
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:7, 2008

2546

Abstract—The volume of XML data exchange is explosively

increasing, and the need for efficient mechanisms of XML data
management is vital. Many XML storage models have been proposed
for storing XML DTD-independent documents in relational database
systems. Benchmarking is the best way to highlight pros and cons of
different approaches. In this study, we use a common benchmarking
scheme, known as XMark to compare the most cited and newly
proposed DTD-independent methods in terms of logical reads,
physical I/O, CPU time and duration. We show the effect of Label
Path, extracting values and storing in another table and type of join
needed for each method’s query answering.

Keywords—XML Data Management, XPath, DTD-Independent
XML Data.

I. INTRODUCTION
XTENSIBLE Markup Language (XML) is the “lingua
franca” for data exchange between inter-enterprise

applications [1]. It is a simple and very flexible text format
derived from SGML (ISO 8879). XML is also playing an
increasingly important role in the exchange of a wide variety
of data on the Web. It was developed by an XML Working
Group (originally known as the SGML Editorial Review
Board) formed under the auspices of the World Wide Web
Consortium (W3C) in 1996 [2].

Several XML query languages are proposed including Lorel
[12], XML-QL [13], Quilt [14], XPath [15] and XQuery [21].

Among these proposals, XPath is being commonly used and
accepted as a standard XML query language. Lee and Chu
[17] and Bonifati and Ceri [16] present recent surveys on
XML schema and query languages. In order to facilitate the
task of querying XML documents, many storage models for
XML documents are proposed. Some of those models are: lore
[12], Edge [6], Monet [18], XRel [7], XParent [8],
ORDPATH [3], ORDPATH+ [11] and DLN [4].

In this work, we have tried to benchmark five DTD-
independent approaches including Edge, Edge-Value [6],
XRel [7], XParent [8] and ORDPATH+ [11] on a commonly
used relational database system. We omit ORDPATH[3]
because it shows a poor performance and wrecks the

Mehdi Emadi, Adel Ardalan, Aliraza Kazerani and Mohammad Mahdi
Ariyan are with the Database Research Group, Faculty of Electrical and
Computer Engineering, University of Tehran, Tehran, Iran (phone: +98-21-
88003323; e-mail: {m.emadi, a.ardalan, a.kazerani, m.ariyan}@ece.ut.ac.ir).

Masoud Rahgozar is with the Database Research Group, Faculty of
Electrical and Computer Engineering, University of Tehran, Tehran, Iran,
(phone: +98-21-88003323; e-mail: rahgozar@ut.ac.ir).

comparisons.
The early works on DTD-independent relational storage of

XML data used to apply an approach known as Parent-Child
method. This method results in poor performance for
determining ancestor-descendant relationships necessary for
document reconstructions. The new approach called
ORDPATH [3] claims to resolve this problem through some
numbering scheme which represents the order of XML nodes
and keeps track of sub-tree access paths. This new approach
has not yet been evaluated in recent benchmarks [5],[8],[16],
[17], [19]. In this work we would present this evaluation.

In this article, first, the current literature is reviewed briefly.
Then the methodology and implementations are described and
afterward, the benchmark basis is developed and the
experimental results are reported. Finally, our conclusions and
future works are presented.

II. RELATED WORK
Recently, efforts in designing XML benchmarks have been

reported. Böhme and Rahm [19] proposed the XMach
benchmark as a scalable multi-user benchmark for evaluating
the performance of XML data management systems. It was
also designed to test single/multiple DTD(s) for all
documents. Different from XMach, where XML data in the
benchmark is document-oriented, the XML Benchmark
Project (XMark) [20] proposed a benchmark where the data
model represents an auction Web Site. That is, it was designed
to concentrate on the core ingredient of the XML benchmark:
the query processor and its interaction with the data store.
Other XML benchmarks include the XOO7, Michigan and etc.

In addition to design XML benchmarks, some reported
studies examine the performance of XML systems
systematically. Florescu and Kossmann [6] reported their
experimental results using eight XML-QL [13] queries to
access XML data stored in a relational DBMS with five
different schemas. However, the eight XML-QL queries are
rather simple, and no detailed information about the RDBMS
is reported.

The study reported in [5] presents a good benchmark on a
number of storage methods. It compares three categories of
XML databases: native, document-dependent-in-relational and
document-independent-in-relational. In our previous work
[22], those DTD-independent-in-relational approaches are
compared with a new approach in this category, ORDPATH.
In this work, we study the effects of path table and compare

Approaches and Schemes for Storing DTD-
Independent XML Data in Relational Databases

Mehdi Emadi, Masoud Rahgozar, Adel Ardalan, Alireza Kazerani, and Mohammad Mahdi Ariyan

E

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:7, 2008

2547

this new method, called ORDPATH+, with other approaches.
Here, a commonly accepted benchmarking scheme, XMark is
used. We compare document-independent methods for storing
XML data without DTD.

III. NECESSITY OF THIS BENCHMARK
In this work, a number of XML storage methods which

have been proposed in recent literature are implemented.
Although some benchmarks have reported such comparisons
([5], [8]), we develop ours with the new approach which has
been announced in[3].

In [11], the proposed method mainly improves the insertion
operation of new XML elements into an existing document.
No work has been reported subject to comparing retrieval of
data in older methods and this new type of methods concerned
with labeling of elements. We try to compare the efficiency of
retrievals with different types of queries in these methods.

Additionally, we implement another method, ORDPATH+,
which is a development of ORDPATH using path indexes.
This improves some types of queries with a polynomial factor.
In all these methods, the objective is to store the document
structure in one or more relations of a RDBMS. We briefly
introduce these methods in the following sections.

IV. OVERVIEW OF DIFFERENT XML STORAGE METHODS
XML documents’ data model is a tree-based model,

considering elements, attributes and values as nodes and
containment relationships as edges.

Fig. 1 An XML Tree[7]. All XML file has a tree data model

A. Edge and Edge-Value Methods
The schemas of the relations [4] used for storing XML data

are as shown below.
Edge (A Single Table Schema)
Edge(SourceID, TargetID, Ordinal, Label, Flag, Value)
Edge-Value (A Separate Table For Values)
Edge(SourceID, TargetID, Ordinal, Label, Flag)
EdgeValue(TargetID, Value)

B. XRel Method
The schema of the tables [7] used in this method is as

shown below.
Path(PthID, PathExp)
Element(DID, PthID, Start, End, Ord)
Text(DID, PthID, Start, End, Value)
Attribute(DID, PthID, Start, End, Value)
This method tries to reduce multiple joins cost using a

“Path Index Table” (named Path in the schema). The region of
a node is the start and end positions of this node in an XML
document. The region implies a containment relationship.

C. XParent Method
The schema of the tables [8] used in this method is as

shown below.
LabelPath(PthID, Len, PathExp)
DataPath(ParentID, ChildID)
Element(PthID, DID, Ord)
Data(PthID, DID, Ord, Value)
Like XRel, XParent uses the Path Index Table, but it uses

the Edge and Edge-Value approach to store the parent-child
relationship. This relationship is maintained in a separate table
(DataPath), again, to reduce the join cost.

D. ORDPATH+ Method
The schema of the tables [11] used in this method is as

shown below.
Node(ORDPATH, Tag, NodeType, Value, PthID)
Path(PthID, PathExp)
ORDPATH+ is just like ORDPATH plus a path index

table used to track paths in the original document. The use of
path index is like XRel and XParent methods and improves
the performance of ORDPATH in some query types.

We need a function to deduce the parent code of each node
from its ORDPATH code. As may be seen, it uses string
functions multiple times and this leads to a poor performance
which is a direct result of the coding schema nature of
ORDPATH.

V. IMPLEMENTATION
We’ve implemented data loaders for these methods using

SAX parser. The benchmark data is then loaded into SQL
Server 2000 Personal Edition database.

The test data used in this work is XMark benchmark
scheme test data. We use a 127 MB test data file. We use the
test data generator available at (monetdb.cwi.nl/xml) with
scaling factor of 1.1.

For XRel and XParent, we’ve implemented XPath-to-SQL
translator using Java and ANTLR (parser generator) with
XPathCore graph, introduced in [7]. After parsing the XPath
query, XPathCore graph which is a general, intermediate
representation of the query and is independent of the storage
method, is generated. Then for each method, this intermediate
representation is translated into relevant method-specific SQL

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:7, 2008

2548

1

10

100

1000

10000

100000

1000000

10000000

Q 01 Q 02 Q 04 Q 05 Q 06 Q 07 Q 14 Q 15 Q 16 Q 17

Edge
Edge Value
XRel
XParent
ORDPATH+

Fig. 2 Read Counts (This diagram shows the number of logical reads or accesses are needed for answering each query
in each schema)

query. But in this work for another method, we translate the
query manually.

VI. BENCHMARK QUERIES
After loading the data into the tables, we choose ten basic

XPath queries for comparing the methods from XPathMark.
Then we adopt these queries to the target document.

1 /site/regions/namerica/item[@id="item20748"]/na
me/

2 /site/open_auctions/open_auction/bidder
[1]/increase/

4 /site/open_auctions/open_auction[bidder[personre
f/@person="person18829"]/following-
sibling::bidder[personref/
@person="person10487"]]/reserve/

5 count(/site/closed_auctions/closed_auction[price
>= 40])

6 count(/site/regions//item)
7 count(/site//description|/site//annotation|/site//emai

l)
14 /site/regions/*/item[contains(description,'gold')]/n

ame/
15 /site/closed_auctions/closed_auction/annotation/d

escription/parlist/listitem/parlist/listitem/text/keyw
ord/emph/

16 /site/closed_auctions/closed_auction[annotation/d
escription/parlist/listitem/parlist/listitem/text/emph
/keyword/]/seller/@person

17 /site/people/person[not(homepage/text())]/name/

VII. RESULTS
We need multiple joins of Edge table in Edge and Edge-

Value methods. Because of smaller size of Edge table, Edge-
Value does better in these queries. XRel, XParent and
ORDPATH generally do better than Edge and Edge-Value
methods because of path indexes, which prevent nested join
operations.

Fig. 2 shows the final results of our experiments. We
discuss about them on a query-based approach. Fig. 3 presents
the physical I/O count of different methods on different
queries. CPU time results are presented in Fig. 4 and Fig. 5
shows the duration of each query for various methods applied
to.

We discuss the read count results in a query-by-query basis.

Other metric results are presented for the sake of comparison.

Q1- In XParent, join condition is a simple equivalence, but in
XRel and ORDPATH it’s more complex. For XRel, we use
range checking on two fields for join condition. In
ORDPATH, string operations (e.g. SUBSTRING) are used for
join condition and this leads to inefficiency of using indexes
for enhancing the join operation. We examined our
experiments with and without indexes and got the (nearly)
same results. Although we have these limitations about
ORDPATH, because of the narrowing condition in the query
([@id="item20748"]), one of the tables is restricted to a small
subset of main table tuples and this leads to an appropriate
read count.

Edge method functionality is so similar to XParent as it is
an extension of Edge method which uses path index.
Restricting the Edge table with conditions of low frequency,
the performance of Edge method is better than XRel for this
query.
Q4- This query is an example of XPath axis functions usage.
Implementation of “following-sibling” is straight forward in
all these methods. As the condition expression of this query
has two levels and there are two such conditions, XParent
needs to join two more tables in order to find the result.
Instead, XRel has a similar work as for Q1 and this leads to
better performance of XRel. ORDPATH, again because of
using string functions, shows a worse response time
comparing with XRel and XParent.
Q7- For “descendant-or-self” conditional expressions (“//”),
Edge and Edge-Value need an enormous number of
unconditional joins and thus their performance are terrible.
Q15- Generally, for queries like Q15 which ask about a
simple path, XRel, XParent and ORDPATH get the result
with less reads because of using a path index. ORDPATH
returns the results with better performance than the XRel,
because it stores values in the same table as keys and path
identifiers. As a result of range checking for revealing
relationships in XRel, XParent works better then XRel.
Because of numerous joins in Edge and Edge-Value, their
read count is higher than others.
Q16- As in ORDPATH we join three tables including values,
XRel and XParent work better because they don’t store values
in join tables (element tables). This is obvious in terms of

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:7, 2008

2549

Fig. 3 Physical I/O. (This Diagram shows the number of physical block access needed for executing query in the selected
RDBMS)

physical I/O (Fig 3). Edge and Edge-Value have the same
problem as Q15.
Q17- Same conclusions as Q16 could be applied to this one as
a result of high-level of similarity.

VIII. CONCLUSION AND FUTURE WORKS
The newly proposed method, ORDPATH, does not seem to

improve the read I/O performance in comparison with earlier
methods, but ORDPATH+ has the same performance as XRel
and XParent methods. After all, it should improve the insert
operations rather than read operations. Because of the high
cost of substring comparison join operations for the purpose
of key matching (prefixing) in order to discover the
ancestor/descendant relationships, overall performance of
ORDPATH+ is at the same level with XRel and XParent
methods. We have used variable character field for
ORDPATH code in this benchmark. We are studying the
efficiency of using indexes on such type of fields in more
details.

Our future work is to compare these methods with DTD-
dependant XML data storage approaches. We believe that,
enhancing the performance of current methods would need
more innovative and intelligent techniques.

Our objective is to yield a new method for storing XML
data in relational databases based on the results of our current
benchmarking studies.

APPENDIX

Here is an example for translating XPath to SQL for all
methods in this study:

Q1: XPath
/site/regions/namerica/item[@id="item20748"]/name/text().

SQL for all Methods:

Edge:
select t5.value
from EdgeTable t1, EdgeTable t2, EdgeTable t3,
 EdgeTable t4, EdgeTable t5, EdgeTable t6
where t1.TargetID = t2.SourceID
 and t2.TargetID = t3.sourceID
 and t3.TargetID = t4.sourceID
 and t4.TargetID = t5.sourceID
 and t1.tagName = N'site'
 and t2.tagName = N'regions'
 and t3.tagName = N'namerica'
 and t4.tagName = N'item'
 and t5.tagName = N'name'

 and t6.tagName = N'@id'
 and t4.TargetID = t6.sourceID
 and t6.value = 'item20748'

1

10

100

1000

10000

100000

1000000

Q 01 Q 02 Q 04 Q 05 Q 06 Q 07 Q 14 Q 15 Q 16 Q 17

Edge
Edge Value
XRel
XParent
ORDPATH+

Fig. 4 CPU Time in msec (Amount of CPU time witch is assigned to run process of each query)

1

10

100

1000

10000

100000

Q 01 Q 02 Q 04 Q 05 Q 06 Q 07 Q 14 Q 15 Q 16 Q 17

Edge

Edge Value

XRel

XParent

ORDPATH+

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:7, 2008

2550

XParent :
SELECT distinct d2.value
FROM XParent_ElementTable e1, XParent_DataTable d1,

XParent_DataPathTable dp1,
XParent_ElementTable e2, XParent_DataTable d2,
XParent_DataPathTable dp2, XParent_ElementTable e3

WHERE
p0.pathExpression = './site./regions./namerica./item'
AND e1.pathId_fk = p0.pathid
AND p0_0_0.pathExpression =
 './site./regions./namerica./item/@id'
AND a0_0_0.pathId_fk = p0_0_0.pathid
AND e2.pathId_fk = 249
AND e2.[id] = dp1.elementId_fk
AND e1.[id] = dp1.parentId_fk

AND d1.elementId_fk = e2.[id]
AND d1.value = 'item20748'
AND p1.pathExpression =
 './site./regions./namerica./item./name'
AND e1.pathId_fk = p1.pathid
AND e3.pathId_fk = 253
AND e3.[id] = dp2.elementId_fk
AND e1.[id] = dp2.parentId_fk
AND d2.elementId_fk = e3.[id]

Edje Value:

select v2.value
from EdgeValueEdgeTable t1, EdgeValueEdgeTable t2,
EdgeValueEdgeTable t3,

EdgeValueEdgeTable t4, EdgeValueEdgeTable t5,
EdgeValueEdgeTable t6,

 EdgeValueValueTable v1, EdgeValueValueTable v2
where t1.TargetID = t2.SourceID
 and t2.TargetID = t3.sourceID
 and t3.TargetID = t4.sourceID
 and t4.TargetID = t5.sourceID
 and t1.tagName = N'site'
 and t2.tagName = N'regions'
 and t3.tagName = N'namerica'
 and t4.tagName = N'item'

 and t5.tagName = N'name'

 and t6.tagName = N'@id'
 and t4.TargetID = t6.sourceID
 and v1.nodeid = t6.TargetID
 and v1.value = 'item20748'

 and v2.nodeid = t5.TargetID

XRel:

SELECT distinct t1.value
FROM XRel_ElementTable e0, XRel_PathTable p0_0_0,
 XRel_AttributeTable a0_0_0, XRel_ElementTable e1

 ,XRel_textTable t1
WHERE
p0.pathExpression = '#/site#/regions#/namerica#/item'
AND e0.pathId_fk = p0.pathid
AND p0_0_0.pathExpression =
 '#/site#/regions#/namerica#/item/@id'
AND a0_0_0.pathId_fk = p0_0_0.pathid
AND e0.docid = a0_0_0.docid
AND e0.start <= a0_0_0.start
AND e0.[end] >= a0_0_0.[end]
AND a0_0_0.value = 'item20748'
AND e0.docid = e1.docid
AND e0.start < e1.start
AND e0.[end] > e1.[end]
AND p1.pathExpression =
'#/site#/regions#/namerica#/item#/name'
AND e1.pathId_fk = p1.pathid
AND t1.start > e1.start
AND t1.[end] < e1.[end]

ORDPATH:

select ord3.*
from ORDPATHTable ord1, ORDPATHTable ord2,

ORDPATHTable ord3,
ORDPATHPathTable pt1, ORDPATHPathTable pt2,
 ORDPATHPathTable pt3

where --ord1.tag = 'sigmodrecord'
= ord1.ordpathcode

1

10

100

1000

10000

100000

1000000

Q 01 Q 02 Q 04 Q 05 Q 06 Q 07 Q 14 Q 15 Q 16 Q 17

Edge
Edge Value
XRel
XParent
ORDPATH+

Fig. 5 Duration Time in msec (Total time of execution of each query)

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:7, 2008

2551

ord1.pathId = pt1.pathId
and pt1.pathExpression like
 '#/site#/regions#/namerica#/item'
and ord2.pathId = pt2.pathId
and pt2.pathExpression like
 '#/site#/regions#/namerica#/item/@id'
and ord2.nodetype = 2
and ord2.value = 'item20748'
and ord3.pathId = pt3.pathId
and pt3.pathExpression like
 '#/site#/regions#/namerica#/item#/name'
and substring(ord2.ordpathcode, 1, len(ord1.ordpathcode))

= ord1.ordpathcode
and substring(ord3.ordpathcode, 1, len(ord1.ordpathcode))

= ord1.ordpathcode
order by ord3.ordpathcode

ACKNOWLEDGMENT
This work is supported by grants from the TAKFA

(National Information and Communication Technology
Agenda; Iran).

REFERENCES
[1] M. Fernndez, Y. Kadiyska, D. Suciu, A. Morishima and W. C. Tan,

"Silkroute: A framework for publishing relational data in xml,”. ACM
Trans. Database Syst. Vol .27, No. 4, pp. 438-493, 2002.

[2] F. Yergeau, T. Bray, J. Paoli, C. M. Sperberg-McQueen and E. Maler,
“Extendible Markup Language (XML),”. W3C Recommendation, 2004.
Available at http://www.w3.org/XML/

[3] P. O’Neil, E. O’Neil, S. Pal, I. Cseri and G. Schaller, “ORDPATHs:
Insert-Friendly XML Node Labels,”. Proc. ACM SIGMOD. France pp.
903-908, 2004.

[4] T. Böhme and E. Rahm, “Supporting Efficient Streaming and Insertion
of XML Data in RDBMS,”. Proc. DIWeb. Latvia, pp. 70-81, 2004.

[5] H. Lu, J. Xu Yu, G. Wang, S. Zheng, H. Jiang, G. Yu and A. Zhou,
“What makes the differences: benchmarking XML database
implementations,”. ACM Trans. Internet Techn. Vol. 5, No. 1, pp 154-
194, 2005.

[6] D. Florescu and D. Kossmann, “Storing and Querying XML Data using
an RDMBS,”. IEEE Data Eng. Bull. Vol. 22, No. 3, pp. 27-34, 1999.

[7] M. Yoshikawa, T. Amagasa, T. Shimura, and S. Uemura, “XRel: a path-
based approach to storage and retrieval of XML documents using
relational databases,”. ACM Trans. Internet Techn. Vol. 1, No. 1, pp.
110-141, 2001.

[8] H. Jiang, H. Lu, W. Wang and J. Xu Yu, “Path Materialization
Revisited: An Efficient Storage Model for XML Data,”. Proc. of ACM
Australasian Database Tech. Conf. Australia, pp. 85-94, 2002.

[9] H. Jiang, H. Lu, W. Wang and J. Xu Yu, “XParent: An Efficient
RDBMS-Based XML Database System,”. Proc. of IEEE ICDE. USA,
pp. 335-336, 2002.

[10] E. Cohen, H. Kaplan and T. Milo, “Labeling Dynamic XML Trees,”.
Proc. of ACM PODS. USA, pp. 271-281, 2002.

[11] S. Pal, I. Cseri, O. Seeliger, G. Schaller, L. Giakoumakis and V. Zolotov,
“Indexing XML Data Stored in a Relational Database,”. Proc. of VLDB.
Canada, pp. 1134-1145, 2004.

[12] S. Abiteboul, D. Quass, J. McHugh, J. Widom, J. Wiener, “The Lorel
Query Language for Semistructured Data,”. Int. J. on Digital Libraries.
Vol. 1, No. 1, pp. 68-88, 1997.

[13] A. Deutsch, M. Fernandez, D. Florescu, A. Levy and D. Suciu “A Query
Language for XML,”. Proc. of WWW. Canada, pp. 1155-1169, 1999.

[14] D. Chamberlin, J. Robie and D. Florescu, "Quilt: An XML Query
Language for Heterogeneous Data Sources,”. Proc of WebDB (LNCS).
USA, pp. 53-62, 2000.

[15] J. Clark and S. DeRose, “XML Path Language (XPath) Version 1.0,”.
W3C Recommendation, 1999. Available at
http://www.w3.org/TR/xpath.

[16] A. Bonifati and S. Ceri, “Comparative Analysis of Five XML Query
Languages,”. ACM SIGMOD Record. Vol. 29, No. 1, pp. 68-79, 2000.

[17] D. Lee and W. W. Chu, “Comparative Analysis of Six XML Schema
Languages,”. ACM SIGMOD Record. Vol 29, No. 3, pp. 76-87, 2000.

[18] A. Schmidt, M. Kersten, M. Windhouwer and F. Waas, “Efficient
Relational Storage and Retrieval of XML Documents,”. Proc. of WebDB
(LNCS). USA, pp. 137-150, 2000.

[19] T. Böhme and E. Rahm, “Multi-User Evaluation of XML Data
Management Systems with XMach-1,”. Proc. of EEXTT (LNCS).
Germany, pp. 148-159, 2003.

[20] A. Schmidt, F. Waas, M. Kersten, M. Carey, I. Manolescu, and R. Busse,
“Xmark: A Benchmark for XML Data Management,”. Proc. of VLDB
China, pp. 974-985, 2002.

[21] S. Boag, D. Chamberlin, M. F. Fernández , D. Florescu, J. Robie, J.
Siméon, “W3C XML Query (XQuery),”. W3C Candidate
Recommendation. 2005. Available at http://www.w3.org/XML/Query/

[22] M. Emadi, M. Rahgozar, A. Ardalan, A. Kazerani and M.M. Arian, “A
Comparative Study of DTD-Independent XML Data Storage
Approaches,”. 11th International CSI Computer Conference (CSICC'06).
Iran, pp. 624-628, 2006.

