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Abstract— In this paper we apply an Adaptive Network-Based 

Fuzzy Inference System  (ANFIS) with one input, the dependent 
variable with one lag, for the forecasting of four macroeconomic 
variables of US economy, the Gross Domestic Product, the inflation 
rate, six monthly treasury bills interest rates and  unemployment rate. 
We compare the forecasting performance of ANFIS with those of the 
widely used linear autoregressive and nonlinear smoothing transition 
autoregressive (STAR) models. The results are greatly in favour of 
ANFIS indicating that is an effective tool for macroeconomic 
forecasting used in academic research and in research and application 
by the governmental and other institutions 
 

Keywords—Linear models, Macroeconomics, Neuro-Fuzzy, 
Non-Linear models 

I. INTRODUCTION 
UZZY logic is an effective rule-based modelling in soft 
computing, that not only tolerates imprecise information, 
but also makes a framework of approximate reasoning. 

The disadvantage of fuzzy logic is the lack of self learning 
capability. The combination of fuzzy logic and neural network 
can overcome the disadvantages of the above approaches. In 
ANFIS, is combined both the learning capabilities of a neural 
network and reasoning capabilities of fuzzy logic in order to 
give enhanced prediction capabilities. ANFIS has been used 
by many researchers to forecast various time-series comparing 
with Autoregressive (AR) and Autoregressive Moving 
Average (ARMA) models finding superior results in favour of 
ANFIS [1]-[3]. On the other hand empirical analysis in 
macroeconomics as well as in financial economics is largely 
based on times series. This approach allows the model builder 
to use statistical inference in constructing and testing 
equations that characterize relationships between economic 
variables. There is a few number of researches made in the 
field of macroeconomics prediction with ANFIS, where 
artificial intelligence procedures are still not used by the 
national statistical services and central banks in many 
countries, while conventional econometric modelling is still in 
use, especially the Autoregressive models. Their argument is 
that economics and finance are described better by statistical 
modelling and properties. This is not absolute necessary, 
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because macroeconomic and financial times-series can be 
characterized by non-linearities, which might be more 
efficient described by neural networks. Additionally, 
economics and finance are social sciences, so imprecision of 
the human behaviour is widely present, which can be 
described by fuzzy logic. For this reason we propose the 
neuro-fuzzy approach.  

In section II we present the methodology of stationarity and 
unit root tests, as well as the estimating and forecasting 
procedure of the models examined. In section III the 
frequency and the type of data are described. In section IV the 
estimated and forecasting results are reported, while in the last 
section the concluding remarks of this study and some 
proposals are presented. 

 

II. METHODOLOGY 

A. Unit Root and Stationary Tests 
 
It is possible that the variables are not stationary in the 

levels, but probably are in the first or second differences. To 
be specific we confirm this assumption by applying 
Augmented Dickey-Fuller-ADF [4] and KPSS stationary test 
[5]. The ADF test is defined from the following relation: 

tptpttt tyyyy εβφφμ ++Δ++Δ++=Δ −−− ....γ 111  (1) 

, where yt is the variable we examine each time. In the right 
hand of (1) the lags of the dependent variable are added with 
order of lags equal with p. Additionally, (1) includes the 
constant or drift μ and trend parameter β. The disturbance 
term is defined as εt. In the next step we test the hypotheses: 
 

H0: φ=1, β=0 =>  yt ~ Ι(0) with drift 

against the alternative 

H1: |φ|<1         =>  yt ~ Ι(1) with deterministic time trend 

 
The KPSS statistic is then defined as: 
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variance of εt and can be constructed from the residuals εt as: 
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, where p is the truncation lag, wj( p) is an optional weighting 
function that corresponds to the choice of a special window 
[6]. Under the null hypothesis of level stationary,  
 

dxrVKPSS 21

0 1 )(∫→                                                         (4) 

 
, where V1(x) is a standard Brownian bridge: V1(r) = B(r) – 
rB(1) and B(r) is a Brownian motion (Wiener process) on r ∈ 
[0, 1]. Because relation (4) is refereed in testing only on the 
intercept and not in the trend and as we are testing with both 
intercept and trend we have the second-level Brownian bridge 
V2(x) and it is: 

dxrVKPSS 21

0 2 )(∫→                                                       (5) 

, where  V2(x) is given by: 
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B. Autoregressive (AR) Models    

 
We consider a series y1, y2, . . . , yn. An autoregressive 

model of order p denoted  AR(p), states that yt is the linear 
function of the previous p values of the series plus an error 
term: 

tptpttt yyyy εφφφφ +++++= −−− ....22110         (7) 

, where φ1, φ2 . . . ,φp are weights that we have to define or 
determine, and εt denotes the residuals which are normally 
distributed with zero mean and variance σ2 [7]. Conditioned 
on the full set of information available up to time i and on 
forecasts of the exogenous variables, the one-period-ahead 
forecast of yt would be 
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C. Moving Average (MA) Models    

 
We consider the q order moving average MA(q) specification 
[7]: 
 

qq2211 .... −−− −−−−+= ttttty εθεθεθεμ      (9) 

, where the θ1, ..., θq are the parameters of the model, μ is the 
constant and ε1, ..., εq are again the white noise error terms. 
The forecasts are given by (10) 
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D. Autoregressive Moving Average (ARMA) Models    
 
From the previous two sections we combine Autoregressive 

(AR) Moving Average (MA) Models and the Autoregressive 
Moving Average (ARMA) which encompasses (7) and (9) is 
defined as: 
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ARMA(p, q) process has p autoregressive, lagged 

dependent-variable, terms and q lagged moving-average 
terms. The series Rt is said to be integrated of order one, 
denoted I (1), because taking a first difference produces a 
stationary process. A nonstationary series is integrated of 
order d, denoted I(d), if it becomes stationary after being first 
differenced d times autoregressive integrated moving-average 
model, or ARIMA (p, d, q) and will be [7]: 
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The forecasts for ARMA (p, q) model is given by (13) 
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Various procedures have been suggested for determining 
the appropriate lag length in ARMA models. The first is the 
addition of Akaike Information Criterion (AIC) and Schwarz 
Criterion (SC), which are often used in ARIMA model 
selection and identification. That is, AIC and SC are used to 
determine if a particular model with a specific set of p, d, and 
q parameters is a good statistical fit. SC imposes a greater 
penalty for additional coefficients than the AIC but generally, 
the model with the lowest AIC and SC values should be 
chosen. Specifically for Autoregressive Moving Average, 
Autoregressive and Moving Average models we choose 
Akaike criterion which is defined as: 

 

T
p

T
eepAIC 2'ln)( +=                                             (14) 

 
, where e denotes the residuals, T is the sample and p indicates 
the lag number. We use for the optimum setting up to 5 lags.  
 

E. Smoothing Transition Autoregressive (STAR) Models 
 

The smoothing transition auto-regressive (STAR) model 
was introduced and developed by Chan and Tong [8] and is 
defined as:   
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 ,where ut ~ (0,σ2), π10  and π20  are the intercepts in the middle 
(linear) and outer (nonlinear) regime respectively,  wt = (yt-1…. 
yt-j) is the vector of the explanatory variables consisting of the 
dependent variable with j=1…p lags, Rt-d is the transition 
variable, parameter c is the threshold giving the location of the 
transition function and parameter γ is the slope of the 
transition function. We shall consider two transition functions, 
the logistic and the exponential [9], which are defined by (16) 
and (17) respectively. Parameter d indicates the delay and we 
divide parameter γ with σ(r), which is the standard deviation 
of yt. We follow this procedure, recommended by Teräsvirta 
[11] because the estimation of parameter γ may cause 
problems like overestimations. First we apply a test to 
examine if yt  is linear or not proposed by Teräsvirta et al. 
[10]. The STAR model estimation is consisted by three steps 
according to Teräsvirta [11].  
 

0,)])(exp[1()( 1 >−−+= −
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a) The specification of the autoregressive (AR) process of 

j=1,… p. One approach is to estimate AR models of different 
lag orders and the maximum value of j can be chosen based on 
the AIC information criterion Besides this approach, j value 
can be selected by estimating the auxiliary regression (18) for 
various values of j=1,…p, and choose that value for which the 
P-value is the minimum, which is the process we follow.                                                                          

b) The second step is testing linearity for different values of 
delay parameter d. We estimate the following auxiliary 
regression:  
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The null hypothesis of linearity is H0: β2j =  β3j = β4j =0.  In 
order to specify the parameter d the estimation of (18) is 
carried out for a wide range of values 1≤d≤D and we choose 
d=1,…,6 In the cases where linearity is rejected for more than 
one values of d, then d is chosen by the minimum value of 
p(d), where p(d) is the P-value of the linearity test. 
Additionally if there are more than one zero P-values we 
choose this one with the highest F-statistic. We examine for 
j=1,2…5 and we choose those values of j similarly with 
parameter d. In order to compute parameters c and γ, we apply 
a grid search procedure for equation (18) with non linear 
squares and Levenberg-Marquardt algorithm. The grid search 
for parameter c takes place in the interval between the 
minimum and maximum value of each variable with 

increment 0.01 and for parameter γ in the interval [1 10] with 
increment 0.05. The initial value for parameter c is the mean 
value of our data and for parameter γ is 1.                             

 
c) The third and last step is the specification of STAR 

model. We test the following hypotheses by  [9,11] 
 

pjH j ,...,1,0: 404 ==β                                               (19)                    

pjH jj ,...,1,0|0: 4303 === ββ                              (20)     

pjH jjj ,...,1,0|0: 43202 ==== βββ                  (21) 

If we reject the (19) hypothesis then we choose LSTAR 
model. If (19) is accepted and (20) is rejected then ESTAR 
model is selected. Finally accepting (19) and (20) and 
rejecting (21) we choose LSTAR model. We examine both 
LSTAR and ESTAR models, to examine the forecasting 
performance and to show that the difference between their 
predicting performances might be almost zero.  

 
 
F. Adaptive network-based fuzzy inference system 

(ANFIS) 
 

Jang [12] and Jang and Sun [13] introduced the adaptive 
network-based fuzzy inference system (ANFIS). This system 
makes use of a hybrid learning rule to optimize the fuzzy 
system parameters of a first order Sugeno system. An example 
of a two input with two rules first order Sugeno system can be 
graphically represented by Fig. 1.  
 

 
Fig. 1. Example of ANFIS architecture for a two-input, two-rule first-
order Sugeno model 
 
, where the consequence parameters p, q, and r of the nth rule 
contribute through a first order polynomial of the form: 
 

nnnn rxqxpf ++= 21                                                (22) 
 

The ANFIS architecture is consisted of two trainable 
parameter sets, the antecedent membership function 
parameters and the polynomial parameters p,q,r, also called 
the consequent parameters. The ANFIS training paradigm 



International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:4, No:4, 2010

444

 

 

uses a gradient descent algorithm to optimize the antecedent 
parameters and a least squares algorithm to solve for the 
consequent parameters. Because it uses two very different 
algorithms to reduce the error, the training rule is called a 
hybrid. The consequent parameters are updated first using a 
least squares algorithm and the antecedent parameters are then 
updated by backpropagating the errors that still exist. We 
define five linguistic terms {very low, low, medium, high, 
very high}. Because we examine ANFIS with only on input, 
the dependent variable with one lag, and we a\have defined 
five linguistic terms the rules will be: 
 
IF yt-1 is very low  THEN f1 = p1x + r1 
 
IF yt-1 is   low        THEN f2 = p2x + r2 
 
IF yt-1 is  medium  THEN f3 = p3x + r3 
 
IF yt-1 is high         THEN f4 = p4x + r4 
 
IF yt-1 is very high THEN f5 = p5x + r5 
 
, where yt-1 denotes the dependent or target variable with one 
lag. Because we have only one input we do on take the AND-
OR operators. We could take more inputs, but one input is 
enough to get very satisfying forecasts, as we show in the next 
part of the study. The ANFIS architecture consists of five 
layers with the output of the nodes in each respective layer 
represented by Oi

l, where i is the ith node of layer l. Because 
we have five linguistic terms in the case we examine the steps 
for ANFIS system computation are: 
 

)(
i

1 xO Ai μ=                                                                   (23) 

The adjustable parameters that determine the positions and 
shapes of these node functions are referred to as the premise 
parameters. In layer 2 we have:  
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Each node output represents the firing strength of the 
reasoning rule. In layer 3, each of these firing strengths of the 
rules is compared with the sum of all the firing strengths. 
Therefore, the normalized firing strengths are computed in 
this layer as: 
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Layer 4 implements the Sugeno-type inference system, i.e., 

a linear combination of the input variables of ANFIS, x1,x2, 
...xp plus a constant term, r1,r2, ...rp, form the output.  
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, where parameters p1 ,p2, ...,pi and r1,r2, ...,ri, in this layer are 
referred to as the consequent parameters. In layer 5 we take:  
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In the last layer the consequent parameters can be solved 
for using a least square algorithm as: 
 

θ⋅= XY                                                                  (28) 
 
, where X is the matrix  
 

]....[ 552211 wxwwxwwxwX ++++++=           (29) 
 
, where x is the matrix of inputs and θ is a vector of  unknown 
parameters as: 
 

 [ ]Trqprqprqp 999222111 ,,,....,,,,,,=θ              (30) 
 
, where T indicates the transpose.  Because the normal least 
square method leads to singular inverted matrix we use the 
singular value decomposition (SVD) with Moore-Penrose 
pseudoinverse of matrix [14]-[16] 

For the first layer and relation (23) we use the triangular 
membership function. The triangular function is defined as:  
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, where αij is the peak or center parameter and bij is the spread 
or support parameter. We use error back propagation 
algorithm with steepest descent method in order to find the 
optimum parameters a and b.  The peak parameter update for 
the triangle membership function is:  

ij
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,where ηa is the learning rate for the parameter αij  and E is the 
error functions which is: 
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2
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, where yt is the target-actual and y is ANFIS output variable. 
The chain rule used in order to calculate the derivatives and 
update the membership function parameters are [17]-[19]:  
: 
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After some partial derivatives computations, the update 
equations for aij are, bij  are respectively 
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In Table I we present the initial values for parameters αij 

and bij in each variable we examine. The learning rates for 
parameters a, b and consequent parameters (RHS) are set up 
at 0.1, 0.5 and 0.5 respectively. The number of maximum 
epochs is 50 

TABLE II 
THE INITIAL VALUES FOR PARAMETERS αij AND bij IN EACH 

VARIABLE 
 Very 

Low 

Low Medium High Very 

High 

GDP a=-2.5 
b=1.5 

a=-0.5 
b=1.5 

a=1.5 
b=1.5 

a=3.5 
b=1.5 

a=5.5 
b=1.5 

Inflation a=0 
b=0.15 

a=0.2 
b=0.15 

a=0.4 
b=0.15 

a=0.6 
b=0.15 

a=0.8 
b=0.15 

TB interest  

rates 

a=2 
b=1.5 

a=4 
b=1.5 

a=6 
b=1.5 

a=8 
b=1.5 

a=10 
b=1.5 

Unemploy- 

ment rate 

a=5 
b=1.5 

a=6 
b=1.5 

a=7 
b=1.5 

a=8 
b=1.5 

a=9 
b=1.5 

 
 
,where GDP in Table I denotes the gross domestic product 
growth rate.  

The forecasting performance of Autoregressive (AR) 
models and Feed-forward neural networks Autoregressive 
(FFNN-AR) models in both in-sample and out-of- sample 
periods is counted based on the Mean Absolute Error (MAE) 
and Root Mean Squared Error (RMSE) described respectively 
by (37) and (38).  
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III. DATA 

 

We examine four macroeconomic variables of US 
economy, the Gross Domestic Product growth rate, the 
inflation rate, the six monthly treasury bills interest rates and 
the unemployment rate. The data we use in our analysis are 

monthly, except from Gross Domestic Product which is in 
quarterly frequency. We examine the period 1991-2009 for 
Gross Domestic Product and period 1950-2009 for all the 
other variables. The periods 1991 to 2005 and 1950 to 2005 
are used for the in-sample period and the period 2006-2009, 
which is a period of 16 observations for Gross Domestic 
Product and 48 observations for the remaining variables, is 
left for the out-of-sample forecasting period. It should be 
noticed that the forecasting step is two-step ahead. More 
specifically all models present a very good performance in one 
ahead period. In this paper we try to examine the forecasting 
performance for two-step ahead, One period ahead, monthly 
or quarterly, is not very useful as two periods can be. 
Additionally, testing more periods as three or four periods 
ahead can be even more useful.  
 

IV. EMPIRICAL RESULTS 
 
In Table II we present the results of ADF and KPSS tests, 

while in Table III their critical values are reported.  The 
results are mixed. For gross domestic product we reject unit 
root in α=0.05 and 0.10 based on ADF test, while we accept 
stationarity only in α=0.01 based on KPSS test. For 
unemployment and inflation rates we reject unit root based on 
ADF statistic in all statistical significance levels, but we reject 
stationary hypothesis based on KPSS test. We accept that 
treasury bills interest rates are stationary in first differences, 
I(1), based on both ADF and KPSS tests. Beside these results 
we examine both ARMA and ARIMA processes to compare 
the forecasts. In Table IV we present the Autoregressive and 
Moving average processes for the variables we examine.  
 

TABLE II 
ADF AND KPSS TESTS  

Indices ADF-statistic KPSS-statistic 
GDP Growth Rate 

Levels 
-4.008 0.1767 

Inflation Rate 
Levels 

-5.040 0.3759 

Inflation Rate  
First differences 

 0.1102 

Treasury Bills 
Levels 

-2.089 0.5547 

Treasury Bills 
First differences 

-8.461 0.0335 

Unemployment Rate 
Levels 

-4.245 0.2776 

Unemployment Rate 
First differences 

 0.0531 

 
TABLE III 

CRITICAL VALUES FOR ADF AND KPSS STATISTICS  
Critical values  

for ADF1 
Critical values  

for KPSS2 

-4.086,   α= 0.01  
-3.471,   α= 0.05 

    -3.162,   α= 0.10 

0.216,   α= 0.01 
0.146,   α= 0.05 

    0.119,   α= 0.10 
                    1 MacKinnon [20], 2 Kwiatkowski et al.,[5]  
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TABLE IV 
AR, MA AND ARMA PROCESSES FOR VARIABLES 

Indices AR(p) MA(q) ARMA(p,q) ARIMA(p,d,q) 
GDP 

Growth Rate 
1 4 1,4 1,1,3 

Inflation Rate 5 4 5,4 3,1,3 
Treasury Bills 5 5 4,5 5,1,5 

Unemployment 
Rate 

5 5 5,5 2,1,0 

 
 
In Tables V and VI we report the linearity tests for the four 

macroeconomic variables. We observe that we accept the 
linearity process for GDP and that it could not be found a non-
linear process for the specific macroeconomic variable. Also 
the value of lag order p is chosen based on the minimum p-
value and in the cases where there are more than one zero p-
values lag order p is chosen based on the highest F-statistic. 

In Table VII we present the results of STAR model 
specification tests and the hypotheses (19)-(21). In all cases 
we accept that LSTAR is the appropriate model. In the case of 
inflation rate we accept the LSTAR model in α=0.05 and 
α=0.10, while we could accept ESTAR marginally for α=0.01. 
In Table VIII the estimated parameters γ and c, with non-
linear squares and Levenberg-Marquardt algorithm, are 
reported. Generally, from the value of parameter γ we observe 
that there is a smoothly transition between the regimes.   
 

TABLE V 
     LINEARITY TESTS FOR GDP AND INFLATION RATE 

Indices GDP 

Growth Rate 

Inflation Rate 

p 1 1 

d=1 0.9247 

(0.4353) 

24.820 

(0.000) 

d=2 0.8589 

(0.4681) 

13.458 

(0.000) 

d=3 1.333 

(0.2749) 

3.470 

(0.0160) 

d=4 1.331 

(0.2809) 

6.278 

(0.0003) 

d=5 0.8226 

(0.4856) 

16.085 

(0.000) 

d=6 1.204 

(0.3182) 

18.618 

(0.000) 

                 *p-values in parentheses 

 

TABLE VI 
          LINEARITY TESTS FOR TREASURY BILLS AND    
                               UNEMPLOYMENT RATE 

Indices Treasury 

Bills 

Unemployment 

Rate 

p 1 1 

d=1 7.503 (0.0001) 0.0140 

(0.9977) 

d=2 17.551 (0.000) 3.295 

(0.0292) 

d=3 5.941 (0.0001) 15.669 

(0.000) 

d=4 3.069 (0.0274) 21.580 

(0.000) 

d=5 5.228 (0.0014) 25.197 

(0.000) 

d=6 2.813 (0.0387) 27.923 

(0.000) 

                 *p-values in parentheses 
 

 
TABLE VII 

STAR SPECIFICATION TESTS  
Indices Inflation  

Rate 

Treasury  

Bills 

Unemploy- 

ment Rate 

Delay (d) 1 2 6 

F-statistic 
H04 : β4 =0 

6.630 
(0.0103) 

18.558 
(0.000) 

7.944 
(0.000) 

F-statistic 
H03 : β3 =0/β4 =0 

66.627 
(0.000) 

10.457 
(0.0013) 

27.705 
(0.000) 

F-statistic 
H02 : β2 =0/ β3 = 

β4 =0 

0.5120 

(0.4745) 

22.404       

(0.000) 

45.196            

(0.0899) 

Type of 
model 

LSTAR LSTAR LSTAR 

 
 

TABLE VIII 
           ESTIMATED VALUES OF PARAMETERS γ AND c 

 Inflation 
Rate 

Treasury 
Bills 

Unemployment 
Rate 

ESTAR    
γ 1.4196 0.5313 1.1972 
c 0.2348 -0.0066 1.2109 

LSTAR    
γ 1.4605 1.1000 1.5241 
c 0.9292 0.0010 1.3868 

 

In Tables IX and X the Root Mean Squared Error (RMSE) 
and Mean Absolute Error (MAE) are reported. The results are 
mixed, but the general conclusion is that ANFIS outperforms 
significant all the models in out-of-sample periods. The 
exception is the case of unemployment rate where Logistic 
STAR model outperforms ANFIS only in the in-sample 
period. In the case of the gross domestic product (GDP), 
among the linear models, ARMA and ARIMA present the best 
forecasting performance in the in-sample period, but in the 
out-of-sample period Moving Average presents the best 
performance followed by Autoregressive (AR) model, 
indicating that the last models might be more appropriate for 
out of sample forecasts in GDP. In the case of inflation rate 
and the in-sample period, the linear models present a similar 
performance, as the worst performance is reported by Logistic 
STAR model. ANFIS present the best performance, as it was 
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mentioned, followed by exponential STAR model. In the out-
of sample period and the inflation rate ANFIS presents the 
best forecasting performance followed by ARIMA and 
exponential STAR model.  
 

TABLE IX 
RMSE AMD MAE FOR GDP AND INFLATION RATE 

In sample period 
 GDP Inflation 
 RMSE MAE RMSE MAE 

AR 1.9216 1.4282 0.3506 0.2457 
MA 1.9285 1.4291 0.3560 0.2498 

ARMA 1.8344 1.3221 0.3491 0.2520 
ARIMA 1.8528 1.3372 0.3681 0.2548 
ESTAR   0.2907 0.2067 
LSTAR   0.3999 0.2658 
ANFIS 0.8003 0.6403 0.2245 0.1478 

Out-of-sample period 
 GDP Inflation 
 RMSE MAE RMSE MAE 

AR 3.8269 2.1184 0.4999 0.2276 
MA 2.5212 1.9123 0.2162 0.2010 

ARMA 4.6297 2.7162 0.2251 0.2231 
ARIMA 3.9451 2.7993 0.1922 0.1773 
ESTAR   0.2130 0.1774 
LSTAR   0.2781 0.2471 
ANFIS 1.6531 1.0651 0.1759 0.1551 

 
 

TABLE X 
RMSE AMD MAE FOR INTEREST RATES AND 

UNEMPLOYMENT RATE 
In sample period 

 Interest rates Unemployment 
 RMSE MAE RMSE MAE 

AR 2.7655 1.9509 1.5450 1.2172 
MA 2.7784 2.0630 1.5550 1.2015 

ARMA 2.7604 1.9439 1.5491 1.2154 
ARIMA 2.7441 1.9407 1.5420 1.2912 
ESTAR 2. 7960 2.7302 0.2073 0.1541 
LSTAR 3.2374 2.8784 0.5313 0.4307 
ANFIS 1.8595 1.0343 0.3063 0.2861 

Out-of-sample period 
 Interest rates Unemployment 
 RMSE MAE RMSE MAE 

AR 2.0401 1.6104 1.1816 0.8530 
MA 1.9569 1.7818 0.9673 0.9033 

ARMA 1.7050 1.2110 1.7261 1.1395 
ARIMA 1.9824 1.4260 2.2424 1.6378 
ESTAR 1.8967 1.7119 0.4142 0.3915 
LSTAR 1.4558 1.3049 0.1841 0.1421 
ANFIS 1.2600 1.1643 0.1165 0.0999 

 
For the 6-month treasury bills interest rates and linear 

models, ARMA and ARIMA present the best performance in 
both in-sample and out-of-sample periods, while the best 
performance among all models, presents ANFIS followed by 
Logistic STAR model.  

Finally, in the last macroeconomic variable we examine, the 
unemployment rate, Exponential STAR model followed by 
Logistic STAR model and ANFIS, presents the best 
forecasting performance in the in-sample period. In the out-of-
sample period ANFIS outperforms the other models, followed 
by Logistic STAR model. RMSE and MAE in the case of 
ANFIS and the out-of-sample period, are significant lower 
relatively to the other models.  

V. CONCLUSIONS 
 
In this paper we proposed the Adaptive Network-Based 

Fuzzy Inference Autoregressive System (ANFIS) which is 
known also as Adaptive Neuro-Fuzzy Inference System. We 
examined the forecasting performance of linear and non-linear 
models, as the autoregressive, moving average, autoregressive 
moving average and smoothing transition autoregressive 
models and we have shown that ANFIS outperforms 
significant the other models in the most cases. Furthermore, 
we concluded that the non-linear smoothing transition 
autoregressive models present a superior forecasting 
performance to the linear models in some cases. We examined 
only one fuzzy membership function, the triangular, while 
other membership functions can be tested as well as the 
trapezoidal, the Gaussian or the Generalized Bell functions 
among others. Furthermore, genetic algorithms can be used 
instead to error backpropagation algorithm we used in the 
current study, for the training process. Generally, ANFIS 
outperforms significant the conventional linear and non-linear 
econometric modelling in all macroeconomic variables we 
examined in the out-of-sample period which is our main 
interest. For this reason ANFIS technology should be adopted 
and used from the national statistical services, the central 
banks and the financial industry in the countries, where the 
conventional econometric modelling is still mainly used. 
Further research applications should be made and the 
principles and techniques of artificial intelligence should be 
introduced in economic academic departments in the future.  
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