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Application of l1-norm minimization technique to
image retrieval
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Abstract—Image retrieval is a topic where scientific interest is
currently high. The important steps associated with image retrieval
system are the extraction of discriminative features and a feasible
similarity metric for retrieving the database images that are similar
in content with the search image. Gabor filtering is a widely adopted
technique for feature extraction from the texture images. The recently
proposed sparsity promoting l1-norm minimization technique finds
the sparsest solution of an under-determined system of linear equa-
tions. In the present paper, the l1-norm minimization technique as a
similarity metric is used in image retrieval. It is demonstrated through
simulation results that the l1-norm minimization technique provides a
promising alternative to existing similarity metrics. In particular, the
cases where the l1-norm minimization technique works better than
the Euclidean distance metric are singled out.

Keywords—l1-norm minimization, content based retrieval, modi-
fied Gabor function.

I. INTRODUCTION

CONTENT Based Image Retrieval (CBIR) from large
image databases has been an active area of research

for long due to its applications in various fields like satellite
imaging, medicine etc. CBIR systems extract features from the
raw images and calculate an associative measure (similarity
or dissimilarity) between a search image and database images
based on these features. Hence feature extraction and selection
of suitable similarity measure are very important steps. Sev-
eral methods achieving effective feature extraction have been
proposed in the literature [1] [7] [8], to name a few.

The Gabor filter is widely used to extract the texture features
from images for image retrieval. This use is motivated by many
factors [1] [7] [8]. Some of the methods [1] [7] proposed for
feature extraction use direction dependent Gabor filters, and
consequently the feature vectors become direction dependent.
A new feature extraction technique is proposed in [8], which
gets rid of direction dependence of Gabor filters. It is justified
that the method in [8] is effectively used for CBIR application.

In various applications of numerical analysis, a common
problem is to approximate or interpolate a complicated func-
tion using a short linear combination of more elementary func-
tions. The problem of computing sparse linear representations
with respect to redundant dictionary of basis elements has
recently become a topic of high interest. The primary reason
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for this centers around the discovery that whenever the optimal
representation is sufficiently sparse, it can be computed by
l1-norm minimization techniques [4] [5] [6]. As mentioned
already, the suitable choice of similarity metric is inevitable
for better performance of CBIR systems.

In this paper, a new similarity metric is derived in terms
of recent sparsity promoting l1-norm minimization technique.
It is demonstrated experimentally that the similarity metric
based on the l1-norm minimization technique shows better
retrieval performance than the standard metric based on the
Euclidean distance. In particular, the cases where the l1-norm
based similarity metric works relatively better than the metric
based on Euclidean distance are singled out.

The paper is organized as follows: In section 2, the Gabor
function and the ways of feature extraction using it are
discussed. Later on in section 3, the recent sparsity based l1-
norm minimization technique is presented. In sections 4 and 5,
a procedure with l1-norm minimization as a similarity metric
in CBIR is presented. In the last section, simulation results
and some concluding remarks are presented in some detail.

II. GABOR TRANSFORM

In this section, the Gabor based feature extraction technique
is discussed. A 2D Gabor function is defined as
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where, σx and σy are the scaling parameters of the filter, and
W is central frequency. The function gσx,σy acts as a local
band-pass filter with certain optimal localization properties in
both spatial and frequency domains. A class of self-similar
Gabor filters can be obtained by appropriate dilations and
rotations of gσx,σy as follows:
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where θ determines the orientation of the filter. As the
axes for gσx,σy,θ are rotated by θ, the function gσx,σy,θ

has undulations along θ-direction. Given an input image f ,
the Gabor transform of it is the convolution with f of a
set of Gabor filters of different preferred orientations and
scales, that is, Fσx,σy,θ(x, y) := f � gσx,σy,θ(x, y). Based on
common observation [1] [7] [8], the mean and variance of the
energy distribution of F (x, y)σx,σy,θ are computed to identify
a texture. The signature or compact representation of an image
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is, then, generated by considering Mσx,σy,θ and Vσx,σy,θ in
vector form for different σx, σy and θ.

In order to generate angle independent Gabor filters and
thereby to generate rotation invariant features, a modified
Gabor function Gσx,σy is defined in [8] as

Gσx,σy (x, y) = 1
2π

∫ 2π

0

gσx,σy,θ(x, y)dθ. (3)

Then feature vectors are designed by taking Mσx,σy,f,i and
Vσx,σy,η,i as components with

Mσx,σy,f,i =
∫ ∫
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where, Di = {(x, y)|R2
i ≤ x2 + y2 < R2

i+1} is the region
over which the double integration is performed in the above
equations. It is demonstrated in [8] that the modified Gabor
function shows better performance than the standard Gabor
function for texture classification. In view of this, the present
work uses the feature extraction procedure that is based on the
modified Gabor function.

III. SPARSITY PROMOTING OPTIMIZATION TECHNIQUES

In this section, the powerful ideas proposed for solving
underdetermined systems are reviewed briefly.

Consider the matrix equation

y = Φx0, (5)

where Φ is a matrix of size n × N and x0 is the solution
of the above system. The case where the system (5) is
underdetermined (i.e., n < N ) is of particular interest in
sparsity promoting methods. In this case, the system admits
infinitely many solutions.

A. Convex optimization techniques

One way [5] [6] of choosing a solution of (5) involves
taking ‘shortest’ vector. More precisely, assume that the vector
x0 ∈ �N is sparse. That is, the set Sparsity(x0) defined
to be Sparsity(x0) := {i : x0,i �= 0} has the cardinality
‖x0‖0 := |Sparsity(x0)| = k smaller than N . Additionally,
assume that the columns of Φ have unit norm. The sparse
solution of (5) is obtained intuitionally from

min
α
‖α‖0 subject to Φα = y, (6)

which is a non-convex and an NP-hard problem. Basis pursuit
(BP) [5] convexifies the algorithm and proposes the solution
in terms of l1-norm minimization as follows

min
α
‖α‖1 subject to Φα = y. (7)

The above optimization problem can be recast as a linear
programming problem (LPP), for which solutions are available
even in large scale problems owing to modern interior point

linear programming methods. The results in [5] have em-
pirically observed that the convexification of l0 optimization
works well, implying that if indeed a (sparse) solution of
(6) exists, (7) finds it. Several recent works (for example,
[2] and the references therein) have studied theoretically this
phenomenon and have found that under certain conditions,
(6) and (7) lead to the same solution. One common theme in
these approaches that analyze BP is the use of the coherence
parameter as a way to characterize the dictionary Φ. The
coherence parameter μ is defined as the maximal inner product
between the pairs of dictionary columns, i.e.,

μ = maxj �=k

∣

∣< φj , φk >
∣

∣, (8)

where φi stands for the ith column of Φ. For a full rank general
matrix, the coherence parameter μ satisfies [5][6]

μ ≥
√

N − n

n(N − 1)
. (9)

For an orthogonal matrix Φ, μ is zero, while for an over
complete dictionary it is necessarily nonzero. The parameter
μ is desired to be small. Then Φ almost behaves like an
unitary matrix. When μ is small, the dictionary Φ is said to
be incoherent, and in this case the solution of the system (5)
is highly sparse.

B. Recovery of sparsest solution from noisy measurements

In many practical situations, it is not sensible to assume
[4] [5] that the available data (y) obey precise y = Φx0

equality. A more realistic scenario assumes noise in the
measurements as

y = Φx0 + e; ‖e‖2 ≤ ε. (10)

The solution [4] of above problem can be obtained by solving

min
α
‖α‖1 subject to ‖Φα− y‖2 ≤ ε, (11)

In the framework of Uniform Uncertainty Principle (UUP), it
is proved in [4] that the stable recovery of solution of (10) is
possible and (11) recovers an unknown sparse object with an
error at most proportional to the noise level, as follows
Theorem [4]: Let k be such that δ3k+3δ4k < 2. Then, for any
signal x1 supported on T with |T | ≤ k and any perturbation
e with ‖e‖2 ≤ ε, the solution x̃0 to (11) obeys

‖x1 − x̃0‖2 ≤ Ckε, (12)

where, the constant Ck depends only on δ4k and behaves well
for reasonable values of k.

If small changes in the observations result in small changes
in the recovery, the solution is said to be stable.

IV. CBIR ALGORITHM BASED ON l1-NORM MINIMIZATION

In this section, a new image retrieval method is presented
with the l1-norm minimization method as similarity metric.

As stated already, the feature vectors of both search and
database images are generated in the present work using the
modified Gabor function. Then the matrix Φ is defined to be
the feature matrix consisting of feature vectors of database



International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:3, No:8, 2009

1624

Fig. 1. Retrieval performances of l2 and l1 metrics with noisy search images.
The images on the first two rows are those retrieved by l2 metric, while the
images on the last two rows are those retrieved by l1 metric. The image on
the first column is search image.

elements as columns. The vector y is taken to be the feature
vector of search image. In order to retrieve the database images
that are similar in content with the search image, the matrix
equation y = Φx0 is solved for its sparsest solution using
the l1-norm minimization technique discussed in the previous
section. The reason for seeking sparsest solution is that the
nonzero components in the solution vector helps in identifying
the columns of Φ that are most relevant to y. Suppose ith

component of x0 is maximum in magnitude. Then the image
corresponding to the ith column of Φ is labeled to be the most
relevant retrieved image. In order to identify the next relevant
image, the ith column of Φ is removed and the resultant matrix
(say, Φ again) is used in place of initial Φ. Then the matrix
equation y = Φx0 is solved to get sparsest solution. As the first
relevant image is identified, the second most relevant is labeled
to be the image corresponding to the column of Φ whose
respective component in the solution has maximum absolute
value. This way the first few most relevant images may be
identified.

It is observed experimentally that the coherence parameter
μ of the feature matrix Φ lies closer to the lower bound.
As the database is very big, the inequality n << N is an
obvious consequence and hence the system admits highly
sparse solution. If the number of images that are intended
to be retrieved from database is more than the number of
significant components of sparse solution, a problem in re-
trieving the prescribed number of images may arise. This
is the reason for removing a column from Φ each time a
relevant image is identified. The stated way of retrieving
similar images is computationally somewhat more involved
than the similarity metric based on the standard Euclidean
distance. But in some cases, the stated procedure outperforms
Euclidean based similarity metric, which is discussed in the
next section. To accommodate the errors arising out of discrete
domain implementation of Gabor function, some error in the
computation of feature vectors is allowed and the matrix
equation is taken to be y = Φx0 + e with ‖e‖ ≤ ε. The

Fig. 2. Retrieval performances of l2 and l1 metrics with cropped search
images. The images on the first row are those retrieved by l2 metric, while
the images on the second row are those retrieved by l1 metric. The image on
the first column is search image.

pseudo code of the proposed method is given below:
• Input: Feature matrix Φ, feature vector y of search image.

L : Number of images to be retrieved. Set Φ1 = Φ.
• For each of i = 1, 2, . . . , L

Solve y = Φix0 + e with ‖e‖ ≤ ε.
Let j be such that |xj | ≥ |xl| ∀ l �= j.
Let Φi+1 be Φi without ith column.
ith most relevant image of search image is the image
corresponding to jth column of Φi.

• Output: L number of images of database that are similar
to search image.

V. SIMULATION RESULTS

As stated already in previous sections, the goal of the
present work is to study and identify whether or not the
similarity metric provided by the recent l1-norm minimization
technique is useful in CBIR applications.

Using the modified Gabor function, the feature vectors of
size 32 have been generated with 4 choices of (σx, σy), viz
σx = σy = 1, 2, 3, 4. The components in feature vectors
are means and variances over concentric circular regions as
suggested in [8]. Hereafter, the similarity metrics provided
by the Euclidean distance and the l1-norm minimization
techniques are referred to as l2 and l1 metrics respectively.
The present simulation work has been carried out with the
software developed in l1 magic [3], by setting ε in (10) to
0.001. It has been noted that the overall retrieval performance
of l1 similarity metric is at least same as that of l2 metric
on Brodatz image database [1]. Simulation work, however,
suggests that: 1). Low contrast images are better retrieved
by l1 similarity metric than with l2 metric, 2). l1 metric has
consistent performance within the same class, that is, when
several images of same class are taken as search images, l1
metric shows similar retrieval performance. On the otherhand,
the retrieval performance of l2 metric within the same class is
highly inconsistent. 3). Even when both l1 and l2 metrics show
similar retrieval performance, l1 metric catches more relevant
images first. This aspect may be seen in Figure 1.

Intending to study the performance of both metrics on the
noisy search images, simulation work considered the search
image that is corrupted by Gaussian white noise. Experimental
results have shown that the Gaussian white noise of mean
0.1 and variance up to 0.05 does not affect the retrieval
performance of l1 similarity metric. While in the same noisy
setting, the performance of l2 metric gets affected. When
the search images are corrupted with salt & pepper noise,
experimental results have indicated that the salt & pepper noise
of density up to 0.12 does not affect the retrieval performance
of l1 metric. Figure 1 shows the retrieval performance of l1
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metric on noisy search image. In Figure 1, the first two rows
are of l2 metric and while the next two rows are of l1 metric.
The single image on first column is noisy search image.

Finally, partially cropped images have been considered as
search images, which are shown for example on the first
column of Figure 2 . Simulation work with l1 metric has in-
dicated that for some search images, the retrieval performance
is not affected significantly, when the window of size up to
56× 56 is cropped in a search image of size 128× 128. The
retrieval performance of a cropped image is shown in Figure
2.

VI. CONCLUSION

In the present work, a new similarity metric is proposed for
CBIR in terms of the recent powerful l1-norm minimization
technique, which is developed for solving the underdetermined
system of linear equations. It is demonstrated through the
simulation work that the new similarity metric has the potential
to perform well as compared to the metric based on the
standard Euclidean distance for the CBIR of texture images.
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