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Abstract—In this paper, we introduce an effective strategy for 

subgoal division and ordering based upon recursive subgoals and 
combine this strategy with a genetic-based planning approach. This 
strategy can be applied to domains with conjunctive goals. The main 
idea is to recursively decompose a goal into a set of serializable 
subgoals and to specify a strict ordering among the subgoals. 
Empirical results show that the recursive subgoal strategy reduces the 
size of the search space and improves the quality of solutions to 
planning problems. 
 

Keywords—Planning, recursive subgoals, Sliding-tile puzzle, 
subgoal interaction, genetic algorithms.  

I. INTRODUCTION 
LANNING is an artificial intelligence (AI) problem with a 
wide range of real-world applications. Given an initial 

state, a goal specification, and a set of operators, the objective 
of planning is to construct a valid sequence of operators, or a 
plan, to reach a state that satisfies the goal specifications 
starting from the initial state of a system. 

Much effort has been devoted to building computational 
models for a variety of planning systems. Our work is based 
on STRIPS-like domains [7] in which the change of system 
state is given by the operators and their preconditions and 
postconditions. In addition, we are interested in the linear 
planning problem where solutions are represented by a total 
order of operators that must be executed sequentially to reach 
the goal. 

 
Definition 1: A Planning problem is a four-tuple 

∏ = {P, O, I, G}. 
P is a finite set of ground atomic conditions (i.e., 

elementary conditions instantiated by constants) used to define 
the system state. O = {oi}, where 1≤ i ≤ |O|, is a finite set of 
operators that can change the system state. Each operator has 
three attributes: a set of preconditions oi

pre, a set of 
postconditions oi

post, and a cost C(oi). oi
post consists of two 

disjunctive subsets: oi
post+ and oi

post-. oi
post+, called the add list, 

is a set of conditions that must be true for a system state after 
the execution of the operator; oi

post-, called the delete list, 
consists of a set of all conditions that do not hold after the 
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execution of the operator. I ⊆  P is the initial state and G ⊆  
P is the set of goal conditions. A plan Δ contains a finite 
sequence of operators. An operator may occur more than once 
in a plan. An operator is valid if and only if its preconditions 
are a subset of the current system state. A plan Δ solves an 
instance of ∏ if and only if every operator in Δ is valid and 
the result of applying these operators leads a system from state 
I to a state that satisfies all the conditions in G. 

Planning is generally more difficult than a typical search 
problem not only because it involves an extremely large 
search space but also because the existence of solutions is not 
guaranteed. In addition, the size of an optimal solution cannot 
be easily estimated. As a result, it is difficult to quantify the 
time and space complexity of planning algorithms. 

This paper presents a planning strategy called recursive 
subgoals for problems with conjunctive goals (i.e., the goal of 
problems can be expressed as the conjunction of multiple 
goals). The main idea of this strategy is to decompose the 
goals recursively into a sequence of subgoals so that reaching 
one subgoal reduces a planning problem to the same problem 
but at a smaller scale. We give a formal definition of recursive 
subgoals and incorporate this strategy with a genetic-based 
planning algorithm. Experiments on the Sliding-tile puzzle 
show that this strategy is able to significantly improve the 
performance of planning algorithms to problems in which 
recursive subgoals maintain the subgoal serializability. 

II. SUBGOAL ORDERING AND INTERACTION 
Korf presents a detailed study on the interaction of subgoals 

for a planning problem with conjunctive goals [11]. He 
classifies three different types of interactions between 
subgoals: independent subgoals, serializable subgoals, and 
non-serializable subgoals. If a set of subgoals is independent, 
reaching any arbitrary subgoal does not affect the difficulty of 
reaching the rest of the subgoals. Problems with independent 
subgoals are easy to solve because we can reach the problem 
goal by approaching every subgoal individually. As a result, 
the cost of the search is the total amount of cost devoted to 
every individual subgoal. This type of interaction, however, 
rarely occurs in planning problems. In some planning 
problems, it is possible to specify an ordering of the subgoals 
that have the following property: every subgoal can be 
reached without violating any subgoal conditions that have 
been met previously during the search. Such subgoals are 
called serializable subgoals. The search becomes easier if we 
are able to recognize this type of subgoal correlation and 
specify a serializable ordering. On the other hand, if such an 
ordering does not exist among the subgoals, the subgoals are 
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called non-serializable subgoals. There is no universal method 
of dividing and ordering subgoals into serializable subgoals. 
In addition, proving the serializability of a sequence of 
subgoals is as difficult as proving the existence of solutions 
for a planning problem [11]. Therefore, Korf's classification 
of subgoal interactions is not appropriate for predicting the 
difficulty of a planning problem. 

Barrett and Weld [2, 3] extend the classification of 
serializable subgoals based on the probability of generating a 
sequence of serializable subgoals from a randomly ordered set 
of subgoals. They define trivially serializable subgoals for 
those subgoals that are always serializable given any possible 
sequences. If a set of subgoals is not trivially serializable, 
violation of previously met goal conditions might occur 
during the search for the complete solution. As the cost of 
backtracking the previous subgoals is exponentially high, a 
planning problem is tractable only if the probability of a 
random sequence of subgoals being non-serializable is 
sufficiently low so that the cost for backtracking does not 
dominate the average cost of the algorithm. Otherwise, a 
planning problem is intractable. These subgoals are called 
laboriously serializable subgoals. 

A correct ordering among subgoals is critical for the 
performance of planning algorithms. Thus, the study of 
subgoal correlations has drawn the attention of the planning 
community. One school of thought attempts to pre-process the 
control knowledge gained from the specifications of operators 
and goals to construct a total order on a group of subgoals, 
before the search begins [4, 6, 10, 15]. A second approach 
includes online ordering methods that focus on detecting and 
resolving goal condition conflicts from an existing partially 
ordered plan [5, 8]. 

III. PLANNING WITH RECURSIVE SUBGOALS 
In this paper, we introduce a strategy of dividing planning 

goals into a sequence of serializable subgoals. Informally, our 
strategy is to decompose a planning problem recursively into a 
set of subgoals and then to define a strict ordering of these 
subgoals. 

A. State Space Graph 
We begin our formal description of recursive subgoals with 

the introduction of the state space graph of a planning 
problem. 
 

Definition 2: Let S = {s1, s2, …} be a set of all possible 
states of a planning system. Let O = {o1, o2, …} be a set of 
operators defined for a planning problem. The goal of a 
planning problem can be represented by G as a set of atomic 
conditions (see also Definition 1 in Section 1). 
 

Definition 3: The state space of a planning problem can be 
represented by a directed graph GR = {V, E, fe, sinit, Sgoal, fs, 
fo}, where 

1. V = {v1, v2, …}, a set of vertices. 
2. E = {e1, e2, …}, a set of directed edges. 
3. Every edge ei connects a pair of vertices {vj , vk}, where 

vj and vk are source and destination vertices of an edge, 

respectively. fe:E→V is a function that maps an edge to its 
source and destination vertices. 

4. sinit is the initial state of a planning problem. sinit ∈S. 
5. Sgoal is the set of all system states that meet every 

condition in G. Sgoal ⊆  S. 
6. fs: V→S is a function that maps every vertex vi in V to a 

distinct system state si that can be reached from the initial state 
sinit. fs(vi) = si. fs(V) ⊆  S. A planning problem is solvable if 
Sgoal ∩ fs(V) ≠ φ . For the rest of the notation in Section III, we 
assume that a planning problem is solvable. 

7. Edges represent the transitions between two system states 
in fs(V). fo:E→O is a function that maps every edge ei in E to 
an operator oi. This function does not enforce a one-to-one 
mapping, i.e., ∃ i and j, where i ≠ j and fo(ei) = fo(ej). 

B. Subgoals 
Definition 4: Let GOAL = {g1, g2, …, gn} be a set of 

subgoals defined for a planning problem. Any subgoal gi of a 
planning problem can be represented by Pi as a set of atomic 
conditions with the following four properties: 

1. Pi ⊆ G. Subgoals are easier to reach than the goal of a 
problem because the conditions for subgoals are subsets of the 
conditions for the problem goal. 

2. G = U Pi, 1 ≤ i ≤ n. The problem goal can be reached 
when we reach a state that meets the conditions for all the 
subgoals. 

3. Let fgs:GOAL→S be a function mapping a subgoal gi to a 
set of all states that can be reached from sinit and meet the 
conditions for gi. Clearly, Sgoal ⊆  fgs(gi) ⊆  fs(V). If Pi = φ , 
fgs(gi) = fs(V); if Pi = G, fgs(gi) = Sgoal. 

4. Let GRi be the state space graph that consists of all states 
in fgs(gi) and transitions between the states. GRi is a subgraph 
of GR. 

C. Serializable Subgoals 
According to Korf [11], a set of subgoals is serializable if a 

specific ordering among them exists. Although an optimal 
solution is not guaranteed to be found, this ordering ensures 
that a problem is always solvable by following the sequence 
of the subgoals without ever violating any previously reached 
subgoals. We use this definition and give a formal definition 
of serializable subgoals based on the state space graph of a 
planning problem. 
 

Definition 5: A set of subgoals in GOAL is serializable if it 
has the following properties: 

1. GOAL contains an ordered list of subgoals. g1 is the first 
subgoal and gn is the last subgoal. The search for a solution 
follows the order of the subgoals. 

2. Pn = G and fgs(gn) = Sgoal. That is, the set of conditions for 
the last subgoal is the same as the goal of the problem. If the 
last subgoal is reached, the problem is solved. 

3. P1 ⊆  P2 ⊆  … ⊆  Pn-1 ⊆  Pn. That is, the set of 
conditions for a subgoal is a subset of the conditions for all 
subsequent subgoals. 

4. fgs(gn) ⊆  fgs(gn-1) ⊆  … ⊆  fgs(g2) ⊆  fgs(g1). That is, the 
set of all states that satisfy the conditions for a subgoal is a 
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subset of all states that satisfy the conditions for every 
preceding subgoal. This property indicates that the state space 
of a search algorithm can be reduced after reaching 
intermediate subgoals. 

5. Let GRi = {Vi, Ei, fi, sinit, Sgoal, fs, fo} be the state space 
graph of subgoal i, Vn ⊆  Vn-1 ⊆  Vn-2 … ⊆  V1 ⊆  V. As a 
result, GRi is a subgraph of GRj, for every i and j, where 1 ≤ j 
≤ i ≤ n. 

6. Define Adjacent(vi, vj, GR) = true if there exists an edge 
in G that connects vj from vi. Define Connect(vi, vj, GR) = true 
if Adjacent(vi, vj, GR) = true or, ∃ vk, Connect(vi, vk, GR) = 
true and Adjacent(vk, vj, GR) = true. In other words, 
Connect(vi, vj, GR) = true if and only if there is a sequence of 
edges that connects vertex vj from vi. 

If a sequence of subgoals is serializable, a graph GRi that 
corresponds to any subgoal gi has the following property: for 
any vj ∈  Vi, ∃ vk ∈  Vi+1, Connect(vj, vk, GRi) = true. That is, 
every state that meets the conditions of subgoal gi can reach at 
least one state within the state space of subgoal gi+1 without 
violating the conditions set for subgoal gi. Therefore, 
serializable subgoals ensure that a solution can be found if it 
exists. 

D. Recursive Subgoals 
The recursive subgoal strategy offers a simple and effective 

solution to the formation and ordering of subgoals from a 
single goal. This strategy divides the goal of a planning 
problem recursively into a sequence of subgoals. These 
subgoals, which will be shown by an example in Section V, 
have the following property: reaching one subgoal results in a 
reduction of a problem to the same problem at a smaller scale. 
A formal definition of recursive subgoals is given below. 

 
Definition 6: A sequence of subgoals is recursive if it 

meets the following condition: 
Let PR be a set of the same problems of different scales. PR = 
{PR1, PR2, … , PRm}. PRi is smaller than PRi’, if i < i’. Then 
reaching subgoal gj in PRi and reaching subgoal gj+1 in PRi+1 
are essentially the same problem for 1 ≤ j ≤ i < m. Let GRi,j be 
the state space graph corresponding to subgoal gj of PRi. Then 
GRi,j ≅ GRi+1,,j+1; i.e., GRi,j and GRi+1,,j+1 are isomorphic. 

The division of recursive subgoals does not guarantee 
serializability among subgoals. We consider three different 
scenarios as to the applicability of this approach. 

1. If a solution exists in any configuration of problems (i.e., 
any given initial and goal states for a problem) at any scale, 
the division of recursive subgoals always preserves the 
subgoal serializability. An example of a domain belonging to 
this category is the Tower of Hanoi [1], in which any two 
configurations are reachable from each other. 

2. If a solution does not always exist in any configuration of 
a problem at any scale, but reaching one recursive subgoal 
never leads a problem at a smaller scale to an unsolvable 
configuration, we can still preserve the subgoal serializability 
on this problem. We show in Section V that the Sliding-tile 
puzzle falls into this category. 

3. Recursive subgoals are non-serializable if we cannot 
avoid the situation of backtracking any previous recursive 
goals during the search for a complete solution. 

IV. THE RECURSIVE GA-BASED PLANNING ALGORITHM 
The recursive planning heuristic is incorporated into the 

genetic-based planning algorithm. This algorithm differs from 
the traditional GA approaches in two aspects. First, operators 
are encoded as floating-point numbers to eliminate invalid 
operators in a plan. Second, the search process is divided into 
multiple phases, with each phase an independent GA run. 
Thus, we can build the solutions incrementally by combining 
the solutions found in each individual phase. In addition, the 
fitness of a solution is evaluated with two independent 
aspects: the goal fitness evaluates the quality of a plan (how 
well the plan reaches goal specifications); the cost fitness 
evaluates the efficiency of a plan. A detail description of this 
planning algorithm can be found in [17]. 

If the goal of a planning problem is divided into recursive 
subgoals, we can apply a multi-phase GA to search for 
solutions to reach every subgoal. The number of necessary 
phases to reach a subgoal depends on the difficulty of 
subgoals. Only when a subgoal is reached in a phase can GA 
proceed to search for the next subgoal in subsequent phases. 
The final solution is the concatenation of the solutions to all 
subgoals that have been attempted in a single GA run. The 
following pseudo code illustrates the search procedure of this 
algorithm. 

(1) Start GA. Initialize population. 
(2) Set the first subgoal of the problem as the current search 

goal. 
(3) While the specified number of phases are not finished 

and the final goal is not reached, do 
(a) While the specified number of generations for a phase 

are not finished, do 
(i) Evaluate each individual in the population. 
(ii) Select individuals for the next generation. 
(iii) Perform crossover and mutation. 
(iv) Replace old population with new population. 

(b) Select the best solution for this phase and keep it. 
(c) If the current subgoal is reached, set the next subgoal 

as the current search goal. 
(d) Randomly initialize population and start the next 

phase. The search starts from the final state of the best 
solution in the previous phase. 

(4) Construct the final solution by concatenating the best 
solutions from all phases. 

V. CASE STUDY: THE SLIDING-TILE PUZZLE 
Sliding-tile puzzles consist of a number of moving blocks 

and a board on which the blocks can slide. Such problems are 
sometimes used in AI textbooks to illustrate heuristic search 
methods. For example, Russell and Norvig [16] discuss the 
4×4 Sliding-tile puzzle shown in Fig. 1. 

Given an initial configuration, say the one in Fig. 1(a), the 
aim is to reach the goal configuration in Fig. 1(b) by sliding 
the blocks without lifting them from the board. Solutions do 
not exist for every possible combination of initial and goal 
configurations. Johnson and Story show that a solution exists 
only when the initial configuration is an even permutation of 
the goal configuration [9]. 
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Fig. 1 The initial and goal configurations of a 4× 4 Sliding-tile 
puzzle (a) The initial configuration. (b) The goal configuration 

 
There have been some important studies on applying 

domain-specific knowledge to the Sliding-tile puzzles. Korf 
and Taylor introduce several search heuristics [14] that are 
useful for defining an accurate admissible heuristic function in 
the IDA* search algorithm. The heuristics used include the 
linear conflict heuristic, last moves heuristic, and corner-tile 
heuristic. These heuristics are shown to improve the search 
performance of the IDA* search algorithm. The computational 
costs of their algorithm, however, seem to be heavily 
dependent on the initial state of the problem. The number of 
nodes that are generated during a search can differ as many as 
100 times for the same size but different configurations of the 
problem. The execution time on the 5×5 Sliding-tile puzzles 
can be as long as three months. Korf and Felner [13] use a 
disjoint pattern database heuristic in some planning domains 
including the Sliding-tile puzzles. With this heuristic, the 
subgoals are first split into disjoint subsets such that an 
operator affects only the subgoals in one subset. The values 
obtained for each subset are then combined to form the result 
of the heuristic evaluation function. Their approach is 
guaranteed to find optimal solutions and has been applied 
successfully to different instances of 5×5 Sliding-tile puzzles. 
The results indicate that this heuristic improves the search 
efficiency by decreasing the number of nodes traversed during 
the search. Nevertheless, the computational cost of this 
approach still increases very quickly with the increase in 
problem size.  Problems larger than the 5×5 puzzle were not 
tested due to the high computational cost [12]. 

Fig. 2 shows one approach to create recursive subgoals for 
solving a 4×4 Sliding-tile puzzle. The first subgoal is to have 
the tiles located in the fourth row and fourth column in their 
desired positions, see Fig. 2(a). After the first subgoal is 
reached, the problem is reduced to a 3×3 Sliding-tile puzzle. 
Then we work on the second subgoal: moving the remaining 
tiles in the third row and third column to the correct positions, 
shown in Fig. 2(b). After the second subgoal is reached, the 
problem is reduced to a 2× 2 Sliding-tile puzzle, which is very 
easy to solve. The puzzle is solved after the third subgoal is 
reached, as shown in Fig. 2(c). 

Johnson and Story also show that if we move any tiles in 
the Sliding-tile puzzle, we can always maintain the parity of 
the permutation between the current configuration and the 
goal configuration [9]. If in the original problem the initial 
configuration is an even permutation of the goal configuration 
(i.e., the original problem is solvable), after reaching one 
recursive subgoal we can always find an even permutation 
between the current configuration and the goal configuration 
in the reduced problem. Hence, the reduced problem is 
solvable as long as the original one is solvable. The goal 

serializability is preserved in the Sliding-tile puzzle because 
we are able to reach a subgoal without moving the tiles that 
have been set in place in previous subgoals. 
 

Fig. 2 The steps for solving a 4× 4 Sliding-tile puzzle using the 
recursive subgoal strategy. (a) The first subgoal. (b) The second 

subgoal. (c) The third subgoal 
 

The recursive strategy can be applied to any possible 
configuration of a Sliding-tile puzzle. In a goal configuration, 
the empty tile can be located at any position. If the empty tile 
is already in one of the corners, we choose those tiles in the 
row and column that are farthest to that corner to be in the 
first subgoal. If the empty tile is not in a corner, we first move 
it to the nearest corner. The number of moves depends on how 
far a tile is from the nearest corner. In a n×n Sliding-tile 
puzzle, if n is odd, at most n-1 moves are needed; if n is even, 
at most n-2 moves are needed. After the relocation of the 
empty tile, the new configuration replaces the original one as 
the goal configuration of the problem. As every operator in 
the Sliding-tile puzzle is reversible, a reversed sequence of the 
operators that move the empty tile to the corner will lead the 
system from the new goal configuration to the original one. 
The final solution is the solution to the new goal configuration 
appended by this reversed sequence of operators. Fig. 3(a) and 
Fig. 3(b) show an example of changing the goal configuration 
in a 4×4 Sliding-tile puzzle. In our experiments, the empty 
tile is always in top-left corner in the goal configuration. 

 

 
Fig. 3 An example showing the reconfiguration of problem goals for 
the recursive subgoal strategy (a) The original goal configuration. (b) 
The new goal configuration in which the empty tile is moved to the 

nearest corner 

VI. EXPERIMENTAL RESULTS 
In this section, we test our strategy on the n×n Sliding-tile 

puzzle discussed in Section V. We evaluate the effectiveness 
of the recursive subgoal strategy by comparing the 
performance of the genetic-based planning approach with and 
without the subgoal strategy incorporated (also called single 
goal approach). Table I shows the parameters for this 
experiment. 
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TABLE I 
PARAMETER SETTINGS USED IN THE EXPERIMENT 

Parameter Value 
Population Size 200 
Crossover Rate 0.9 
Mutation Rate 0.01 

Selection Scheme Tournament 
Tournament Size 2 

Number of Generations in Each 
Phase 100 

 
In the single-goal approach, the goal fitness is evaluated 

with the Manhattan distance of all n2 -1 tiles between the final 
state of the plan and the goal configuration. The smaller the 
distance, the higher the goal fitness. In the recursive subgoal 
approach, we decompose the n×n Sliding-tile puzzle into n-1 
subgoals, {g1, g2, …, gn_1}. After the first subgoal is reached, 
the problem is reduced to a (n - 1)× (n - 1) Sliding-tile puzzle. 
For every subgoal gi, we focus on the 2× (n - i) + 1 tiles that 
need to be moved to the correct positions. The goal fitness is 
evaluated as the Manhattan distance between the final state 
and the goal configuration for the 2× (n - i) + 1 tiles. 

We test both the recursive subgoal strategy and the single-
goal approach on 4×4, 5×5, 6×6, 7×7, and 8×8 Sliding-tile 
puzzles. For each problem size, we run both approaches 50 
times. In a 4×4 problem, each run has up to 15 phases. We 
double the number of phases each time the problem size 
increases by one scale, but use the same population size of 
200 for all problem sizes. 

The experimental results show that the single-goal approach 
finds solutions in 10 out of 50 runs on the 4×4 sliding-tile 
problem and none for any larger problems. Table II shows the 
number of runs that allow us to reach every subgoal for 
experiments where the recursive subgoal strategy is 
incorporated. The recursive subgoal strategy significantly 
improves the search performance. It finds solutions to the 
4×4 Sliding-tile puzzle in 34 out of 50 runs and the 
performance even improves as the problem size increases 
because more phases are allowed for all subgoals. Table III 
reports the average number of phases needed to reach each 
subgoal from those runs that find a valid solution. The result 
indicates that reaching a subgoal does not make the 
subsequent subgoals more difficult. We observe that the 
number of phases needed to reach subgoal gi is very close to 
the number of phases needed to reach subgoal gi+1 in the next 
larger problem. 
 

TABLE II 
THE NUMBER OF RUNS OUT OF 50 RUNS THAT THE RECURSIVE SUBGOAL 

STRATEGY CAN REACH EACH SUBGOAL G1 - G7 
Problem Size 4× 4 5× 5 6× 6 7× 7 8×8 

g1 44 50 50 50 50 
g2 37 50 50 50 50 
g3 35 50 49 50 50 
g4 N.A. 50 49 50 50 
g5 N.A. N.A. 49 50 50 
g6 N.A. N.A. N.A. 50 50 
g7 N.A. N.A. N.A. N.A. 50 

 

TABLE III 
THE AVERAGE NUMBER OF PHASES THAT THE RECURSIVE SUBGOAL 

STRATEGY NEEDS TO REACH A SUBGOAL FROM  ITS PREVIOUS SUBGOAL 
Problem Size 4×4 5×5 6×6 7×7 8×8 

g1 6.86 9.34 18.50 28.56 40.74 
From g1 to g2 1.36 5.02 8.32 16.14 23.00 
From g2 to g3 1.07 2.34 5.65 8.74 12.96 
From g3 to g4 N.A. 1.00 2.12 5.34 10.68 
From g4 to g5 N.A. N.A. 1.00 2.70 5.64 
From g5 to g6 N.A. N.A. N.A. 1.00 2.32 
From g6 to g7 N.A. N.A. N.A. N.A. 1.00 
 
Next, we study the effect of the parameters on the 

performance of the approach. We use the parameter settings in 
Table I as the baseline settings and vary the population size, 
the crossover rate, and the mutation rate separately. We keep 
the other parameters the same as the baseline settings while 
varying each of the above parameters. We test problem sizes 
from 4×4 to 8×8 Sliding-tile puzzles, run each test case 50 
times, and calculate the number of successful runs (i.e., the 
runs that find valid solutions) and the average number of 
phases needed in successful runs. We also evaluate the 
efficiency of the approach by calculating the average 
computational time of 50 runs in each case. 

Fig. 4 and Fig. 5 show the performance comparison in cases 
with different population sizes. The results indicate that 
noticeable performance gains can be achieved with larger 
populations, which give the GA better sampling of the search 
space. A population size of 100 is not sufficient to produce 
competitive results as compared to larger populations. The 
runs with a population size of 400 need fewer phases to find 
solutions than runs with the baseline population of 200. A 
large population, however, incurs higher computational cost. 
Fig. 6 shows the average execution time of 50 runs in each 
test case. Execution time increases as the population size 
increases. The only exception is in runs on the 8×8 Sliding-
tile puzzles, where the execution time of GA runs using a 
population size of 200 is shorter than those using a population 
size of 100. 
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Fig. 4 The number of successful runs (out of 50) for population size 
from 100 to 400 
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Fig. 5 The average number of phases needed to find a solution for 

successful runs with population size varying from 100 to 400 
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Fig. 6 The average execution time (of 50 runs) for population size 

varying from 100 to 400 
 

Fig. 7 and Fig. 8 show the performance comparison in cases 
with different crossover rates. We test crossover rate of 0.5, 
0.8, and 1.0 as well as the baseline settings of 0.9. The results 
indicate that varying the crossover has little effect on the 
search performance. 
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Fig. 7 The number of successful runs (out of 50 runs) for crossover 

rate varying from 0.5 to 1.0 
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Fig. 8 The average number of phases needed to find a solution for 

successful runs with crossover rate varying from 0.5 to 1.0 
 
Fig. 9 and Fig. 10 show the performance comparison in 

cases with varying mutation rates. A lower mutation rate 
(0.005) and a higher mutation rate (0.05) in addition to the 
baseline settings are tested. All test cases exhibit consistent 
search results, which indicate that the mutation rate has little 
effect on the search performance. We suspect the reason is 
that the crossover method applied in this approach is very 
disruptive and it already produces ample opportunities for 
exploring the search space. As a result, the usefulness of a 
mutation operator is significantly reduced. 
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Fig. 9 The number of successful runs (out of 50 runs) for mutation 

rate varying from 0.005 to 0.05 
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Fig. 10 The average number of phases needed to find a solution for 

successful runs with mutation rate varying from 0.005 to 0.05 
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VII. CONCLUSION AND FUTURE WORK 
In this paper, we introduce a search strategy for planning 

problems with conjunctive goals and combine this search 
strategy with a novel GA-based planning algorithm. Our 
strategy transforms the goal of a planning problem into a 
sequence of recursive subgoals. As a result, the search for a 
complete solution consists of a number of independent stages. 
After reaching a subgoal, the problem is reduced to a similar 
problem but at a smaller scale. This strategy is applicable to a 
larger class of problems characterized by the fact that the 
construction of recursive subgoals guarantees the 
serializability of the subgoals. The experimental results on the 
Sliding-tile puzzle indicate that, although the recursive 
subgoal strategy may not find optimal solutions, it is able to 
achieve better search performance than the traditional single-
goal planning approach and solve larger instances of problems 
than existing domain-specific planning approaches. Additional 
experiments on the GA parameters reveal that the population 
size has much stronger influence on the performance of the 
search than crossover and mutation rates have. A large 
population improves the quality of search but it also results in 
higher execution time. 

Although we identify three classes of planning domains 
relative to the applicability of this strategy, a crisp criterion to 
decide if our strategy is applicable for a given problem proves 
to be a formidable task. It is also very difficult to define the 
concept of “similar” planning problems. Informally, we say 
that a 5× 5 sliding block puzzle is reduced to a 4× 4 one and it 
is intuitively clear why these problems are similar, but 
formalizing this concept is hard. Our future work will address 
these open problems. 
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