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Abstract—In this study, it is investigated the stability boundary of 

Functionally Graded (FG) panel under the heats and supersonic 
airflows. Material properties are assumed to be temperature 
dependent, and a simple power law distribution is taken. First-order 
shear deformation theory (FSDT) of plate is applied to model the 
panel, and the von-Karman strain-    displacement relations are 
adopted to consider the geometric nonlinearity due to large 
deformation. Further, the first-order piston theory is used to model the 
supersonic aerodynamic load acting on a panel and Rayleigh damping 
coefficient is used to present the structural damping. In order to find a 
critical value of the speed, linear flutter analysis of FG panels is 
performed. Numerical results are compared with the previous works, 
and present results for the temperature dependent material are 
discussed in detail for stability boundary of the panel with various 
volume fractions, and aerodynamic pressures. 
 

Keywords—Functionally graded panels, Linear flutter analysis, 
Supersonic airflows, Temperature dependent material property.  

I. INTRODUCTION 

ETALS have been used in aerospace field as skin of 
supersonic flight vehicles for many years because of their 

excellent strength and toughness. However, the strength of a 
metal is reduced after it has been in a high-temperature 
environment for a period of time. To resist the high 
temperature, the surfaces of the metals are usually coated with a 
heat-proof material directly. For instance, the Space Shuttle 
utilizes ceramic tiles as thermal protection from heat generated 
during re-entry. However, since these tiles are laminated to the 
vehicle’s superstructure they are prone to matrix cracking due 
to differences in thermal expansion coefficients between the 
tiles and the superstructure. Also, ceramic materials have 
excellent characteristics in strength and heat-resistance; 
nevertheless, their applications are usually limited due to their 
low toughness. To overcome these drawbacks of the composite 
materials, FGMs have been developed [1, 2]. 

In FGMs, made of ceramic and metal, the ceramic has a role 
to withstand significant heat conduction while the metal keeps 
a certain extent of toughness in a high-temperature 
environment. The mixture of the materials varies continuously 
from one interface to the other using gradual variation of the 
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volume fraction for constituent materials. The FGM can be 
used for a skin panel of the spacecraft which suffers high 
temperature and high aerodynamic pressure during its 
launching and reentry status. When the vehicle flies at a 
supersonic speed, its skin panels may experience dynamic 
unstable state with self-excited oscillation. This phenomenon 
which is called as panel flutter can cause serious problems such 
as fatigue failure of the structure. This self-excited oscillation 
of external skin causes high amplitude lateral vibration of the 
skin panel with in-plane cyclic stresses and finally leads to the 
failure of the structure. Panel flutter is coalescence or merging 
frequency phenomena which is two of natural frequencies 
coalesce and become complex conjugate pairs.  

Supersonic flutter characteristics of FG panels were studied 
by Prakash and Ganapathi[3] using FEM. They considered 
linear strains and showed that the use of FGM increases the 
flutter margin in comparison with metals. Praveen and Reddy 
[4] analyzed the nonlinear static and dynamic response of FG 
ceramic–metal plates in a steady temperature field using finite 
element method (FEM) based on first-order shear deformation 
plate theory (FSDPT). Sohn and Kim[5] dealt with the 
structural stability boundary of FG panels for temperature 
independent material characteristics. The influence of the 
aerodynamic loads and effect of asymmetric properties of the 
materials on flutter characteristics of the panel are examined in 
detail. The limit-cycle oscillation of a cantilever plate was 
studied by Weiliang and Dowell [6]. They employed a 
Rayleigh–Ritz approach in conjunction with the direct 
numerical integration and showed that the length-to-width ratio 
of the cantilever plate is a significant factor on the flutter study. 
Non-linear oscillations of a functionally graded FG plate are 
investigated by addadpour et al. [7] and simply supported [8,9] 
fluttering plates was studied using the Galerkin’s method. 
Dowell [10,11] also investigated the nonlinear flutter of doubly 
curved panels of shallow curvature by using a modified form of 
the Donnell’s nonlinear shallow-shell theory. He showed that 
stream-wise curvature is dramatically destabilizing for the 
onset of flutter. 

In this paper, dynamic stability boundary for an FG panel in 
supersonic airflow is investigated using finite element method. 
The first-order shear deformation plate theory (FSDPT) is used 
and governing equations are derived from the principle of 
virtual work. Panel flutter boundaries are defined by eigen 
analysis. Guyan reduction is used to reduce the number of 
degree of freedom of the eigen-value problems. Temperature 
dependent material properties are assumed to take 
consideration for the high temperature environments. Effects of 
the tem- perature on material properties, Rayleigh damping 
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coefficient, power law index and geometrical boundary on 
stability boundary of FG panel are studied in detail. 

II. MODELING OF FG PANELS 
Fig. 1 shows a coordinate system and geometry of a 

ceramic-metal FG panel model with a length ‘a’, width ‘b’ and 
thickness ‘h’ which is subjected to supersonic airflow and 
thermal loads. A simple power law distribution is adopted, thus 
the volume fractions of the ceramic and metal are expressed: 

1( ) (0 ), 1
2

k

c m c
zV z k V V
h

⎛ ⎞= + ≤ < ∞ = −⎜ ⎟
⎝ ⎠

             (1) 

where, V, the superscript  k, the subscripts c and m denote the 
volume fraction, the volume fraction index, ceramic and metal, 
respectively. The material properties of FG panel can be 
obtained by a linear rule of mixture as follows:                
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where, , andeff m cP P P  are the effective material property, the 

material properties of the metal and ceramic, respectively. 
Material properties of constituents must be dependent on 

temperature, since FGMs can be used in high temperature 
environments. The properties, P , of the ceramics and metals 
used as a mixture of FGMs can be expressed as [3] ;   

2 31
0 1 2 3( ) 1
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             (3) 

in which P0, P-1, P1, P2 and P3 are the effective material 
properties and the coefficients of temperature. 

Using the (1)–(3), the modulus of elasticity E , the 
coefficient of thermal expansion α , the density ρ  and the 
thermal conductivity K  are written as:  
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Here the thermal conductivity K  are assumed to be 
independent of temperature and the Posson’s ratio ν is 
assumed to be constant as 0.3. 

A. Constitutive Equations 
Based on the first-order shear deformation theory of plate, 

the displacement fields for the panel can be expressed as: 

0

0

0

( , , , ) ( , , ) ( , , )
( , , , ) ( , , ) ( , , )
( , , , ) ( , , )
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=

          (5) 

where and,    u v w  are the displacements in the and,  ,   zx y  
directions and ,x yφ φ are the rotations of the normal in the 

and yzxz  planes, respectively, while the subscript ‘0’ denotes 
the mid-plane. 

Using the von-Karman strain-displacement relations, the 
strain vectors are expressed as:   

{ } { } { }
{ } {   }T

y z x z

e zε κ

γ γ γ

= +

=
                          (6) 

where, { } { }andε κ  are the in-plane strain, the curvature 
strain at the mid-plane, respectively. Additionally, 
{ } { } { }, andε κ γ  are given as:  
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The constitutive equations for the panels can be written as, 

,
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where, ,   and b bN M Q  denote the in-plane force resultant, 
the moment resultant and the transverse shear force resultant 
vectors, respectively. Meanwhile, ΔTN  and ΔTM  are the 
thermal in-plane force resultant and the thermal moment 
resultant vectors, which are given as: 
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The temperature elevation is defined as 0( ) ( )T z T z TΔ = −  
where 0T  is the reference temperature and ( )T z  is the 
temperature distribution through the thickness. 

The elastic coefficient matrix is: 
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while, A , B , D  and S  are the in-plane, the in-plane-bending 
coupling stiffness, the bending stiffness and the transverse 
shear stiffness matrices, which are given as: 
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where, ( )E z  is the elastic modulus of an FG panel and the 
shear correction factor , pκ , is assumed as 5 / 6 . 

The temperature variation is assumed to occur in the 
thickness direction only and the temperature field is considered 
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constant in the xy  plane. In this case, the temperature through 
thickness is governed by the one-dimensional Fourier equation 
of heat conduction: 

 at  / 2
( ) 0 ,  

 at  / 2
c
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T T z hd dTK z
T T z hdz dz

= =⎡ ⎤ =⎢ ⎥ = = −⎣ ⎦
           (12) 

where, mT and cT  are temperature of the metal and ceramic, 
respectively. 

Using the solution in [3], temperature distribution across the 
plate thickness becomes: 
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where, 
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and  cm c mK K K= − . 
 

B. Governing Equations 
The governing equations for FG panel is obtained by using 

the principle of virtual work as follows 

int ext 0W W Wδ δ δ= − =                      (14) 

where int and extW Wδ δ  represent internal and external virtual 
work, respectively, which are given as, 
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where, [ ]T= x yd u, v, w, φ , φ is the displacement vector and 
/ 2 2
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= ⋅∫ .    In addition, ΔTP , K , ΔTK , 

N1 ,   N2 , ap , M  and f  are the thermal load vector, the 
linear elastic stiffness, the thermal geometric stiffness, the 
first-order nonlinear stiffness, the second-order nonlinear 
stiffness matrices, the aerodynamic pressure the mass matrix 
and the external force induced by thermal load, respectively.  

The aerodynamic pressure is expressed by using the 
quasi-steady first-order piston theory [12],  
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in here aρ ,V∞ , M∞ , β , D , 0ω , ag , λ  and a  represent the air 
mass density, the velocity of airflow, the Mach number, the 
aerodynamic pressure parameter, the flexural stiffness matrix, 
the convenient reference frequency, the non-dimensional 
aerodynamic damping, non-dimensional aerodynamic pressure 
and the panel length, respectively. 

Using (17), the last term of (15) can be written in the form as:  
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0 0
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where, fA , dA  denote the aerodynamic pressure matrix and 
the aerodynamic damping matrix, respectively.  

Substituting (18) into (16) and then reinsert (16) and (15) 
into (14) gives the discretized form of governing equations 
obtained as:  

1 1
2 3

λ⎛ ⎞+ + − + + + =⎜ ⎟
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ΔT f ΔTMd Cd K K A N1 N2 d P   (19) 

where, 
0

( ) ag
α β

ω
= + + dC M K A . In here, α  and β  is the 

Rayleigh damping coefficients, where they are mass and 
stiffness proportional damping constants, respectively. The 
equation “ ( )α β+M K ” denotes structural damping.  

The solution of (19) is assumed as s td = d + Δd  , where 

ands td d represent the time independent and time dependent 
solutions, respectively. Substituting the assumed solution into 
(19), we can obtain two sets of coupled governing equations as 
follows. 

1 1
2 3

λ⎛ ⎞− + + + =⎜ ⎟
⎝ ⎠

ΔT f s s s ΔTK K A N1 N2 d P
            (20) 

( )1 1 1 1

2 3 2 3
λ+ − + + + + + ++ =

t ΔT f s s st t t tt d K K A N1 N2 N2 N1 N2 dMd C 0    (21) 

where, the subscript s  and t   represent the static and dynamic 
state, respectively. 

The (20) is used for the static problem, post-buckling 
analysis, and the (21) is for the dynamic problem such as flutter 
boundary and flutter. A small incremental time dependent 
solution, tdΔ , is assumed and to linearize (21) the time 
dependent nonlinear stiffness matrices, tN1 , 2tN  and stN2 , 
become zero. Then the incremental equilibrium equation is 
expressed as: 
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( )λΔ + Δ + − + + + Δ =t t ΔT f s s tM d C d K K A N1 N2 d 0        (22) 
 

A small amplitude vibration is assumed as 0
t

t eωΔ =d φ  and 
degree of freedom is reduced by Guyan reduction. Then, the 
reduced homogeneous equations for eigen analysis with state 
variables are written as 

0
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0
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where,  and R R RM , K C  are reduced mass, stiffness, damping 
matrices, respectively.  

As λ  increases gradually from zero, two of these 
eigen-values will approach each other and coalesce to 

*
c rω at crλ λ= . After that they become complex 

conjugate pairs such that iirω ω ω±=  for crλ λ> . From 
here, the panel flutter occurs. The non-dimensional frequency, 

*
c rω , in the figure is defined as: 

   2* m

m

ha
D
ρ

ω ω=                              (24) 

III. NUMERICAL RESULTS AND DISCUSSIONS 
Various kinds of materials are used as a mixture of FGMs such 

as 2 3Al O / Ni , 3 4SUS304/Si N , Aluminum Oxide/Ti-6Al-4V  and 
SiC/Al . Among these, we select a mixture of material such as 

3 4SUS304/Si N , and then will investigate the flutter boundary of 
the panels in supersonic airflows. Also the model is made up of 
temperature dependent materials with a square shape. In the 
finite element modeling, a 6 6×  mesh is used, and nine-node 
plate element is chosen. Additionally, a selectively reduced 
integration (SRI) technique [13] is employed to prevent the 
transverse shear locking phenomena for thin plate model using 
first-order shear deformation theory. For the nonlinear analysis, 
the Newton-Raphson iteration scheme is adopted to obtain 
approximate solutions and flutter boundary of FG panel 
subjected to supersonic aerodynamic loads are to be presented 
for two types of temperature variation such as uniform and 
gradient changes. 

A. Code Verifications 
First, the thermal post-buckling behaviors of simply 

supported FG panel for 1k =  are compared with previous data 
as shown in Fig. 2. In the diagram, “A” denotes the curves for 
temperature dependent material properties. While, the group 
“B” represents the results for temperature independent material 
properties calculated just only at reference temperature, 300K. 
In here, the results of the groups “A” and “B” show good 
agreements for each case. Next, the critical pressures of simply 
supported FG panels for various volume fractions are 
compared with [3]. The results are shown in Table III and agree 
well with that of previous work. 

B.  Stability Boundary of FG Panels 
The stability boundary of panel under the combined 

aerodynamic and thermal loads is studied. FG panels are 
composed of Silicon-Nitride ( 3 4Si N ) and stainless steal 
( SUS304 ), and investigated in this study. Material properties 
are assumed to be dependent on the temperature and given in 
[14]. The reference temperature is taken as 0 300KT = . 

The critical aerodynamic pressure point is shown in Fig. 3. 
As non-dimensional aerodynamic pressure, λ , are 
monotonously increased from zero and then two eigen-values 
merges. Here, crλ  is considered to be the value λ  at which 
the first coalescence occurs.  

In flutter boundary figure, there are four types of panel 
behavior: flat and stable, aero-thermally buckled but 
dynamically stable, flutter (limit cycle oscillation) and chaos. 
Generally, thermal stresses can lower the flutter boundary of 
panels. With increasing of the temperature of panels, the 
critical dynamic pressure decreases. 

The critical fluttering value of various FG panels subject to 
thermal and aerodynamic loads with gradient temperature 
change are listed in Table III. This comparison of the data 
reveals that the critical aerodynamic pressures of the 
temperature dependent material case [3] is lower than that of 
the temperature independent material case [5] as shown. The 
reason may be originated from that internal thermal load leads 
the more thermally induced panels to flutter at lower 
temperature than temperature independent material. 

Table IV presents critical fluttering value and frequencies of 
all simply supported and structural damped FG panels without 
thermal effect such as 300m cT T K= = . It is recognized that 
structural damping don’t influence the critical value, however, 
enhances a decrease of the limit cycle frequency. This is due to 
the effect of structural damping which induces structure more 
flexible. Because of this, the limit cycle frequency of structural 
damped FG panels is decreased comparing the undamped ones. 

Fig. 4 depicts stability boundaries of all clamped square FG 
panels with uniform temperature changes. At the region ‘A’ in 
the figure, the panels are flat and both statically and 
dynamically stable. In the region ‘B’, the panels are buckled but 
dynamically stable. The region ‘C’ represents dynamically 
unstable region where flutter occurs. In this region, a panel 
oscillates from its static equilibrium position with a self-exited 
harmonic motion. The region ‘D’ is a chaotic region in which 
chaotic motion happens in this region. [8]. From the figure, it is 
noted that both the critical aerodynamic pressures for panel 
flutter and the critical temperature for thermal buckling 
increase, as the volume fraction index decreases. Flutter 
boundaries of all simply supported square FG panels is shown 
in Fig. 5. It is similar characteristics to the clamped cases. 
However, the critical aerodynamic pressure for flutter is lower 
than clamped one. 

IV. CONCLUSION 
Functionally Graded (FG) panels are investigated for flutter 

boundary under thermal and aerodynamic loads. First-order 
shear deformation theory (FSDT) of the plate is applied to 
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model the panel, and the von-Karman strain-displacement 
relations are adopted to account for large deflection. Further, 
the first-order piston theory is used to model the supersonic 
aerodynamic load. Material properties are assumed as 
temperature-dependent, and this is one of the essential features 
of the material at high temperature environments. Main aim of 
this study is to estimate the effect of temperature dependent 
characteristics of flutter boundary of the FG panel composed of 
SUS304/Si3N4, and the results are discussed. It is concluded 
that the critical aerodynamic pressure decrease, as the value of 
volume fraction index, k , increases and the critical flutter 
velocity of a homogenous ceramic panel is the maximum 
among those of all panels. Comparing with isotropic metal 
panel ( 3 4Si N ), FG panels have a merit for flutter 
characteristics. For more understanding the characteristics 
deviation due to the temperature and aerodynamic effects on 
the FG panels for applications, more parameter studies are 
required such as various mixture of materials, high temperature 
conditions and so on.  
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TABLE I 
MATERIAL PROPERTIES OF FMGS FOR CERAMIC AND METAL [14] 

 Materials P-1 P0 P1 P2 P3 

E(Pa) Si3N4 0 348.43 
× 109 

-3.070 
× 10-4 

2.160 
× 10-7 

-8.946 
× 10-1

1 

 SUS304 0 201.04 
×109 

3.070 
×10-4 

-6.534 
×10-7 0 

ρ (Kg/m3) Si3N4 0 2370 0 0 0 
 SUS304 0 8166 0 0 0 

α (1/K) Si3N4 0 5.8723 
×10-6 

9.095 
×10-4 0 0 

 SUS304 0 12.330 
× 10-6 

8.086 
× 10-4 0 0 

 
TABLE II 

FLUTTER BOUNDARY OF TEMPERATURE DEPENDENT FGMS FOR UNIFORM 

TEMPERATURE CHANGES ( 3 4SI N /SUS304, 300m cT T K= = , A/H=20) 

Reference [3]  Present Volume 
fraction 

( k ) 
2* c rω  

crλ   2* c rω  
crλ  

0 9661.35 775.78  9663.2 776.1 

0.5 4575.07 666.01  4575.3 669.1 

1 3515.57 625.78  3515.6 624.2 

2.5 2685.94 590.23  2689.8 592.3 

5 2348.72 571.48  2348.6 574.1 

 
TABLE III 

FLUTTER BOUNDARY OF FG PANEL FOR GRADIENT TEMPERATURE CHANGES 

( 3 4SI N /SUS304, 300 and 600m cT K T K= = , A/H=20) 

Reference 
[5]  Reference [3]  Present Volume 

fraction ( k ) 
cr

λ   cr
λ   cr

λ  

0 7950.8  7475.77  7468.2 
0.5 3561.7  3381.36  3379.1 
1 2683.5  2528.99  2520.9 

2.5 1967.9  1849.33  1842.8 
5 1684.9  1554.78  1548.3 

 
TABLE IV 

FLUTTER BOUNDARY OF FG PANEL DAMPED VERSUS UNDAMPED ONE 

( 3 4SI N /SUS304, 300m cT T K= = , A/H = 20) 

Reference [5] 
(undamped)  Present 

(damped) Volume 
fraction 

( k ) 2* c rω  
crλ   2* c rω  

crλ  

0 9660.1 771.8  9001.1 772.2 

0.5 4573.6 663.0  3971.6 661.5 

1 3513.2 623.1  2809.4 622.2 

2.5 2698.2 588.0  2002.5 590.8 

5 2350.7 568.7  1627.5 568.1 
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Fig. 1 Modeling of FG panel under supersonic airflow and thermal 

load 
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Fig. 2 Thermal post-buckling behaviors of a square FG panel  

(A: Temperature dependent, B: Temperature independent) 
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Fig. 3 Frequency coalescence for an FG panel ( 0Δ =T , 1.0=k ) 
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Fig. 4 Stability boundaries for various square panels 

(Clamped boundary condition, a/h=100) 
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Fig. 5 Stability boundaries for various square panels 

(Simply supported boundary condition, a/h=100) 
 
 
 


