
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:12, 2010

1978

Abstract—Prediction of fault-prone modules provides one way to

support software quality engineering. Clustering is used to determine
the intrinsic grouping in a set of unlabeled data. Among various
clustering techniques available in literature K-Means clustering
approach is most widely being used. This paper introduces K-Means
based Clustering approach for software finding the fault proneness of
the Object-Oriented systems. The contribution of this paper is that it
has used Metric values of JEdit open source software for generation
of the rules for the categorization of software modules in the
categories of Faulty and non faulty modules and thereafter
empirically validation is performed. The results are measured in
terms of accuracy of prediction, probability of Detection and
Probability of False Alarms.

Keywords—K-Means, Software Fault, Classification, Object
Oriented Metrics.

I. INTRODUCTION

AULTS in software systems continue to be a major
problem. Many systems are delivered to users with

excessive faults. This is despite a huge amount of
development effort going into fault reduction in terms of
quality control and testing. It has long been recognized that
seeking out fault-prone parts of the system and targeting those
parts for increased quality control and testing is an effective
approach to fault reduction. Fault-proneness of a software
module is the probability that the module contains faults. A
correlation exists between the fault-proneness of the software
and the measurable attributes of the code (i.e. the static
metrics) and of the testing (i.e. the dynamic metrics).
Prediction of fault-prone modules provides one way to
support software quality engineering through improved
scheduling and project control. Quality of software is
increasingly important and testing related issues are becoming
crucial for software. Methodologies and techniques for
predicting the testing effort, monitoring process costs, and
measuring results can help in increasing efficiency of software

Dr. Parvinder S. Sandhu is working as Professor with the Rayat & Bahra

Institute Of Engineering & Bio-Technology, Mohali-Sahauran14004. E-Mail:
parvinder.sandhu@gmail.com.

Vikas Gupta is working as Asstt. Prof. with the Rayat Institute Of
Engineering & Information Technology, Rail Majra, Ropar, Punjab, India.

Jagdeep Singh & Ramandeep Singh Sidhu are doing M.Tech. CSE from
RIEIT, Rail Majra, Punjab.

Mandeep Kaur & Sonia Manhas are working with SSCET, Badhani,
Punjab, India.

testing. Being able to measure the fault-proneness of software
can be a key step towards steering the software testing and
improving the effectiveness of the whole process. In the past,
several metrics for measuring software complexity and testing
thoroughness have been proposed. Static metrics, e.g., the
McCabe's cyclomatic number or the Halstead's Software
Science, statically computed on the source code and tried to
quantify software complexity. Despite this it is difficult to
identify a reliable approach to identifying fault-prone software
components.

Clustering is used to determine the intrinsic grouping in a
set of unlabeled data. It is the process of organizing objects
into groups whose members are similar in some way. Among
various clustering techniques available in literature K-Means
clustering approach is most widely being used. K-Means is an
unsupervised clustering technique used to classify data in to K
clusters. It is partitional clustering approach, each cluster is
associated with a centroid (center point), each point is
assigned to the cluster with the closest centroid, Number of
clusters, K, must be specified.Hence, in this study, a K-Means
Based Clustering Approach is used for finding faulty Modules
in Open Source Software Systems. In order to perform the
analysis we validate the performance of the K-Means based
clustering method for dataset derived from open source
software JEdit [1]. We investigate the accuracy of the fault
proneness predictions using object oriented design using
metrics suite given by Chidamber and Kemerer [2] and used
in [3] for fault prediction. In the literature [3]-[17] various
types of Fault-Proneness Estimation Models are discussed.

The paper is organized as follows: section II explains about
the methodology followed and section III the result of the
study. Finally conclusions of the research are presented in
section IV.

II. METHODOLOGY FOLLOWED
The following are the steps used for the predicton of fault

prone modules:
First of all, find the structural code and design attributes of

software systems. Thereafter, select the suitable metric values
as representation of statement. Next step is to analyze, refine
metrics and normalize the metric values. We used JEdit open
source software in this study [18]. JEdit is a programmer's text
editor developed using Java language. JEdit combines the
functionality of Window, Unix, and MacOS text editors. It

A K-Means Based Clustering Approach for
Finding Faulty Modules in Open Source

Software Systems
Parvinder S. Sandhu, Jagdeep Singh, Vikas Gupta, Mandeep Kaur, Sonia Manhas, Ramandeep Sidhu

F

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:12, 2010

1979

was released as free software and the source code is available
on [19]. JEdit includes 274 classes. The number of developers
involved in this project was 144. The project was started in
1999. The number of bugs was computed using SVC
repositories. The release point for the project was identified in
2002. The log data from that point to 2007 was collected. The
header files in C++ were excluded in data collection. The
word bug or fixed was counted. Details on bug collection
process can be found in [20]. The following are the metrics
used in the classification process:

• Coupling between Objects(CBO)
• Lack of Cohesion (LCOM)
• Number of Children (NOC)
• Depth of inheritance (DOI)
• Weighted Methods per Class(WMC)
• Response for a class (RFC)
• Number of Public Methods(NPM)
• Lines of Code (LOC)
The data collection is performed and subsequently the it is

tried to use Correlation-based Feature Subset Selection and
Chi-squared Ranking Filter is applied to find the attributes
that are important for the prediction. Correlation-based
Feature Subset Selection Evaluates the worth of a subset of
attributes by considering the individual predictive ability of
each feature along with the degree of redundancy between
them [21]. Subsets of features that are highly correlated with
the class while having low intercorrelation are preferred. Chi-
squared Ranking Filter evaluates the worth of an attribute by
computing the value of the chi-squared statistic with respect to
the class.

Thereafter, the reduced number of attributes are givcen as
input to the K-means clustering algorithm. As Clustering is a
technique that divides data in to two or more clusters
depending upon some criteria. As, in this study data is divided
in to two clusters depending upon that whether they are fault
free or fault prone. In the K-means technique Euclidean
distance as well as Manhattan distance measures are
experimented. If the Manhattan distance is used, then
centroids are computed as the component-wise median rather
than mean.

To predict the results, we have used confusion matrix. The
confusion matrix has four categories: True positives (TP) are
the modules correctly classified as faulty modules. False
positives (FP) refer to fault-free modules incorrectly labeled
as faulty. True negatives (TN) are the fault-free modules
correctly labeled as such. False negatives (FN) refer to faulty
modules incorrectly classified as fault-free modules.

The following set of evaluation measures are being used
to find the results:

• Probability of Detection (PD), also called recall or
specificity, is defined as the probability of correct
classification of a module that contains a fault.

 PD = TP / (TP + FN) (1)
• Probability of False Alarms (PF) is defined as the

ratio of false positives to all non defect modules.
 PF = FP / (FP + TN) (2)

Basically, PD should be maximum and PF should be
minimum.

TABLE I
A CONFUSION MATRIX OF PREDICTION OUTCOMES

Pr
ed

ic
te

d

Real Data

 Fault No fault

Fault TP FP

No Fault FN TN

III. RESULT AND DISCUSSION
The data is collected from [1] and the statistics of the metric

data of the WMC, DIT, NOC, CBO, RFC, LCOM, NPM,
LOC metrics is tabulated in Table II, III, IV, V, VI, VII, VIII
and IX metrics respectively. The details of the number of
Faulty and Non-Faulty Modules present in the dataset is
shown in Table X.

TABLE II
STATICS OF THE WMC METRIC VALUES IN JEDIT DATA

TABLE III
STATICS OF THE DIT METRIC VALUES IN JEDIT DATA

TABLE IV
 STATICS OF THE NOC METRIC VALUES IN JEDIT DATA

TABLE V
STATICS OF THE CBO METRIC VALUES IN JEDIT DATA

TABLE VI
STATICS OF THE RFC METRIC VALUES IN JEDIT DATA

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:12, 2010

1980

TABLE VII
STATICS OF THE LCOM METRIC VALUES IN JEDIT DATA

TABLE VIII
STATICS OF THE NPM METRIC VALUES IN JEDIT DATA

TABLE IX
STATICS OF THE LOC METRIC VALUES IN JEDIT DATA

TABLE X
STATICS OF THE BUGS PRESENT VALUES IN JEDIT DATA

Fig. 1 Graphical Representation of the Statistics of the Metric

Data of the Attributes of Dataset

First, the dataset is evaluated using Correlation-based
Feature Subset Selection using BestFirst Search. The
parameters are:

• locallyPredictive -- Identify locally predictive
attributes. Iteratively adds attributes with the highest
correlation with the class as long as there is not

already an attribute in the subset that has a higher
correlation with the attribute in question The default
value is True is used in the experiment.

• missingSeparate -- Treat missing as a separate value.
Otherwise, counts for missing values are distributed
across other values in proportion to their frequency.
The default value False is used in the experiment.

BestFirst Searches the space of attribute subsets by greedy

hillclimbing augmented with a backtracking facility. Setting
the number of consecutive non-improving nodes allowed
controls the level of backtracking done. Best first may start
with the empty set of attributes and search forward, or start
with the full set of attributes and search backward, or start at
any point and search in both directions (by considering all
possible single attribute additions and deletions at a given
point).

The parameters used are:
• direction -- Set the direction of the search. The

default value ‘forward’ is used.
• lookupCacheSize -- Set the maximum size of the

lookup cache of evaluated subsets. This is expressed
as a multiplier of the number of attributes in the data
set. It is set to 1.

• searchTermination -- Set the amount of backtracking.
It is set to 5.

The figure 2 shows the results after applying Correlation-

based Feature Subset Selection using BestFirst Search. It has
proposed the use of DIT, CBO, RFC, NPM and LOC metric
as significant metrics for the prediction.

Fig. 3 Snapshot of the Output of Correlation-based Feature

Subset Selection using BestFirst Search

In case of Chi-squared Ranking Filter selection Ranks

attributes by their individual evaluations. Use in conjunction
with attribute evaluators (ReliefF, GainRatio, Entropy etc).
The following parameters are used:

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:12, 2010

1981

• binarizeNumericAttributes -- Just binarize numeric
attributes instead of properly discretizing them. The
false value of this parameter is used.

• missingMerge -- Distribute counts for missing
values. Counts are distributed across other values in
proportion to their frequency. Otherwise, missing is
treated as a separate value. The false value of this
parameter is used.

• generateRanking -- A constant option. Ranker is only
capable of generating attribute rankings. The true
value of this parameter is used.

• numToSelect -- Specify the number of attributes to
retain. The default value (-1) indicates that all
attributes are to be retained. Use either this option or
a threshold to reduce the attribute set.

• startSet -- Specify a set of attributes to ignore. When
generating the ranking, Ranker will not evaluate the
attributes in this list. This is specified as a comma
seperated list off attribute indexes starting at 1. It can
include ranges. Eg. 1,2,5-9,17.

• threshold -- Set threshold by which attributes can be
discarded. Default value results in no attributes being
discarded. Use either this option or numToSelect to
reduce the attribute set. The Default value
-1.7976931348623157E308 is used in the
experimentation.

Snapshot of the Output of Chi-squared Ranking Filter is

shown in figure 3. It shows that rank of the five attributes
recommended by the CFS is better than other attributes. So,
we selected the 5 attributes as selected by CFS algorithm

Fig. 3 Snapshot of the Output of Chi-squared Ranking Filter

Thereafter, K-Means algorithm is applied on the reduced

dataset. First of all the Euclidean distance is used and results
are shown in figure 4 and values of the cluster centriods are
tabulated in table XI. Second, ManhattanDistance is used and
cluster centriods are tabulated in table XII. Manhattan distance
(or Taxicab geometry) is the distance between two points is
the sum of the (absolute) differences of their coordinates [22].
In both the cases the following parameters are used:

• distanceFunction -- The distance function to use for
instances comparison. First set to EuclideanDistance
and therafter set to ManhattanDistance.

• dontReplaceMissingValues -- Replace missing values
globally with mean/mode. Default value False is
used.

• maxIterations -- set maximum number of iterations. It
is set to 500.

• numClusters -- set number of clusters. It is set to 2.
• preserveInstancesOrder -- Preserve order of

instances. It is set to False.
• seed -- The random number seed to be used. It is set

to 10.

Fig. 4 Snapshot of the Output Kmeans algorithm using Euclidean

Distance

TABLE XI
K-MENAS CLUSTER CENTRIODS USING EUCLIDEAN DISTANCE

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:12, 2010

1982

TABLE XII
K-MENAS CLUSTER CENTRIODS USING MANHATTAN DISTANCE

The 61 (means 22%) Clustered Instances belongs to

cluster 0 and 213 (means 78%) instances belongs to cluster
1. In both the cases the same confusion matrix is recorded as
shown in table XIII.

TABLE XIII
RECORDED CONFUSION MATRIX OF PREDICTION OUTCOMES

Pr

ed
ic

te
d

Real data
 Fault No Fault

Fault 46 88

No Fault 15 125

The Accuracy of classification, Probability of detection
(PD) and Probability of False Alarms (PF) values are 62.4%
0.754 and 0.413 respectively.

IV. CONCLUSION
This paper empirically evaluates performance of Kmeans

based Clustering technique in predicting fault-prone classes
using open source software. The proposed KMeans based
classification technique shows 62.4 percent accuracy. It also
shows high value of Probability of detection (PD) i.e. 0.754
and low value of Probability of False Alarms (PF) i.e. 0.413.

This study confirms that construction of Kmeans based
model is feasible, adaptable to Object Oriented systems and
useful in predicting faulty prone classes. It is therefore
concluded that model is implemented using Kmeans based
technique for classification of the software components into
faulty/fault-free systems is found satisfactory. The
contributions of the study can be summarized as follows: First
open source software systems analyzed. These systems are
developed with different development methods than
proprietary software. In previous studies mostly proprietary
software were analyzed. Second, we examine K-Means
clustering method to predict the faulty classes with better
accuracy.

The future work can be extended in following directions:
• Most important attribute can be found for fault prediction

and this work can be extended to further programming
languages.

• More algorithms can be evaluated and then we can find
the best algorithm. We plan to replicate our study to predict

model based on hybrid genetic algorithms or soft computing
techniques.

REFERENCES
[1] http://promisedata.org/repository/
[2] S. Chidamber, and C. Kemerer, "A metrics suite for object-oriented

design", IEEE Transactions on Software Engineering, 20(6), 1994,
pp.476-493.

[3] Arvinder Kaur and Ruchika Malhotra, “Application of Random Forest in
Predicting Fault-Prone Classes”, 2008 International Conference on
Advanced Computer Theory and Engineering ICACTE 2008, Pukhet,
Dec. 2008, pp. 37-43.

[4] Lanubile F., Lonigro A., and Visaggio G. (1995) “Comparing Models
for Identifying Fault-Prone Software Components”, Proceedings of
Seventh International Conference on Software Engineering and
Knowledge Engineering, June 1995, pp. 12-19.

[5] Saida Benlarbi,Khaled El Emam, Nishith Geol (1999), “Issues in
Validating Object-Oriented Metrics for Early Risk Prediction”, by Cistel
Technology 210 Colonnade Road Suite 204 Nepean, Ontario Canada
K2E 7L5.

[6] Runeson, Claes Wohlin and Magnus C. Ohlsson (2001), “A Proposal for
Comparison of Models for Identification of Fault-Proneness”, Dept. of
Communication Systems, Lund University, Profes 2001, LNLS 2188,
pp. 341-355.

[7] Mahaweerawat, A. (2004), “Fault-Prediction in object oriented
software’s using neural network techniques”, Advanced Virtual and
Intelligent Computing Center (AVIC), Department of Mathematics,
Faculty of Science, Chulalongkorn University, Bangkok, Thailand, pp.
1-8.

[8] Bellini, P. (2005), “Comparing Fault-Proneness Estimation Models”,
10th IEEE International Conference on Engineering of Complex
Computer Systems (ICECCS'05), vol. 0, 2005, pp. 205-214.

[9] Ma, Y., Guo, L. (2006), “A Statistical Framework for the Prediction of
Fault-Proneness”, West Virginia University, Morgantown.

[10] Eric Rotenberg (1999), “AR-SMT: A Microarchitectural Approach to
Fault Tolerance in Microprocessors”, Proceedings of the Twenty-Ninth
Annual International Symposium on Fault-Tolerant Computing, June 15-
18, pp. 84-90.

[11] L. Briand, J. Wilst, H. Lounis, "Replicated Case Studies for
Investigating Quality Factors in Object-Oriented Designs", Empirical
Software Engineering: An International Journal, 6(1), 2001, pp.11-58.

[12] T. Gyimothy, R. Ferenc, 1. Siket, "Empirical validation of object-
oriented metrics on open Trans. Software Engineering, 31 (10), 2005,
pp. 897 —910.

[13] Z. Yuming, and L. Hareton, "Empirical analysis of Object-Oriented
Design Metrics for predicting high severity faults", IEEE Transactions
on Software Engineering, 32(10), 2006, pp.771-784.

[14] G. Pai, "Empirical analysis of Software Fault Content and Fault
Proneness Using Bayesian Methods", IEEE Transactions on software
Engineering, 33(10), 2007, pp.675-686.

[15] K.K Aggarwal, Y. Singh, A. Kaur, R. Malhotra, "Empirical Analysis for
Investigating the Effect of Object-Oriented Metrics on Fault Proneness:
A Replicated Case Study", Published online in Software Process
Improvement and Practice, Wiley, 2008.

[16] K.K Aggarwal, Y. Singh, A. Kaur, R. Malhotra, "Investigating the Effect
of Coupling Metrics on Fault Proneness in Object-Oriented Systems",
Software Quality Professional, 8(4), 2006, pp.4-16.

[17] T.M. Khoshgaftaar, E.D. Allen, J.P. Hudepohl, S.J. Aud, Application of
neural networks to software quality modeling of a very large
telecommunications system, IEEE Transactions on Neural Networks,
8(4), 1997, pp. 902-909.

[18] Promise. http://promisedata.org/repository/.
[19] Website sourceforge: www.sourceforge.net/projects/jedit
[20] S. Watanabe, H. Kaiya, K. Kaijiri, Adapting a Fault Prediction Model to

Allow Inter Language Reuse, PROMISE'08, May 12-13, Leipzig,
Germany, 2008.

[21] M. A. Hall (1998). Correlation-based Feature Subset Selection for
Machine Learning. Hamilton, New Zealand.

[22] Wikipedia. Taxicab geometry. URL

http://en.wikipedia.org/wiki/Taxicab_geometry.

