
International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:8, No:8, 2014

1377

Abstract—In this paper, the structural genetic algorithm is used
to optimize the neural network to control the joint movements of

robotic arm. The robotic arm has also been modeled in 3D and

simulated in real-time in MATLAB. It is found that Neural Networks

provide a simple and effective way to control the robot tasks.

Computer simulation examples are given to illustrate the significance

of this method. By combining Genetic Algorithm optimization

method and Neural Networks for the given robotic arm with 5 D.O.F.

the obtained the results shown that the base joint movements

overshooting time without controller was about 0.5 seconds, while

with Neural Network controller (optimized with Genetic Algorithm)

was about 0.2 seconds, and the population size of 150 gave best

results.

Keywords—Robotic Arm, Neural Network, Genetic Algorithm,
Optimization.

I. INTRODUCTION

TRUCTURAL genetic algorithm was first introduced in

the nineties, where the chromosomes are defined as the

hierarchical structure. Nodes keep a higher level activation

and operation of the genes, which are at a lower level.

Inactivated genes provide additional information that the

genetic algorithm can respond in a changing environment.

Structural genetic algorithm as a structural optimizer is rapidly

evolving and improving. In control applications there are two

types optimizer's of particular importance:

• Optimization of membership rules in fuzzy logic and

• Optimizing the topology of neural networks.

Fig. 1 shows how the structural genetic algorithm is used to

optimize the neural network. Chromosome is broken up into

control genes and genes connection [1].

Control bits are further divided into control bits of neural

network layers and the control bits of individual neurons in the

neural layers. If a single control bit logical value is 1, then a

neural network layer and the corresponding neuron in layer

exists, and vice versa, if the individual control bit is set to

logic 0. The value of "x" means that the value (or logical 0 or

1) is not important.

Connecting genes represent the values of the weights and

thresholds of individual neurons this neuron is associated with

pre-layer Neural Network (NN). Genetic Algorithm (GA)

optimization of both structured genes is classic.

A. Pajaziti is with the Department of Mechatronics, Faculty of Mechanical

Engineering, University of Prishtina, Prishtina, 10000 Kosovo (phone: 381-

38-554-997; fax: 381-38-554-997; e-mail: arbnor.pajaziti@uni-pr.edu).

H. Cana is a Master student with the Department of Mechatronics, Faculty
of Mechanical Engineering, University of Prishtina, Prishtina, 10000 Kosovo

(e-mail: hasancana@gmail.com).

Method of structural optimization with genetic algorithm is

on the border between neural networks and fuzzy logic on the

one hand and genetic algorithm on the other side [2]. Indeed,

structural genetic algorithm introduces a completely new

method of combining different soft computing techniques to

each other. Combining two or more optimization techniques

leads to achieving the advantages of one or both optimization

methods. In our case, we combined GA optimization method

and neural networks.

Fig. 1 Illustration of the structural genetic algorithm

In our case, vulnerable NN that can be "trapped" in a local

minimum are eliminated by using the algorithm of the GA. If

the function is non-linear, as shown in Fig. 2, the NN may be

stuck in a local minimum, and from this it can be "solved" by

GA.

Fig. 2 Local and global optimum

A. Pajaziti, H. Cana

Robotic Arm Control with Neural Networks Using

Genetic Algorithm Optimization Approach

S

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:8, No:8, 2014

1378

In order to address the major shortcomings of neural

networks which can be found in optimization methods has

lead many scientists to use the GA approach. The idea is such

that the weights of a neuron of neural networks can be

optimized by the genetic algorithm, Fig. 3.

Fig. 3 Control of neural network weights

With this change, we lose self-learning NN and thus its

positive features we gain the possibility of being trapped in a

local minimum. As the GA is slower than the neural networks,

we have lost a few at a time to solve optimization, but we are

primarily interested in a better result.

The computational complexity involved with the numerical

solution of the kinematics problem, and the capability of NNs

to approximate arbitrary functions, attracted many researchers

to apply NNs to this problem [3]-[9]. Most of these works use

known solution of the Forward Kinematics or Inverse

Kinematics problem to generate input-output patterns for the

NN training process [10].

In this paper, we proposed combined GA optimization

method and neural networks for robotic arm control.

The key attribute of neural networks is the ability to serve

as a general nonlinear model [11]. It has been shown that any

function of practicable interest can be approximated arbitrarily

close with a NN having enough neurons, at least one hidden

layer, and an appropriate set of weights. The high speed of

computation and general modeling capability of neural

networks are very attractive properties for nonlinear

compensation problems, as robot control problems are.

II. ROBOTIC SYSTEM WITH FIVE D.O.F

Control optimization of the robotic arm with 5 D.O.F [10]

(see Fig. 4) is carried out in MATLAB Simulink module using

a virtual model based on the real model. In our case, results

from system using no controller is compared to using NN

optimized with GA.

Our basic idea was to include neural networks in the model

of the robot arm whose weights are changed (optimized) using

GA. Because robot is controlled using Forward Kinematics,

we introduced five NN modules, one for each robot joint in

order to allow individual operation of joints so that they do not

depend on each other. Each NN block takes one joint angle

input which is the feedback error and gives one output which

is the voltage to be fed into the motors.

Fig. 4 Robotic Arm [12]

A. Robotic Arm System

A typical closed-loop feedback system is used for

controlling the robotic arm, Fig. 5. The system consists of two

main blocks, the controller and plant. In our case the controller

module has been replaced with NN blocks. Robotic arm

mechanical system block contains sensors, which measure the

current position of all five joints, and these values are fed back

to be subtracted in order to get the error, which is then fed to

NN to calculate the voltage value to produce motion using

virtual motors in Simulink.

Fig. 5 Block diagram of robotic arm feedback system

B. 3D Robotic Arm Model Simulation

The robotic arm in this paper has also been modeled in 3D

using SolidWorks and then imported in MATLAB using

SimMechanics Link which generates a basic block diagram of

the model which represents only the geometrical aspect of the

model which can be used for various analysis of the robotic

arm, such as the usage of structural genetic algorithm to

optimize the NN. The 3D model design and simulation of the

arm has a number of advantages such performing analysis on

PC which require high processing power and which can be

completed faster than in microcontrollers and also these

analyses are performed by quickly prototyping control systems

using Simulink blocks.

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:8, No:8, 2014

1379

Fig. 6 3D virtual model of the robotic arm

III. THE INCLUSION OF A NEURAL NETWORK MODEL OF THE

ROBOTIC ARM

The neural network consists of one input neuron, ten

neurons used in the hidden layer and one neuron in the output

layer. Such a structure satisfied our requirements. In the event

of an increase in the number of neurons in the hidden layer,

this would lengthen the time simulation. It is known that the

time required for the simulation by using the GA is longer.

GA has served us to calculate the weights of neural networks

and let us eliminate vulnerability of neural networks, because

only this can be the bad choice of weights trapped in a local

minimum. Fig. 7 shows structure of the neural network, where

one can see the separation of the network into two levels.

Fig. 7 Appearance of neural networks separated by layers

Considering the fact that the robotic arm motors can only

operate up to 180 degrees, the input and output of the NN are

processed by limiting in and out values to a certain range.

Input values are usually limited to -90 to 90 (degrees), while

the output values are limited to -5 to 5 (volts), and this is done

to avoid unnecessary values.

Fig. 8 Illustration of Neural Network - Layer 1

Figs. 8 and 9 show an image of the hidden layer weights

(Layer 1) of neural network with ten neurons.

Fig. 9 Implementation of the Neural Network hidden layer weights in

MATLAB Simulink - Layer 1

The second layer is similar to the first, except that in the

hidden layer there are ten neurons (with weights IW{1,1}{1-

10} which are fed as input in the second layer.

Neural network weights (IW) initially are set to initial

values which do not represent correct input-output

relationship. After GA optimization is done, these weights are

altered to optimized values along with bias.

IV. SIMULATION RESULTS

The work presented in this paper is based on the simulation

of neural network control and genetic algorithm optimization.

Simulations have been carried out under the

MATLAB/Simulink environment.

For the given robotic arm with 5 D.O.F we used five NN

block for all five joints. In particular, we needed to carry out

the movement of robotic arm with minimum overshoot and,

consequently minimizing errors.

The simulation was carried out under various datasets for

neural network. Final input/output dataset was defined as:

inputs = [-90 -80 -70 -60 -50 -40 -30 -20

-10 0 10 20 30 40 50 60 70 80 90];

outputs = [-5 -5 -5 -5 -5 -5 -5 -5 0 0 0

5 5 5 5 5 5 5 5];

The above input/output dataset represents the relationship

between joint angle input values and motors’ voltage output

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:8, No:8, 2014

1380

values which should result with an optimized curve

representing this input/output relationship. As input reaches

zero, so that voltage should decrease to avoid unnecessary

overshoots.

The initial values of the weights and biases for both the first

and second layer are randomly generated based on NN input

dataset. Number of weights which are needed for performing

the simulation is 20, more specifically 10 weights for input

and 10 weights for output. Also there are 10 biases for the

hidden layer and one bias at the output layer. Values for these

parameters are set after the genetic algorithm optimization is

done.

The number of generations used for optimization is 300 as

higher numbers would lengthen the optimization time. In each

iteration the mean square error is calculated. The optimization

is performed using different numbers of population in order to

get a good curve which is closest to the ideal dataset curve.

Table I shows the best Fitness Value (FV) for three different

population numbers through 300 iterations.

TABLE I

GA OPTIMIZATION RESULTS WITH DIFFERENT POPULATION SIZES

Population Iterations Weights for 2 Layers Best FV

50 300 20 0,690598

100 300 20 0,643956

150 300 20 0,677765

The lowest value of Best FV was given with population of

100 which resulted with a value of 0.643956. Fig. 10 shows

the best fitness value falling from ~40 – 0.643956.

Fig. 10 Best fitness value for population size 150

But considering the neural network optimization results

with new weights and biases values, it turned out that the

optimization with population size of 150 gave best results. Fig.

11 below represents the input/output relationship for the given

dataset with blue line, green line represents this relationship

before optimization (randomly generated weights values) and

red line shows how the NN is about to behave after the

optimization using GA. It results with a smooth curve which

tries to follow the path of the input dataset curve.

Fig. 11 Neural network after GA optimization

The neural network block with new weights and biases

values replaces all five existing blocks in Simulink model in

order to get results of joint movements with and without NN

controller.

Fig. 12 Base joint movement without controller

In order to get a clearer comparison between joint

movements with and without controller, the value of motors’

stall torque has been increased. Fig. 12 shows the results of the

base joint movements from 0 to 90 degrees. It shows some

oscillations caused by overshooting when joint positions reach

90 degrees and settling time is about 0.5 seconds.

Fig. 13 shows the base joint movement with NN controller

(optimized with GA). The overshoot is much smaller in this

case and settling time is about 0.2 seconds.

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:8, No:8, 2014

1381

Fig. 13 Base joint movement with NN controller

REFERENCES

[1] “Intelligent Control Techniques in Mechatronics - Genetic algorithm”,

http://www.ro.feri.uni-mb.si/predmeti/int_reg/Predavanja/Eng/

3.Genetic%20algorithm/_17.html
[2] A. Pajaziti, I. Gojani, A. Shala, and P. Kopacek, “Optimization of Biped

Gait Synthesis Using Fuzzy Neural Network Controller”, in DETC/CIE

2005-84191, September 2005.
[3] R. K. Elsley, “A learning architecture for control based on back-

propagation neural networks,” in International Conference on Neural
Networks, vol. 2, pp. 587-594, IEEE, July 1988.

[4] G. Josin, D. Charney, and D. White, “Robot control using neural

networks,” in International Conference on Neural Networks, vol. 2, pp.

625-631, IEEE, July 1988.
[5] S. Lee and R. M. Kil, “Robot kinematic control based on bi-directional

mapping neural network,” in International Joint Conference on Neural

Networks, vol. 3, pp. 327-335, 1990.
[6] T. Yabuta and T. Yamada, “Possibility of neural networks controller for

robot manipulators,” in International Conference on Robotics and

Automation, pp. 16861691, IEEE, May 1990.
[7] J. M. Zurada, M. Kavari, and J. H. Lilly, “Robot kinematics modeling

using multilayer feedforward neural networks,” in Artificial Neural

Networks in Engineering, pp. 785-790, ASME Press, November 1992.
[8] L. C. Rabelo and X. J. R. Avula, “Hierarchical neurocontroller

architecture for robotic manipulation,” IEEE Control Systems Magazine,

vol. 12, no. 2, pp. 3741, April 1992.
[9] K. Liu and J. P. H. Steele, “A new artificial neural systems architecture

and its application to robot control,” in Artificial Neural Networks in

Engineering, pp. 505-510, ASME Press, November 1993.
[10] K. Liu and J. P. H. Steele, “A new artificial neural systems architecture

and its application to robot control,” in Artificial Neural Networks in

Engineering, pp. 505-510, ASME Press, November 1993.
[11] D. Mandelc, “Soft computing in non-linear regulation”, individual

research project, FEECS, University of Maribor, 2006

[12] H. Cana, “Manual and Semi-Automatic Control of Robotic Arm”,
Master Thesis, University of Prishtina, Kosovo, 2014.

