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Blind Source Separation based on the Estimation
for the Number of the Blind Sources under a

Dynamic Acoustic Environment
Takaaki Ishibashi

Abstract—Independent component analysis can estimate unknown
source signals from their mixtures under the assumption that the
source signals are statistically independent. However, in a real en-
vironment, the separation performance is often deteriorated because
the number of the source signals is different from that of the sensors.
In this paper, we propose an estimation method for the number of
the sources based on the joint distribution of the observed signals
under two-sensor configuration. From several simulation results, it
is found that the number of the sources is coincident to that of
peaks in the histogram of the distribution. The proposed method can
estimate the number of the sources even if it is larger than that of
the observed signals. The proposed methods have been verified by
several experiments.

Keywords—blind source separation, independent component
analysys, estimation for the number of the blind sources, voice
activity detection, target extraction.

I. INTRODUCTION

THE speech recognition technology has significantly been
improved to achieve provision of speech recognition en-

gine with extremely high recognition capabilities for the case
of ideal environments, i.e. no surrounding noise. However,
it is still difficult to attain a desirable recognition rate in a
household or office where there are daily activities noises.
Therefore, a certain preprocessing before recognition is needed
to reduce the noises and to select the target speech signal.

Many noise reduction methods using ICA (independent
component analysis) have been proposed. ICA can separate
unknown sources from their mixtures without information on
the transfer functions, provided that the sources are statistically
independent [1], [2], [3], [4], [5], [6], [7], [8]. For the
instantaneous mixtures, the original sources can be completely
recovered in the time domain except for indeterminacy of scale
and permutation.

In a real environment, the signals observed at microphones
are not instantaneous mixtures but are convoluted version
of the sound sources. On account of this, there have been
reported many trials to separate the convoluted mixtures in
the frequency domain. However, the indeterminacy of scale
and permutation appears at every frequency bin. In order to
recover the sources properly, this indeterminacy problem must
be essentially solved before making an inverse transformation
from the frequency to the time domain.

T. Ishibashi is with the Department of Information Communication and
Electronic Engineering, Kumamoto National College of Technology, Ku-
mamoto, Japan e-mail: ishibashi@knct.ac.jp.

Manuscript received May 31, 2010.

The scale indeterminacy can be solved by use of a decom-
posed spectrum [5]. We have derived that the decomposed
spectrum is uniquely expressed as a product of a source and
its transfer function [9], [10]. For the permutation problem, we
have proposed a permutation correction in terms of the power
of decomposed spectra using prior information about source
directions [9], [10].

In the case where the number of source signals is equal
to that of the observed mixture signals, from above methods,
the original sources can be completely recovered. However,
separation performance often deteriorates because the number
of the source signals is different from that of the mixture
signals. Therefore, it is very important that the sources number
is estimated by using only the observed mixture signals before
ICA process. There has been proposed an estimation method
of the sources number [11]. It functions well if the number of
the sources is equal to or less than that of the sensors but it
fails if the former is larger than the latter.

In this paper, we propose an estimation method for the
number of the source signals based on the joint distributions of
the observed signals under two-sensor configuration. And we
propose a blind source separation method using the estimated
the source number under a dynamic acoustic environment.
Several simulation results elucidate that the number of the
sources are coincident to that of peaks in the histogram of the
distribution. The proposed method can estimate the number of
the sources even if it is larger than the sensor number. And
the method can also estimate the target source signal under a
dynamic acoustic environment.

II. BLIND SOURCE SEPARATION

A. Independent component analysis in frequency domain

Consider the case where the original source signals s(t) =
[s1(t), · · · , sn(t), · · · , sN (t)]T are observed by microphones
in a convoluted way, the obserbed mixture signals x(t) =
[x1(t), · · · , xm(t), · · · , xM (t)]T are represented by

x(t) = G(t) ∗ s(t) (1)

where G(t) denotes a mixing matrix whose elements are
transfer functions gmn(t) from the n-th sources to the m-th
microphones, and ∗ denotes the convolutional operator.

The mixtures xm(t) are transformed into the short time
spectra by the discrete Fourier transform to perform separation
in frequency domain.

xm(ω,k) =
∑
t

e−jωtxm(t)w(t− kτ) (2)
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Fig. 1. Frequency domain independent component analysis.

where ω denotes a frequency, k the frame number, τ the frame
shift time and w(t) a window function.

In the frequency domain, the mixtures are approximated as

x(ω, k) = G(ω)s(ω, k) (3)

where x(ω, k) = [x1(ω, k), · · · , xM (ω, k)]T , s(ω, k) =
[s1(ω, k), · · · , sN (ω, k)]T and G(ω) are the discrete Fourier
transformed representation of the mixtures, the sources and
the transfer function matrix, respectively.

The mixtures are generally whitened as

x̃(ω, k) = Q(ω)x(ω, k) (4)

where Q(ω) is a whitening matrix.
By applying ICA under the assumption that each compo-

nents sn(t) of s(t) are statistically independent of each other,
the separated spectra u(ω, k) = [u1(ω, k), · · · , uN (ω, k)]T

can be obtained as

u(ω, k) = H(ω)x̃(ω, k) (5)

where H(ω) = [h1(ω), · · · ,hN (ω)]T is a demixing matrix
and “ ¯ ” denotes a conjugation operator.

The separated signal un(t) in the time domain for the
source sn(t) can be obtained by applying the inverse Fourier
transform of spectrograms {un(ω, k)|k = 0, 1, · · · ,K − 1}.

un(t) =
1

2π

1

W (t)

∑
k

∑
ω

ejω(t−kτ)un(ω, k) (6)

where W (t) =
∑
k w(t − kτ). Fig.1 shows the frequency

domain ICA under N -source and M -sensor configuration.

B. Frequency domain FastICA algorithm

Under the assumption that all the spectra of whitened
mixtures x̃(ω, k) are zero mean and have unit variances

with uncorrelated real and imaginary parts of equal variances.
FastICA algorithm is formulated in the frequency domain as
follows [2].

h+
n (ω) =

1

K

K−1∑
k=0

{
x̃(ω, k)un(ω, k)f(|un(ω, k)|2)

−
[
f(|un(ω, k)|2)+|un(ω, k)|2f ′(|un(ω, k)|2)

]
hn(ω)

}
(7)

hn(ω) =
h+
n (ω)

‖ h+
n (ω) ‖

(8)

where hn(ω) is a demixing weight vector, f(·) a nonlinear
function and f ′(·) is its differential.

At each frequency ω, the convergence condition is

|hTn,old(ω)hn,new(ω)| � 1 (9)

where h·,old(·) and h·,new(·) denote the demixing weight
before and that after update, respectively.

In addition, hn+1(ω) is orthogonalized as

hn+1(ω) = hn+1(ω)−
n∑
i=1

hi(ω)h
T

i (ω)hn+1(ω) (10)

and hn+1(ω) is again regularized by Eq.(8).
The separated spectra un(ω, k) are yielded by substituting

hn(ω) to Eq.(5). The separated signal u(t) in the time domain
can be obtained by Eq.(6).

C. Indeterminacy of scale and permutation

In the frequency domain, the indeterminacy of scale and
permutation occur at every frequency ω:

H(ω)Q(ω)G(ω) = P (ω)D(ω) (11)
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Fig. 2. Target source signal estimation based on frequency domain independent component analysis.

where P (ω) is a permutation matrix, which all elements of
each column and row 0 except for one element with value
1, and D(ω) = diag[d1(ω), · · · , dN (ω)] a diagonal matrix, of
which elements dn(ω) denote the scaling factors determined
by the whitening. This means that not only the amplitude but
also the phase are indeterminate. Therefore, the indeterminacy
of permutation, the amplitude and the phase must be settled
to get a meaningful signal u(t) before inversely transforming
u(ω, k) from the frequency to the time domain.

D. Solution of scale indeterminacy

Fig.2 shows a target source signal estimation process based
on the frequency domain ICA under N -source and M -sensor
configuration.

In order to solve the scale indeterminacy, a decomposed
spectrum vn(ω, k) = [vn1(ω, k), · · · , vnM (ω, k)]T is calcu-
lated as follows [5].

vn(ω, k)=B(ω)−1[0,· · ·,0, un(ω, k),0,· · ·, 0]T (12)

where B(ω) = H(ω)Q(ω). The sum of the decomposed
spectra is equal to the mixture x(ω, k).

The decomposed spectrum vnm(ω, k) is uniquely deter-
mined as a product of the source spectrum sn(ω, k) and the
transfer function gmn(ω), although the combination of the
source spectrum and the transfer function differ depending
on whether permutation occur or not [9], [10]. It means that
the scaling factor of the decomposed spectrum is the transfer
function itself and the decomposed spectrum has no scale
indeterminacy.

E. Solution of permutation indeterminacy

We assume that the source sn(t) is closer to the n-th
sensor than to others. From this assumption, gain and phase
inequalities on the transfer functions obtained, respectively, by

|gnn(ω)| > |gmn(ω)|, (13)
� gnn(ω) > � gmn(ω). (14)

From the above relations, we adopt the estimated spectrum
of the source sn(ω, k) as gnn(ω)sn(ω, k), since it may be
less affected by ambient noise than the others. To do this, we
calculate the absolute value of every component in vn(ω, k)
and compare them to choose the maximum value, since every
component contains the same sn(ω, k) and differs from the
others by its transfer function.

Therefore, if |vnm(ω, k)| takes the maximum value at
m = n, the number n indicates the one corresponding to
the source sn(ω, k) and vn,m=n(ω, k) becomes the estimate
of sn(ω, k). This discussion is formulated as a permutation
correction rule [9], [10] with respect to the gain inequality
Eq.(13):

n̂ = argmax
m

|vnm(ω, k)|. (15)

Similarly, another permutation correction rule is derived from
the phase inequality Eq.(14):

n̂ = argmax
m

� vnm(ω, k). (16)

F. Target source signal selection

There still remains a target source selection problem even
if the scale and permutation problem can be settled. After
permutation correction using Eq.(15) or Eq.(16), the separated
spectrum yn(ω, k) can be expressed as

yn(ω, k) = gnn(ω)sn(ω, k). (17)

This shows that yn(ω, k) is an estimate of sn(ω, k). If we
know the target source number n or the target source location
in advance, we can extract the target source easily as

y∗(ω, k) = yn(ω, k). (18)

In the case where the location of human speech is not
known, another selecting method has been proposed as fol-
lows. We assume that one source is human speech and the
others are noises, but we do not know the location of human
speech. Human speech is usually larger in non-Gaussianity
than noises. The FastICA [2] proposed by Hyvärinen generates
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Fig. 3. Source signals.

the separated signal in order of large non-Gaussianity. Under
the above situation, therefore, the separated spectra for the
speech are most frequently yielded at the first output channel.
In other word, the first output channel gives the spectral
estimate for the speech at the highest probability [9], [10].

III. BLIND SOURCE SEPARATION UNDER A DYNAMIC

ACOUSTIC ENVIRONMENT

A. Estimation for the number of the sources

The original source signals can be recovered using ICA
if the number of the source signals N is equal to that of
the observed signals M . However, the separation performance
of ICA often deteriorates if N �= M . Here, we propose an
estimation method for N under the two-sensor configuration.

Consider three source signals sn(t) (n=1, 2, 3) which are
human speeches shown in Fig.3. If there is no active source,
it is clearly that the observed signals doesn’t have power.
Therefore, we estimate N = 0 in the case where the power of
the observed signals is very small.

When only s1(t) is active, the waveforms x1(t) and x2(t)
observed at the sensors are depicted as in Fig.4. Their joint
distribution is shown in Fig.5(a) where the horizontal and
the vertical axis are denoted by x1(t) and x2(t), respectively.
Since x1(t) and x2(t) are completely similar, the joint distri-
bution is expressed by a straight line. This fact implies that the
distribution is of one-dimensional structure in the case of one
active source. The histograms θ(t) of the joint distributions as

θ(t) = tan−1 x2(t)

x1(t)
(19)

has only one peak as shown in Fig.5(b). The horizontal axis
denotes the source arrival direction from −π

2 to π
2 and the

vertical axis denotes the frequency.
In the case of two active sources, s1(t) and s2(t), the ob-

served mixture signals x1(t) and x2(t) are shown in Fig.6. As
shown in Fig.7(a), their joint distribution is scattered around
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Fig. 4. Observed signals in the case of N = 1.
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Fig. 5. Joint distribution and histogram in case of N = 1.

but is characterized by two dense crossing lines. Fig.7(b)
shows the histograms in the case of two active sources. In
the figure, two peaks are clearly seen.

In the case of three active sources, s1(t), s2(t) and s3(t), the
observed mixture signals x1(t) and x2(t) are shown in Fig.8.
Their joint distribution and the histgram are shown in Fig.9(a)
and (b), respectively. In these figure, the dense crossing lines
are still discernible and three peaks are recognizable.

From these results, the joint distribution is considered to
take on a peculiar structure depending on the number of the
sources. Their histograms have the same number of peaks as
the sources signals. Therefore, we can estimate the number of
the source signals by finding the number of the peaks.

B. Blind source separation under a dynamic acoustic environ-
ment

From the above discussions, the histgrams of the observed
signals have the same peaks of the sources. Therefore, we
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Fig. 6. Observed signals in the case of N = 2.
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can estimate the number of the blind sources from only the
ovserved signals. And a new blind source separation method
under a dynamic acoustic environment is proposed as shown in
Fig.10. The proposed method is based on the source number
estimation, the target source signal selection and frequency
domain ICA. Namely, in the case of N = 0, we do not output
anything. In the case of N = 1, the observed signal is selected
the target signal or not. In the case of N ≥ 2, we use the
frequency domain ICA and the target selection.
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Fig. 9. Joint distribution and histogram in the case of N = 3.

IV. SIMULATION

In order to verify our proposals, several simulations were
carried out. The target source signal s1(t) was speech signal of
the database [12]. The noise source s2(t) was a roaring train
noise recorded at a station premises [13]. Fig.11(a) shows the
source signals. These data was set for the number of sound
sources to become dynamic each time. Namely, from 0 to 1
sec, the number N is equal to 0. From 1 to 2 sec, N = 1
and the target source signal is only active. N = 2 from 2 to
3 sec. From 3 to 4 sec, N = 1 and the target source signal
is not active. From 4 to 5 sec, the number N is equal to 0
again. Using these sources, the mixture signals are generated
in Fig.11(b).

The signals were sampled at a rate of 8000Hz with 16bit
resolution. In the source number estimation, the sampled
data were processed with a frame length 500ms. In the
frequency domain ICA, the sampled data were windowed by
the Hamming window with a frame length 128ms and a frame
shift time 32ms. In the FastICA aigorithm, the weight were
initialized by complex random values such that ||hn(ω)|| = 1,
the nonlinear function was specified as

f(|un(ω, k)|2) = 1− 2/(e2|un(ω,k)|2 + 1). (20)
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acoustic environment.

The algorithm was repeated until the convergence criterion

|hTn,old(ω)hn,new(ω)| > 0.999999 (21)

is satisfied.
Fig.11(c) shows the selected target source signal. It is found

that the selected signal is estimated for the source s1(t). From
the simuration result, it is clarified that our proposed method
works well under a dynamic acoustic environment.

V. CONCLUSION

Based on the distributions of the observed signals, the
method for the number of the source signals estimation is pro-
posed under two-sensor configuration. The proposed method
can estimate the number of the sources in the case that the
number of the source signals is larger than that of the observed

signals. And it can be applied in many fields such as the speech
recognition and radio communication. From these simulation
results, it is found that the number of the sources are coincident
to that of peaks in the histogram. And it is clarified that
our proposed method works well under a dynamic acoustic
environment.
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