
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:6, 2008

2168

Abstract—In this paper, we introduce an effective strategy for

subgoal division and ordering based upon recursive subgoals and
combine this strategy with a genetic-based planning approach. This
strategy can be applied to domains with conjunctive goals. The main
idea is to recursively decompose a goal into a set of serializable
subgoals and to specify a strict ordering among the subgoals.
Empirical results show that the recursive subgoal strategy reduces the
size of the search space and improves the quality of solutions to
planning problems.

Keywords—Planning, recursive subgoals, Sliding-tile puzzle,
subgoal interaction, genetic algorithms.

I. INTRODUCTION
LANNING is an artificial intelligence (AI) problem with a
wide range of real-world applications. Given an initial

state, a goal specification, and a set of operators, the objective
of planning is to construct a valid sequence of operators, or a
plan, to reach a state that satisfies the goal specifications
starting from the initial state of a system.

Much effort has been devoted to building computational
models for a variety of planning systems. Our work is based
on STRIPS-like domains [7] in which the change of system
state is given by the operators and their preconditions and
postconditions. In addition, we are interested in the linear
planning problem where solutions are represented by a total
order of operators that must be executed sequentially to reach
the goal.

Definition 1: A Planning problem is a four-tuple

∏ = {P, O, I, G}.
P is a finite set of ground atomic conditions (i.e.,

elementary conditions instantiated by constants) used to define
the system state. O = {oi}, where 1≤ i ≤ |O|, is a finite set of
operators that can change the system state. Each operator has
three attributes: a set of preconditions oi

pre, a set of
postconditions oi

post, and a cost C(oi). oi
post consists of two

disjunctive subsets: oi
post+ and oi

post-. oi
post+, called the add list,

is a set of conditions that must be true for a system state after
the execution of the operator; oi

post-, called the delete list,
consists of a set of all conditions that do not hold after the

Han Yu, Dan C. Marinescu, and Annie S. Wu are with the School of

Computer Science in the University of Central Florida, P. O. Box 162362,
Orlando, FL 32816-2362 USA (corresponding author: Han Yu. phone: 407-
823-5602; fax: 407-823-5419; e-mail: {hyu, dcm, aswu}@ cs.ucf.edu).

Howard Jay Siegel is with Department of Electrical and Computer
Engineering and Department of Computer Science in Colorado State
University, Fort Collins, CO 80523-1373 USA (e-mail: hj@colostate.edu).

execution of the operator. I ⊆ P is the initial state and G ⊆
P is the set of goal conditions. A plan Δ contains a finite
sequence of operators. An operator may occur more than once
in a plan. An operator is valid if and only if its preconditions
are a subset of the current system state. A plan Δ solves an
instance of ∏ if and only if every operator in Δ is valid and
the result of applying these operators leads a system from state
I to a state that satisfies all the conditions in G.

Planning is generally more difficult than a typical search
problem not only because it involves an extremely large
search space but also because the existence of solutions is not
guaranteed. In addition, the size of an optimal solution cannot
be easily estimated. As a result, it is difficult to quantify the
time and space complexity of planning algorithms.

This paper presents a planning strategy called recursive
subgoals for problems with conjunctive goals (i.e., the goal of
problems can be expressed as the conjunction of multiple
goals). The main idea of this strategy is to decompose the
goals recursively into a sequence of subgoals so that reaching
one subgoal reduces a planning problem to the same problem
but at a smaller scale. We give a formal definition of recursive
subgoals and incorporate this strategy with a genetic-based
planning algorithm. Experiments on the Sliding-tile puzzle
show that this strategy is able to significantly improve the
performance of planning algorithms to problems in which
recursive subgoals maintain the subgoal serializability.

II. SUBGOAL ORDERING AND INTERACTION
Korf presents a detailed study on the interaction of subgoals

for a planning problem with conjunctive goals [11]. He
classifies three different types of interactions between
subgoals: independent subgoals, serializable subgoals, and
non-serializable subgoals. If a set of subgoals is independent,
reaching any arbitrary subgoal does not affect the difficulty of
reaching the rest of the subgoals. Problems with independent
subgoals are easy to solve because we can reach the problem
goal by approaching every subgoal individually. As a result,
the cost of the search is the total amount of cost devoted to
every individual subgoal. This type of interaction, however,
rarely occurs in planning problems. In some planning
problems, it is possible to specify an ordering of the subgoals
that have the following property: every subgoal can be
reached without violating any subgoal conditions that have
been met previously during the search. Such subgoals are
called serializable subgoals. The search becomes easier if we
are able to recognize this type of subgoal correlation and
specify a serializable ordering. On the other hand, if such an
ordering does not exist among the subgoals, the subgoals are

Genetic-Based Planning with Recursive Subgoals
Han Yu, Dan C. Marinescu, Annie S. Wu, and Howard Jay Siegel

P

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:6, 2008

2169

called non-serializable subgoals. There is no universal method
of dividing and ordering subgoals into serializable subgoals.
In addition, proving the serializability of a sequence of
subgoals is as difficult as proving the existence of solutions
for a planning problem [11]. Therefore, Korf's classification
of subgoal interactions is not appropriate for predicting the
difficulty of a planning problem.

Barrett and Weld [2, 3] extend the classification of
serializable subgoals based on the probability of generating a
sequence of serializable subgoals from a randomly ordered set
of subgoals. They define trivially serializable subgoals for
those subgoals that are always serializable given any possible
sequences. If a set of subgoals is not trivially serializable,
violation of previously met goal conditions might occur
during the search for the complete solution. As the cost of
backtracking the previous subgoals is exponentially high, a
planning problem is tractable only if the probability of a
random sequence of subgoals being non-serializable is
sufficiently low so that the cost for backtracking does not
dominate the average cost of the algorithm. Otherwise, a
planning problem is intractable. These subgoals are called
laboriously serializable subgoals.

A correct ordering among subgoals is critical for the
performance of planning algorithms. Thus, the study of
subgoal correlations has drawn the attention of the planning
community. One school of thought attempts to pre-process the
control knowledge gained from the specifications of operators
and goals to construct a total order on a group of subgoals,
before the search begins [4, 6, 10, 15]. A second approach
includes online ordering methods that focus on detecting and
resolving goal condition conflicts from an existing partially
ordered plan [5, 8].

III. PLANNING WITH RECURSIVE SUBGOALS
In this paper, we introduce a strategy of dividing planning

goals into a sequence of serializable subgoals. Informally, our
strategy is to decompose a planning problem recursively into a
set of subgoals and then to define a strict ordering of these
subgoals.

A. State Space Graph
We begin our formal description of recursive subgoals with

the introduction of the state space graph of a planning
problem.

Definition 2: Let S = {s1, s2, …} be a set of all possible
states of a planning system. Let O = {o1, o2, …} be a set of
operators defined for a planning problem. The goal of a
planning problem can be represented by G as a set of atomic
conditions (see also Definition 1 in Section 1).

Definition 3: The state space of a planning problem can be
represented by a directed graph GR = {V, E, fe, sinit, Sgoal, fs,
fo}, where

1. V = {v1, v2, …}, a set of vertices.
2. E = {e1, e2, …}, a set of directed edges.
3. Every edge ei connects a pair of vertices {vj , vk}, where

vj and vk are source and destination vertices of an edge,

respectively. fe:E→V is a function that maps an edge to its
source and destination vertices.

4. sinit is the initial state of a planning problem. sinit ∈S.
5. Sgoal is the set of all system states that meet every

condition in G. Sgoal ⊆ S.
6. fs: V→S is a function that maps every vertex vi in V to a

distinct system state si that can be reached from the initial state
sinit. fs(vi) = si. fs(V) ⊆ S. A planning problem is solvable if
Sgoal ∩ fs(V) ≠ φ . For the rest of the notation in Section III, we
assume that a planning problem is solvable.

7. Edges represent the transitions between two system states
in fs(V). fo:E→O is a function that maps every edge ei in E to
an operator oi. This function does not enforce a one-to-one
mapping, i.e., ∃ i and j, where i ≠ j and fo(ei) = fo(ej).

B. Subgoals
Definition 4: Let GOAL = {g1, g2, …, gn} be a set of

subgoals defined for a planning problem. Any subgoal gi of a
planning problem can be represented by Pi as a set of atomic
conditions with the following four properties:

1. Pi ⊆ G. Subgoals are easier to reach than the goal of a
problem because the conditions for subgoals are subsets of the
conditions for the problem goal.

2. G = U Pi, 1 ≤ i ≤ n. The problem goal can be reached
when we reach a state that meets the conditions for all the
subgoals.

3. Let fgs:GOAL→S be a function mapping a subgoal gi to a
set of all states that can be reached from sinit and meet the
conditions for gi. Clearly, Sgoal ⊆ fgs(gi) ⊆ fs(V). If Pi = φ ,
fgs(gi) = fs(V); if Pi = G, fgs(gi) = Sgoal.

4. Let GRi be the state space graph that consists of all states
in fgs(gi) and transitions between the states. GRi is a subgraph
of GR.

C. Serializable Subgoals
According to Korf [11], a set of subgoals is serializable if a

specific ordering among them exists. Although an optimal
solution is not guaranteed to be found, this ordering ensures
that a problem is always solvable by following the sequence
of the subgoals without ever violating any previously reached
subgoals. We use this definition and give a formal definition
of serializable subgoals based on the state space graph of a
planning problem.

Definition 5: A set of subgoals in GOAL is serializable if it
has the following properties:

1. GOAL contains an ordered list of subgoals. g1 is the first
subgoal and gn is the last subgoal. The search for a solution
follows the order of the subgoals.

2. Pn = G and fgs(gn) = Sgoal. That is, the set of conditions for
the last subgoal is the same as the goal of the problem. If the
last subgoal is reached, the problem is solved.

3. P1 ⊆ P2 ⊆ … ⊆ Pn-1 ⊆ Pn. That is, the set of
conditions for a subgoal is a subset of the conditions for all
subsequent subgoals.

4. fgs(gn) ⊆ fgs(gn-1) ⊆ … ⊆ fgs(g2) ⊆ fgs(g1). That is, the
set of all states that satisfy the conditions for a subgoal is a

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:6, 2008

2170

subset of all states that satisfy the conditions for every
preceding subgoal. This property indicates that the state space
of a search algorithm can be reduced after reaching
intermediate subgoals.

5. Let GRi = {Vi, Ei, fi, sinit, Sgoal, fs, fo} be the state space
graph of subgoal i, Vn ⊆ Vn-1 ⊆ Vn-2 … ⊆ V1 ⊆ V. As a
result, GRi is a subgraph of GRj, for every i and j, where 1 ≤ j
≤ i ≤ n.

6. Define Adjacent(vi, vj, GR) = true if there exists an edge
in G that connects vj from vi. Define Connect(vi, vj, GR) = true
if Adjacent(vi, vj, GR) = true or, ∃ vk, Connect(vi, vk, GR) =
true and Adjacent(vk, vj, GR) = true. In other words,
Connect(vi, vj, GR) = true if and only if there is a sequence of
edges that connects vertex vj from vi.

If a sequence of subgoals is serializable, a graph GRi that
corresponds to any subgoal gi has the following property: for
any vj ∈ Vi, ∃ vk ∈ Vi+1, Connect(vj, vk, GRi) = true. That is,
every state that meets the conditions of subgoal gi can reach at
least one state within the state space of subgoal gi+1 without
violating the conditions set for subgoal gi. Therefore,
serializable subgoals ensure that a solution can be found if it
exists.

D. Recursive Subgoals
The recursive subgoal strategy offers a simple and effective

solution to the formation and ordering of subgoals from a
single goal. This strategy divides the goal of a planning
problem recursively into a sequence of subgoals. These
subgoals, which will be shown by an example in Section V,
have the following property: reaching one subgoal results in a
reduction of a problem to the same problem at a smaller scale.
A formal definition of recursive subgoals is given below.

Definition 6: A sequence of subgoals is recursive if it

meets the following condition:
Let PR be a set of the same problems of different scales. PR =
{PR1, PR2, … , PRm}. PRi is smaller than PRi’, if i < i’. Then
reaching subgoal gj in PRi and reaching subgoal gj+1 in PRi+1
are essentially the same problem for 1 ≤ j ≤ i < m. Let GRi,j be
the state space graph corresponding to subgoal gj of PRi. Then
GRi,j ≅ GRi+1,,j+1; i.e., GRi,j and GRi+1,,j+1 are isomorphic.

The division of recursive subgoals does not guarantee
serializability among subgoals. We consider three different
scenarios as to the applicability of this approach.

1. If a solution exists in any configuration of problems (i.e.,
any given initial and goal states for a problem) at any scale,
the division of recursive subgoals always preserves the
subgoal serializability. An example of a domain belonging to
this category is the Tower of Hanoi [1], in which any two
configurations are reachable from each other.

2. If a solution does not always exist in any configuration of
a problem at any scale, but reaching one recursive subgoal
never leads a problem at a smaller scale to an unsolvable
configuration, we can still preserve the subgoal serializability
on this problem. We show in Section V that the Sliding-tile
puzzle falls into this category.

3. Recursive subgoals are non-serializable if we cannot
avoid the situation of backtracking any previous recursive
goals during the search for a complete solution.

IV. THE RECURSIVE GA-BASED PLANNING ALGORITHM
The recursive planning heuristic is incorporated into the

genetic-based planning algorithm. This algorithm differs from
the traditional GA approaches in two aspects. First, operators
are encoded as floating-point numbers to eliminate invalid
operators in a plan. Second, the search process is divided into
multiple phases, with each phase an independent GA run.
Thus, we can build the solutions incrementally by combining
the solutions found in each individual phase. In addition, the
fitness of a solution is evaluated with two independent
aspects: the goal fitness evaluates the quality of a plan (how
well the plan reaches goal specifications); the cost fitness
evaluates the efficiency of a plan. A detail description of this
planning algorithm can be found in [17].

If the goal of a planning problem is divided into recursive
subgoals, we can apply a multi-phase GA to search for
solutions to reach every subgoal. The number of necessary
phases to reach a subgoal depends on the difficulty of
subgoals. Only when a subgoal is reached in a phase can GA
proceed to search for the next subgoal in subsequent phases.
The final solution is the concatenation of the solutions to all
subgoals that have been attempted in a single GA run. The
following pseudo code illustrates the search procedure of this
algorithm.

(1) Start GA. Initialize population.
(2) Set the first subgoal of the problem as the current search

goal.
(3) While the specified number of phases are not finished

and the final goal is not reached, do
(a) While the specified number of generations for a phase

are not finished, do
(i) Evaluate each individual in the population.
(ii) Select individuals for the next generation.
(iii) Perform crossover and mutation.
(iv) Replace old population with new population.

(b) Select the best solution for this phase and keep it.
(c) If the current subgoal is reached, set the next subgoal

as the current search goal.
(d) Randomly initialize population and start the next

phase. The search starts from the final state of the best
solution in the previous phase.

(4) Construct the final solution by concatenating the best
solutions from all phases.

V. CASE STUDY: THE SLIDING-TILE PUZZLE
Sliding-tile puzzles consist of a number of moving blocks

and a board on which the blocks can slide. Such problems are
sometimes used in AI textbooks to illustrate heuristic search
methods. For example, Russell and Norvig [16] discuss the
4×4 Sliding-tile puzzle shown in Fig. 1.

Given an initial configuration, say the one in Fig. 1(a), the
aim is to reach the goal configuration in Fig. 1(b) by sliding
the blocks without lifting them from the board. Solutions do
not exist for every possible combination of initial and goal
configurations. Johnson and Story show that a solution exists
only when the initial configuration is an even permutation of
the goal configuration [9].

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:6, 2008

2171

Fig. 1 The initial and goal configurations of a 4× 4 Sliding-tile
puzzle (a) The initial configuration. (b) The goal configuration

There have been some important studies on applying

domain-specific knowledge to the Sliding-tile puzzles. Korf
and Taylor introduce several search heuristics [14] that are
useful for defining an accurate admissible heuristic function in
the IDA* search algorithm. The heuristics used include the
linear conflict heuristic, last moves heuristic, and corner-tile
heuristic. These heuristics are shown to improve the search
performance of the IDA* search algorithm. The computational
costs of their algorithm, however, seem to be heavily
dependent on the initial state of the problem. The number of
nodes that are generated during a search can differ as many as
100 times for the same size but different configurations of the
problem. The execution time on the 5×5 Sliding-tile puzzles
can be as long as three months. Korf and Felner [13] use a
disjoint pattern database heuristic in some planning domains
including the Sliding-tile puzzles. With this heuristic, the
subgoals are first split into disjoint subsets such that an
operator affects only the subgoals in one subset. The values
obtained for each subset are then combined to form the result
of the heuristic evaluation function. Their approach is
guaranteed to find optimal solutions and has been applied
successfully to different instances of 5×5 Sliding-tile puzzles.
The results indicate that this heuristic improves the search
efficiency by decreasing the number of nodes traversed during
the search. Nevertheless, the computational cost of this
approach still increases very quickly with the increase in
problem size. Problems larger than the 5×5 puzzle were not
tested due to the high computational cost [12].

Fig. 2 shows one approach to create recursive subgoals for
solving a 4×4 Sliding-tile puzzle. The first subgoal is to have
the tiles located in the fourth row and fourth column in their
desired positions, see Fig. 2(a). After the first subgoal is
reached, the problem is reduced to a 3×3 Sliding-tile puzzle.
Then we work on the second subgoal: moving the remaining
tiles in the third row and third column to the correct positions,
shown in Fig. 2(b). After the second subgoal is reached, the
problem is reduced to a 2× 2 Sliding-tile puzzle, which is very
easy to solve. The puzzle is solved after the third subgoal is
reached, as shown in Fig. 2(c).

Johnson and Story also show that if we move any tiles in
the Sliding-tile puzzle, we can always maintain the parity of
the permutation between the current configuration and the
goal configuration [9]. If in the original problem the initial
configuration is an even permutation of the goal configuration
(i.e., the original problem is solvable), after reaching one
recursive subgoal we can always find an even permutation
between the current configuration and the goal configuration
in the reduced problem. Hence, the reduced problem is
solvable as long as the original one is solvable. The goal

serializability is preserved in the Sliding-tile puzzle because
we are able to reach a subgoal without moving the tiles that
have been set in place in previous subgoals.

Fig. 2 The steps for solving a 4× 4 Sliding-tile puzzle using the
recursive subgoal strategy. (a) The first subgoal. (b) The second

subgoal. (c) The third subgoal

The recursive strategy can be applied to any possible
configuration of a Sliding-tile puzzle. In a goal configuration,
the empty tile can be located at any position. If the empty tile
is already in one of the corners, we choose those tiles in the
row and column that are farthest to that corner to be in the
first subgoal. If the empty tile is not in a corner, we first move
it to the nearest corner. The number of moves depends on how
far a tile is from the nearest corner. In a n×n Sliding-tile
puzzle, if n is odd, at most n-1 moves are needed; if n is even,
at most n-2 moves are needed. After the relocation of the
empty tile, the new configuration replaces the original one as
the goal configuration of the problem. As every operator in
the Sliding-tile puzzle is reversible, a reversed sequence of the
operators that move the empty tile to the corner will lead the
system from the new goal configuration to the original one.
The final solution is the solution to the new goal configuration
appended by this reversed sequence of operators. Fig. 3(a) and
Fig. 3(b) show an example of changing the goal configuration
in a 4×4 Sliding-tile puzzle. In our experiments, the empty
tile is always in top-left corner in the goal configuration.

Fig. 3 An example showing the reconfiguration of problem goals for
the recursive subgoal strategy (a) The original goal configuration. (b)
The new goal configuration in which the empty tile is moved to the

nearest corner

VI. EXPERIMENTAL RESULTS
In this section, we test our strategy on the n×n Sliding-tile

puzzle discussed in Section V. We evaluate the effectiveness
of the recursive subgoal strategy by comparing the
performance of the genetic-based planning approach with and
without the subgoal strategy incorporated (also called single
goal approach). Table I shows the parameters for this
experiment.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:6, 2008

2172

TABLE I
PARAMETER SETTINGS USED IN THE EXPERIMENT

Parameter Value
Population Size 200
Crossover Rate 0.9
Mutation Rate 0.01

Selection Scheme Tournament
Tournament Size 2

Number of Generations in Each
Phase 100

In the single-goal approach, the goal fitness is evaluated

with the Manhattan distance of all n2 -1 tiles between the final
state of the plan and the goal configuration. The smaller the
distance, the higher the goal fitness. In the recursive subgoal
approach, we decompose the n×n Sliding-tile puzzle into n-1
subgoals, {g1, g2, …, gn_1}. After the first subgoal is reached,
the problem is reduced to a (n - 1)× (n - 1) Sliding-tile puzzle.
For every subgoal gi, we focus on the 2× (n - i) + 1 tiles that
need to be moved to the correct positions. The goal fitness is
evaluated as the Manhattan distance between the final state
and the goal configuration for the 2× (n - i) + 1 tiles.

We test both the recursive subgoal strategy and the single-
goal approach on 4×4, 5×5, 6×6, 7×7, and 8×8 Sliding-tile
puzzles. For each problem size, we run both approaches 50
times. In a 4×4 problem, each run has up to 15 phases. We
double the number of phases each time the problem size
increases by one scale, but use the same population size of
200 for all problem sizes.

The experimental results show that the single-goal approach
finds solutions in 10 out of 50 runs on the 4×4 sliding-tile
problem and none for any larger problems. Table II shows the
number of runs that allow us to reach every subgoal for
experiments where the recursive subgoal strategy is
incorporated. The recursive subgoal strategy significantly
improves the search performance. It finds solutions to the
4×4 Sliding-tile puzzle in 34 out of 50 runs and the
performance even improves as the problem size increases
because more phases are allowed for all subgoals. Table III
reports the average number of phases needed to reach each
subgoal from those runs that find a valid solution. The result
indicates that reaching a subgoal does not make the
subsequent subgoals more difficult. We observe that the
number of phases needed to reach subgoal gi is very close to
the number of phases needed to reach subgoal gi+1 in the next
larger problem.

TABLE II
THE NUMBER OF RUNS OUT OF 50 RUNS THAT THE RECURSIVE SUBGOAL

STRATEGY CAN REACH EACH SUBGOAL G1 - G7
Problem Size 4× 4 5× 5 6× 6 7× 7 8×8

g1 44 50 50 50 50
g2 37 50 50 50 50
g3 35 50 49 50 50
g4 N.A. 50 49 50 50
g5 N.A. N.A. 49 50 50
g6 N.A. N.A. N.A. 50 50
g7 N.A. N.A. N.A. N.A. 50

TABLE III
THE AVERAGE NUMBER OF PHASES THAT THE RECURSIVE SUBGOAL

STRATEGY NEEDS TO REACH A SUBGOAL FROM ITS PREVIOUS SUBGOAL
Problem Size 4×4 5×5 6×6 7×7 8×8

g1 6.86 9.34 18.50 28.56 40.74
From g1 to g2 1.36 5.02 8.32 16.14 23.00
From g2 to g3 1.07 2.34 5.65 8.74 12.96
From g3 to g4 N.A. 1.00 2.12 5.34 10.68
From g4 to g5 N.A. N.A. 1.00 2.70 5.64
From g5 to g6 N.A. N.A. N.A. 1.00 2.32
From g6 to g7 N.A. N.A. N.A. N.A. 1.00

Next, we study the effect of the parameters on the

performance of the approach. We use the parameter settings in
Table I as the baseline settings and vary the population size,
the crossover rate, and the mutation rate separately. We keep
the other parameters the same as the baseline settings while
varying each of the above parameters. We test problem sizes
from 4×4 to 8×8 Sliding-tile puzzles, run each test case 50
times, and calculate the number of successful runs (i.e., the
runs that find valid solutions) and the average number of
phases needed in successful runs. We also evaluate the
efficiency of the approach by calculating the average
computational time of 50 runs in each case.

Fig. 4 and Fig. 5 show the performance comparison in cases
with different population sizes. The results indicate that
noticeable performance gains can be achieved with larger
populations, which give the GA better sampling of the search
space. A population size of 100 is not sufficient to produce
competitive results as compared to larger populations. The
runs with a population size of 400 need fewer phases to find
solutions than runs with the baseline population of 200. A
large population, however, incurs higher computational cost.
Fig. 6 shows the average execution time of 50 runs in each
test case. Execution time increases as the population size
increases. The only exception is in runs on the 8×8 Sliding-
tile puzzles, where the execution time of GA runs using a
population size of 200 is shorter than those using a population
size of 100.

0

10

20

30

40

50

60

4*
4

/ 1
00

4*
4

/ 2
00

4*
4

/ 4
00

5*
5

/ 1
00

5*
5

/ 2
00

5*
5

/ 4
00

6*
6

/ 1
00

6*
6

/ 2
00

6*
6

/ 4
00

7*
7

/ 1
00

7*
7

/ 2
00

7*
7

/ 4
00

8*
8

/ 1
00

8*
8

/ 2
00

8*
8

/ 4
00

N
um

be
r

of
 S

uc
ce

ss
ul

 R
un

s

Test Case / Population Size

Fig. 4 The number of successful runs (out of 50) for population size
from 100 to 400

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:6, 2008

2173

0

50

100

150

200

4*
4

/ 1
00

4*
4

/ 2
00

4*
4

/ 4
00

5*
5

/ 1
00

5*
5

/ 2
00

5*
5

/ 4
00

6*
6

/ 1
00

6*
6

/ 2
00

6*
6

/ 4
00

7*
7

/ 1
00

7*
7

/ 2
00

7*
7

/ 4
00

8*
8

/ 1
00

8*
8

/ 2
00

8*
8

/ 4
00

A
ve

ra
ge

 N
um

be
r

of
 P

ha
se

s

Test Case / Population Size
Fig. 5 The average number of phases needed to find a solution for

successful runs with population size varying from 100 to 400

0

200

400

600

800

1000

4*
4

/ 1
00

4*
4

/ 2
00

4*
4

/ 4
00

5*
5

/ 1
00

5*
5

/ 2
00

5*
5

/ 4
00

6*
6

/ 1
00

6*
6

/ 2
00

6*
6

/ 4
00

7*
7

/ 1
00

7*
7

/ 2
00

7*
7

/ 4
00

8*
8

/ 1
00

8*
8

/ 2
00

8*
8

/ 4
00A

ve
ra

ge
 E

xe
cu

tio
n

T
im

e
(S

ec
on

ds
)

Test Case / Population Size
Fig. 6 The average execution time (of 50 runs) for population size

varying from 100 to 400

Fig. 7 and Fig. 8 show the performance comparison in cases
with different crossover rates. We test crossover rate of 0.5,
0.8, and 1.0 as well as the baseline settings of 0.9. The results
indicate that varying the crossover has little effect on the
search performance.

0

10

20

30

40

50

60

4*
4

/ 0
.5

4*
4

/ 0
.8

4*
4

/ 0
.9

4*
4

/ 1
.0

5*
5

/ 0
.5

5*
5

/ 0
.8

5*
5

/ 0
.9

5*
5

/ 1
.0

6*
6

/ 0
.5

6*
6

/ 0
.8

6*
6

/ 0
.9

6*
6

/ 1
.0

7*
7

/ 0
.5

7*
7

/ 0
.8

7*
7

/ 0
.9

7*
7

/ 1
.0

8*
8

/ 0
.5

8*
8

/ 0
.8

8*
8

/ 0
.9

8*
8

/ 1
.0

N
um

be
r

of
 S

uc
ce

ss
ul

 R
un

s

Test Case / Crossover Rate
Fig. 7 The number of successful runs (out of 50 runs) for crossover

rate varying from 0.5 to 1.0

0

20

40

60

80

100

120

140

4*
4

/ 0
.5

4*
4

/ 0
.8

4*
4

/ 0
.9

4*
4

/ 1
.0

5*
5

/ 0
.5

5*
5

/ 0
.8

5*
5

/ 0
.9

5*
5

/ 1
.0

6*
6

/ 0
.5

6*
6

/ 0
.8

6*
6

/ 0
.9

6*
6

/ 1
.0

7*
7

/ 0
.5

7*
7

/ 0
.8

7*
7

/ 0
.9

7*
7

/ 1
.0

8*
8

/ 0
.5

8*
8

/ 0
.8

8*
8

/ 0
.9

8*
8

/ 1
.0

A
ve

ra
ge

 N
um

be
r

of
 P

ha
se

s

Test Case / Crossover Rate
Fig. 8 The average number of phases needed to find a solution for

successful runs with crossover rate varying from 0.5 to 1.0

Fig. 9 and Fig. 10 show the performance comparison in

cases with varying mutation rates. A lower mutation rate
(0.005) and a higher mutation rate (0.05) in addition to the
baseline settings are tested. All test cases exhibit consistent
search results, which indicate that the mutation rate has little
effect on the search performance. We suspect the reason is
that the crossover method applied in this approach is very
disruptive and it already produces ample opportunities for
exploring the search space. As a result, the usefulness of a
mutation operator is significantly reduced.

0

10

20

30

40

50

60

4*
4

/ 0
.0

05
4*

4
/ 0

.0
1

4*
4

/ 0
.0

5

5*
5

/ 0
.0

05
5*

5
/ 0

.0
1

5*
5

/ 0
.0

5

6*
6

/ 0
.0

05
6*

6
/ 0

.0
1

6*
6

/ 0
.0

5

7*
7

/ 0
.0

05
7*

7
/ 0

.0
1

7*
7

/ 0
.0

5

8*
8

/ 0
.0

05
8*

8
/ 0

.0
1

8*
8

/ 0
.0

5

N
um

be
r

of
 S

uc
ce

ss
ul

 R
un

s

Test Case / Mutation Rate
Fig. 9 The number of successful runs (out of 50 runs) for mutation

rate varying from 0.005 to 0.05

0

20

40

60

80

100

120

140

4*
4

/ 0
.0

05
4*

4
/ 0

.0
1

4*
4

/ 0
.0

5

5*
5

/ 0
.0

05
5*

5
/ 0

.0
1

5*
5

/ 0
.0

5

6*
6

/ 0
.0

05
6*

6
/ 0

.0
1

6*
6

/ 0
.0

5

7*
7

/ 0
.0

05
7*

7
/ 0

.0
1

7*
7

/ 0
.0

5

8*
8

/ 0
.0

05
8*

8
/ 0

.0
1

8*
8

/ 0
.0

5

A
ve

ra
ge

 N
um

be
r

of
 P

ha
se

s

Test Case / Mutation Rate
Fig. 10 The average number of phases needed to find a solution for

successful runs with mutation rate varying from 0.005 to 0.05

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:6, 2008

2174

VII. CONCLUSION AND FUTURE WORK
In this paper, we introduce a search strategy for planning

problems with conjunctive goals and combine this search
strategy with a novel GA-based planning algorithm. Our
strategy transforms the goal of a planning problem into a
sequence of recursive subgoals. As a result, the search for a
complete solution consists of a number of independent stages.
After reaching a subgoal, the problem is reduced to a similar
problem but at a smaller scale. This strategy is applicable to a
larger class of problems characterized by the fact that the
construction of recursive subgoals guarantees the
serializability of the subgoals. The experimental results on the
Sliding-tile puzzle indicate that, although the recursive
subgoal strategy may not find optimal solutions, it is able to
achieve better search performance than the traditional single-
goal planning approach and solve larger instances of problems
than existing domain-specific planning approaches. Additional
experiments on the GA parameters reveal that the population
size has much stronger influence on the performance of the
search than crossover and mutation rates have. A large
population improves the quality of search but it also results in
higher execution time.

Although we identify three classes of planning domains
relative to the applicability of this strategy, a crisp criterion to
decide if our strategy is applicable for a given problem proves
to be a formidable task. It is also very difficult to define the
concept of “similar” planning problems. Informally, we say
that a 5× 5 sliding block puzzle is reduced to a 4× 4 one and it
is intuitively clear why these problems are similar, but
formalizing this concept is hard. Our future work will address
these open problems.

VIII. ACKNOWLEDGMENT
This research was supported in part by National Science

Foundation grants MCB9527131, DBI0296035,
ACI0296035, and EIA0296179, and the Colorado State
University George T. Abell Endowment.

REFERENCES
[1] Tower of Hanoi, http://www.cut-the-knot.com/recurrence/hanoi.shtml.
[2] A. Barrett and D. S. Weld. “Characterizing subgoal interactions for

planning.” In Proc. of the 13th International Joint Conference on
Artificial Intelligence (IJCAI-93), pages 1388-1393, Chambery, France,
1993.

[3] A. Barrett and D. S. Weld. “Partial-order planning: evaluating possible
efficiency gains.” Journal of Artificial Intelligence, 67:71-112, 1994.

[4] J. Cheng and K. B. Irani. “Ordering problem subgoals.” In Proc. of the
11th International Joint Conference on Artificial Intelligence (IJCAI-
89), pages 931-936, Detroit, USA, 1989.

[5] M. Drummond and K. Currie. “Goal ordering in partially ordered plans.”
In Proc. of the 11th International Joint Conference on Artificial
Intelligence (IJCAI-89), pages 960-965, Detroit, USA, 1989.

[6] O. Etzioni. “Acquiring search-control knowledge via static analysis.”
Journal of Artificial Intelligence, 62:255-301,1993.

[7] R. Fikes and N. Nilsson. “STRIPS: A new approach to the application of
theorem proving to problem solving.” Journal of Artificial Intelligence,
2(3/4):189-208, 1971.

[8] J. Hertzberg and A. Horz. “Towards a theory of conflict detection and
resolution in nonlinear plans.” In Proc. of the 11th International Joint
Conference on Artificial Intelligence (IJCAI-89), pages 937-942,
Detroit, USA, 1989.

[9] W. W. Johnson and W. E. Story. “Notes on the ‘15’ puzzle.” American
Journal of Mathematics, 2(4):397-404, 1879.

[10] J. Koehler and J. Hoffmann. “Planning with goal agendas.” Technical
Report 110, Institute for Computer Science, Albert Ludwigs University,
Freiburg, Germany, 1998.

[11] R. E. Korf. “Planning as search: A quantitative approach.” Journal of
Artificial Intelligence, 33:65-88, 1987.

[12] R. E. Korf, personal communication, 2003.
[13] R. E. Korf and A. Felner. “Disjoint pattern database heuristics.” Journal

of Artificial Intelligence, 134:9–22, 2002.
[14] R. E. Korf and L. A. Taylor. “Finding optimal solutions to the twenty-

four puzzle.” In Proc. of the Thirteenth National Conference on
Artificial Intelligence (AAAI 96), pages 1202–1207, Portland, OR,
1996.

[15] F. Lin. “An ordering on subgoals for planning.” Annals of Mathematics
and Artificial Intelligence, 21(2-4):321-342, 1997.

[16] S. J. Russell and P. Norvig. “Artificial Intelligence: A Modern
Approach.” Prentice Hall, Upper Saddle River, NJ, 1995.

[17] H. Yu, D. C. Marinescu, A. S.Wu, and H. J. Siegel. “A genetic approach
to planning in heterogeneous computing environments.” In the 12th
Heterogeneous Computing Workshop (HCW 2003), CD-ROM Proc. of
the 17th International Parallel and Distributed Processing Symposium
(IPDPS 2003). IEEE Computer Society Press, Los Alamitos, CA, ISBN
0-7695-1926-1, 2003.

