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Abstract—The paper suggests for the first time the use of 

dynamic programming techniques for optimal risk reduction in the 
railway industry. It is shown that by using the concept ‘amount of 
removed risk by a risk reduction option’, the problem related to 
optimal allocation of a fixed budget to achieve a maximum risk 
reduction in the railway industry can be reduced to an optimisation 
problem from dynamic programming. For n risk reduction options 
and size of the available risk reduction budget B (expressed as integer 
number), the worst-case running time of the proposed algorithm is O 
(n x (B+1)), which makes the proposed method a very efficient tool 
for solving the optimal risk reduction problem in the railway industry. 

 
Keywords—Optimisation, railway risk reduction, budget 

constraints, dynamic programming. 

I. INTRODUCTION 
HE railway operators and infrastructure owners are 
increasingly required to enhance services by introducing 

and implementing the best options for optimising risk 
reduction. In practice, the application of the “As Low As 
Reasonably Practicable” (ALARP) framework for risk 
reduction in the railway industryis a challenge, further 
compounded by decisions that must be made on a finite 
number of risk reduction options, within specified budgets. 
The current application of the cost-benefit technique as a 
decision support tool for determining the best options for risk 
reduction is inadequate[1] and there are advocates for 
alternative techniques [2].However, studies have exposed the 
inadequacies of applying basic economic theories in the 
transport industry[3]. A fuzzy-analytical hierarchy process has 
been proposed by [4]. The Analytical Hierarchy Process 
(AHP)requires the use of pair-wise comparison matrix and 
eigenvector to specify weights higher than a specified 
threshold [5], [6]. AHP does not adequately support the 
decision-maker in choosing alternatives that have higher 
weights than the threshold and are unsuitable for selecting 
more than one choice when multiple alternatives are 
present[7]. Other proponents of alternatives to the cost-benefit 
approach have demonstrated the application of different 
optimisation techniques in addressing risk reduction within 
budget constraints[8]–[15]. These studies apply multi-criteria 
methods such as AHP, Simulated Annealing, Tabu Search, 
Genetic Algorithms, Expected Utility Theory and combinations 
of these. The limitations of these approaches are well 
documented in [16]-[21]. A comprehensive analysis by [22], 
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demonstrates that the optimal resource allocation problems are 
NP-hard problems. Studies undertakenon the suitability of 
optimisation techniques concluded that the optimal resource 
allocation is best addressed by using dynamic programming 
[23], [24].  

In this paper, a case study of a railway line sectionhas been 
used to demonstrate the effectiveness and accuracy of the 
dynamic programming optimisation technique for a major 
renewal project. The accident data set has beenextracted from 
a 70km railway line with 34 stations, operating 33 - 35 trains 
daily.The railway line operates at an average speed of 60 to 
70km/h line and 54 million journeys annually. The study 
focuses on the major accident risks on the line – Platform 
Train Interface (Platform-only accidents) and Collision 
between Trains. For the platform-only accidents, 20 available 
risk reduction options have been identified (Table I). The 
number of identified risk reduction options for the risk 
‘Collision Between Trains’ was 81, of which only a small 
sample has been listed in Table II, due to space limitations. 
The risk reduction measures have been listed with the 
associated costs and risk reduction achieved. 
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TABLE I 
A SET OF RISK REDUCTION OPTIONS FOR THE RISK OF PLATFORM TRAIN 

INCIDENTS (PLATFORM-ONLY) 

ID Risk Reduction Option Cost 
[x £10,000] 

Removed Risk 
[x £ 10,000] 

1 Emergency/incident management 
systems 100 530 

2 Station defect reporting & 
corrective system 10 35 

3 Emergency drills – station staff 
training 20 67 

4 Crowd control procedures & 
systems 100 265 

5 Slip, trip, fall toolkit 10 20 

6 Station surface 
inspections/testing/renewals 100 220 

7 Platform Edge Doors (half length) 800 1360 
8 Audible warnings on platform 100 132 
9 Access & egress from incident site 200 260 
10 Support from platform supervisors 300 320 
11 Painted line warnings/signage 50 530 

12 Platform emergency plungers – 
train stops 400 3900 

13 Gap fillers 200 180 

14 One-person-operated CCTV 
systems 1200 6100 

15 Stair-nose marking 50 350 

16 Station supervisor/personnel 
training 100 660 

17 Re-design/r-build platform 1000 2800 

18 Platform lighting (incl. emergency 
lighting) 550 1300 

19 Increased traffic – major events, 
peak times 1000 1200 

20 Enhanced surfaces –platforms 350 410 

 
TABLE II 

A REPRESENTATIVE SAMPLE SET FROM 81 RISK REDUCTION OPTIONS FOR 
THE RISK OF COLLISION BETWEEN TRAINS ACCIDENTS 

ID Risk Reduction Option Cost 
[x £100,000] 

Removed Risk 
[x £ 100,000] 

1 Train stops 70 160 

2 Speed restrictions – 
compromised overlaps 50 170 

3 On-board sanding 20 60 
4 In-cab CCTV 300 130 

5 Driver training – Signal 
Passed at Danger 30 180 

II. ALGORITHM FOR SOLVING THE PROBLEM OF OPTIMAL 
BUDGET ALLOCATION IN THE RAILWAY INDUSTRY 

Let S be the set of all availablen risk reduction options 
i=1,2,...,n, for a particular major risk in the railway industry. 
As a measure of the effectiveness of each risk reduction option, 
we postulate the measure amount of removed risk. The amount 
of removed risk is the expected cost of prevented accidents, 
delays, fatalities, injuries etc. expressed in monetary terms. 
Each risk reduction measure i, (i=1,2,...,n) is characterised by 
the amount of risk ௜ݎݎ  it removes after its implementation. 
Each risk reduction measure i, (i=1,2,...,n) is also characterised 
by its cost of implementationܥ௜. 

Each risk reduction option cannot be selected more than 
once. As a result, each risk reduction option from the set S of 
all available risk reduction options can either be accepted or 
rejected. 

The task of optimal allocation of the fixed budget reduces to 
determining the optimal subsetܲ ك ܵ of risk reduction options, 
whose total sum of removed risks݉ܽݔ ∑ ௉א௞௞ݎݎ  is maximum 
and whose total cost of implementation does not exceed the 
available risk reduction budget B. 

 
ݔܽ݉ ∑ ௉א௞௞ݎݎ ; ∑ ௞ܥ ൑ ௉א௞ܤ                    (1) 

 
Considering the magnitude of the implementation costs for 

the risk reduction optionsin the railway industry and the 
magnitude of removed risks, it can be assumed that the costs 
and the amount of removed risk can always be expressed 
integer numbers. These express the removed risk and the cost 
of implementation in thousands, tens of thousands or hundreds 
of thousands of pounds sterling.It is also assumed that the 
available budget can also be specified by an integer 
number.As a result, the problem of optimal allocation of a risk 
reduction budget in the railway industry is reduced to a 
combinatorial optimisation problem involving integersonly. 
This problem can be solved by using dynamic programming 
techniques [25],[26].Although the dynamic programming 
techniques have been known for a long time, to the best of our 
knowledge,in this paper,these methods have been applied for 
the first time to solve a problem of optimal risk reduction in 
the railway industry. 

The advantage of the dynamic programming [23],[25],[26] 
consists of the fact that it finds solutions to sub-problems 
increasing in size, stores them in the memory and describes 
the solution of each sub-problem in terms of already solved 
and previously stored solutions of smaller sub-problems. As a 
result, sub-problems are solved only once, which makes the 
dynamic programming significantly more efficient than a 
brute-force method based on the enumeration of all possible 
subsets in the set of available risk reduction optionsS. The 
number of possible subsets in the set S is 2௡  and the 
computational time of a brute-force method based on scanning 
all possible subsets increases dramatically with increasing the 
number nof risk reduction options. 

The description of the algorithm in pseudo-code is 
presented next. 

A. Algorithm 1:Building the Dynamic Risk Reduction Table 
Initialising array x[][] with zeroes in the row with index ‘0’ 

and in the column with index ‘0’. 
fori=1 to n do 
for  j=1 to B do 
   { 
cur_budget=j; 
if (c[i]>cur_budget) then  { x[i][j]=x[i-1][j]; 
trac[i][j]=0; } 
   else 
   { 
rem = cur_budget-c[i]; 
tmp = rr[i]+x[i-1][rem]; 
if(x[i-1][cur_budget] >tmp) then { 
 x [i][j] = x[i-1][j]; trac [i][j]=0; 
                                                     } 
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 else{ 
  x [i][j]=tmp; trac [i][j]=1; 
       } 
  } 
   } 

The algorithm works as follows. The solutions of the sub-
problems are kept in the arrayx[][], where the rowscorrespond 
to the risk reduction options and the columns correspond to 
the available budget. The information necessary to restore the 
optimal solution is kept in the arraytrac[][]. The size of the 
x[][] array is (n+1) x (B+1) elements. The row with index ‘0’ 
of the array x[][] corresponds to zero number of selected risk 
reduction options in the optimal set P; the column with index 
‘0’ of the array x[][] corresponds to zero budget. 

The sub-problems are defined by the size of the current 
budget which varies from 1 to B units. The cost of the ith risk 
reduction option is compared with the value of the current 
budget and if it is greater than the current budget, the ith risk 
reduction option is not included in the optimal setP, which is 
reflected by placing zero in the tracarray (trac[i][j]=0). In the 
case where the current budget is greater than the cost of the ith 
risk reduction option, a decision is taken whether to include 
the ith risk reduction option or not.  

Initially, the statement ‘rem = cur_budget-c[i];’ determines 
the remaining budget if the ithrisk reduction option is included 
in the optimal set P. The sub-problem marked by x[i-1][rem] 
however has already been solved and its solution has been 
recorded in the x[][] array. The entry x[i-1][rem] gives the 
maximum amount of removed risk within budget equal to 
‘rem’ and for i-1 available risk reduction options. 
Consequently, the solution of the sub-problem does not need 
to be determined again; it can simply be read out from the x[][] 
array. The amount of risk removed by the ithrisk reduction 
option is rr[i]. Consequently, the maximum amount of 
removed risk for budget cur_budget=j,if the ith risk reduction 
option is included, is given by ‘tmp = rr[i]+x[i-1][rem];’. If the 
ith option is not included in the optimal set P, the maximum 
amount of removed risk within the budget cur_budget is given 
by x[i-1][cur_budget], (cur_budget=j). Consequently, the 
decision whether to include the ith risk reduction option in the 
optimal set or not, depends on the outcome of the comparison 
made in the statement‘if(x[i-1][cur_budget]>tmp)’ wheretmp 
= rr[i]+x[i-1][rem]. 

If ‘x[i-1][cur_budget] >tmp’, not including the ithrisk 
reduction option yields greater amount of removed risk and 
the entry‘trac[i][j]=0’in the track[][] array is set to zero, which 
indicates that the ith risk reduction option has not been 
included in the optimum set of options P. The maximum 
amount of removed risk is equal to the maximum amount of 
removed risk within the current budget ‘j’, for i-1 total number 
of available options. This maximum however, has been 
computed and is already in the array x[][]; this is the entry x[i-
1][j]. 

If ‘x[i-1][cur_budget] <tmp’, including the ith option yields 
greater amount of removed risk and the entry in the trac-array 
is set to one(trac[i][j]=1;), which indicates that the ith risk 
reduction option has been included in the optimal set P. The 

maximum amount of removed risk is equal to x[i][j]= 
rr[i]+x[i-1][rem]. 

In words, the maximum amount of removed risk is equal to 
the removed risk from including the ith risk-reduction option 
plus the maximum amount of removed risk for i-1 available 
options within the remaining budget ‘rem’. 

The optimal set of risk reduction options is restored by the 
next algorithm in pseudo-code. 

B. Algorithm 2: Restoring the Optimal Set of Risk Reduction 
Options from the Dynamic Tables 

   Initialise all entries of the solution[] array with zeroes. 
cur_bud=B; 
cur_opt=n;  
tmp=trac[cur_opt][cur_bud]; 
while(cur_opt> =1 ) do 
   { 
if(trac[cur_opt][cur_bud]=1)  then  { 
 solution[cur_opt] = 1; 
     cur_bud=cur_bud - c[cur_opt]; 
     cur_opt = cur_opt - 1; 
      } 
  elsecur_opt=cur_opt-1; 
 } 

The algorithm starts with the entry trac[n][B] of the track[][] 
array, which corresponds to a full budget B and all n available 
risk reduction options. If the n-th option has been included in 
the optimal set P, this will be indicated by a non-zero entry in 
the trac array (trac[n][B]=1). In this case, the solution array 
‘solution[]’ marks the n-th option as ‘included’ in the optimal 
set P, by the statement ‘solution[n]=1’. The current budget is 
then reduced by the statement ‘cur_bud=cur_bud-c[cur_opt]’ 
with the cost of the current (n-th ) option. The current option 
to be considered should now be the n-1st option. This is 
ensured by the statement ‘cur_opt=cur_opt-1’. 

If the n-th option has not been included in the optimal set, 
this will be indicated by a zero entry in the trac-array 
(trac[n][B]=0). In this case, the current budget is not reduced 
because no cost has been incurred for implementing the n-th 
risk reduction option.  

The process of considering the options in reverse order 
continues, until the first option is reached. At this point, the 
entries of the solution array will contain ‘1’ for options which 
have been included in the optimal set P and ‘0’ for options 
which have not been included in the optimal set P. 

The running time of Algorithm 1building the dynamic table, 
is determined by the two nested loops:‘fori=1 to n do’and ‘for 
j=1 to B do’, which contain a set of operations that are 
executed in constant time. The maximum number of steps, 
after which Algorithm 1 will terminate,is ݊ ൈ ܤ  . The 
maximum number of steps performed by Algorithm 2 is n, 
because after each iteration of the while-do loop, the number 
of options is reduced by 1. As a result, after at most n steps, 
Algorithm 2 will terminate. The total number of steps of the 
optimisation algorithm is therefore ൈ ܤ ൅ ݊ ൌ ݊ ൈ ሺܤ ൅ 1ሻ . 
The worst-case running time of the algorithm for optimal 
allocation of a risk reduction budget isܱሺ݊ ൈ ሺ ܤ ൅ 1ሻሻ .  . 
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The algorithm has been tested on standard data sets with 
known solutions. For each of the data sets the algorithm 
returned the correct solution. 

Now consider the risk ‘platform train incident’ with 20 
available risk reduction options (Table I), whose removed risk 
and cost have been given as a multiple of £10000. For 
different specified budgets, the optimal set of risk reduction 
options are according to Table III. 

 
TABLE III 

OPTIMAL SETS OF RISK REDUCTION OPTIONS FOR THE RISK OF 
PLATFORMTRAIN INCIDENTS (PLATFORM-ONLY) 

Budget 
[x £10,000] 

Optimal set 
of options 

Cost of option 
[x £10,000] 

Removed Risk 
[x £ 10,000] 

2900 1,11,12, 
14,15,16,17 2900 14870 

3300 1,4,6,9,11, 
12,14,15,16,17 3300 15615 

3500 1,2,3,5,11, 
12,14,15,16,17,18 3490 16292 

4000 1,2,3,4,5,6,8,9,11, 
12,14,15,16,17,18 

3990 17169 
  

 
For the risk ‘train collision’ (Table II presents a 

representativesample data set) from 81 available risk reduction 
options, whose costs and associated removed risk have been 
given as a multiple of £100,000. For a specified budget of 
£110 million, the optimal set of risk reduction options is 
according to Table IV. 

 
TABLE IV 

OPTIMAL SETS OF RISK REDUCTION OPTIONS FOR THE RISK OF TRAIN 
COLLISION ACCIDENT 

Budget 
[x £10,000] 

Optimal set 
of options 

Cost of option 
[x £100,000] 

Removed Risk  
[x £ 100,000] 

1100 1-3;5,6, 16,20, 
26,30, 38,40-42, 
44-46, 48-50, 53, 
60, 62-66, 68, 69, 

73-75, 77-80 

1100 7446 

   

 
The largest running time of the budget allocation algorithm, 

on a computer with processor Intel(R) Core(TM) 2 Duo CPU 
T9900 @ 3.06 GHz, was 0.015s! 

III. CONCLUSIONS 
1. By using the concept ‘amount of removed risk by a risk 

reduction option’,the problem of optimal allocation of a 
fixed budget, among a finite number of risk reduction 
options in the railways industry, can be reduced to an 
optimisation problem from dynamic programming. 

2. For a risk reduction budget Bandn risk reduction options, 
the running time of the optimal allocation algorithm is 
O(n x (B+1)) (where B is the size of the budget). 

3. The optimal solution for 81 available risk reduction 
options and various fixed budgets has been achieved 
within a very short time, which makes the developed 
algorithm a very efficient decision support tool for the 
railway industry. 
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