mg/l as CaCO3), ORP 
as -409 mV, pH as 6.7 and concentrations of sucrose as 20 
gCOD/l. The pCHR model performed very well (MSE of 
0.0014 and 0.0032 for training and testing, respectively) in 
modeling the H2-production rate.
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