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Abstract—In this paper, the structural genetic algorithm is used 
to optimize the neural network to control the joint movements of 

robotic arm. The robotic arm has also been modeled in 3D and 

simulated in real-time in MATLAB. It is found that Neural Networks 

provide a simple and effective way to control the robot tasks. 

Computer simulation examples are given to illustrate the significance 

of this method. By combining Genetic Algorithm optimization 

method and Neural Networks for the given robotic arm with 5 D.O.F. 

the obtained the results shown that the base joint movements 

overshooting time without controller was about 0.5 seconds, while 

with Neural Network controller (optimized with Genetic Algorithm) 

was about 0.2 seconds, and the population size of 150 gave best 

results. 

 

Keywords—Robotic Arm, Neural Network, Genetic Algorithm, 
Optimization. 

I. INTRODUCTION 

TRUCTURAL genetic algorithm was first introduced in 

the nineties, where the chromosomes are defined as the 

hierarchical structure. Nodes keep a higher level activation 

and operation of the genes, which are at a lower level. 

Inactivated genes provide additional information that the 

genetic algorithm can respond in a changing environment. 

Structural genetic algorithm as a structural optimizer is rapidly 

evolving and improving. In control applications there are two 

types optimizer's of particular importance: 

• Optimization of membership rules in fuzzy logic and 

• Optimizing the topology of neural networks. 

Fig. 1 shows how the structural genetic algorithm is used to 

optimize the neural network. Chromosome is broken up into 

control genes and genes connection [1]. 

Control bits are further divided into control bits of neural 

network layers and the control bits of individual neurons in the 

neural layers. If a single control bit logical value is 1, then a 

neural network layer and the corresponding neuron in layer 

exists, and vice versa, if the individual control bit is set to 

logic 0. The value of "x" means that the value (or logical 0 or 

1) is not important.  

Connecting genes represent the values of the weights and 

thresholds of individual neurons this neuron is associated with 

pre-layer Neural Network (NN). Genetic Algorithm (GA) 

optimization of both structured genes is classic.  
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Method of structural optimization with genetic algorithm is 

on the border between neural networks and fuzzy logic on the 

one hand and genetic algorithm on the other side [2]. Indeed, 

structural genetic algorithm introduces a completely new 

method of combining different soft computing techniques to 

each other. Combining two or more optimization techniques 

leads to achieving the advantages of one or both optimization 

methods. In our case, we combined GA optimization method 

and neural networks. 

 

 

Fig. 1 Illustration of the structural genetic algorithm 

 

In our case, vulnerable NN that can be "trapped" in a local 

minimum are eliminated by using the algorithm of the GA. If 

the function is non-linear, as shown in Fig. 2, the NN may be 

stuck in a local minimum, and from this it can be "solved" by 

GA. 

 

 

Fig. 2 Local and global optimum 
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In order to address the major shortcomings of neural 

networks which can be found in optimization methods has 

lead many scientists to use the GA approach. The idea is such 

that the weights of a neuron of neural networks can be 

optimized by the genetic algorithm, Fig. 3.  

 

 

Fig. 3 Control of neural network weights 

 

With this change, we lose self-learning NN and thus its 

positive features we gain the possibility of being trapped in a 

local minimum. As the GA is slower than the neural networks, 

we have lost a few at a time to solve optimization, but we are 

primarily interested in a better result. 

The computational complexity involved with the numerical 

solution of the kinematics problem, and the capability of NNs 

to approximate arbitrary functions, attracted many researchers 

to apply NNs to this problem [3]-[9]. Most of these works use 

known solution of the Forward Kinematics or Inverse 

Kinematics problem to generate input-output patterns for the 

NN training process [10]. 

In this paper, we proposed combined GA optimization 

method and neural networks for robotic arm control. 

The key attribute of neural networks is the ability to serve 

as a general nonlinear model [11]. It has been shown that any 

function of practicable interest can be approximated arbitrarily 

close with a NN having enough neurons, at least one hidden 

layer, and an appropriate set of weights. The high speed of 

computation and general modeling capability of neural 

networks are very attractive properties for nonlinear 

compensation problems, as robot control problems are. 

II. ROBOTIC SYSTEM WITH FIVE D.O.F 

Control optimization of the robotic arm with 5 D.O.F [10] 

(see Fig. 4) is carried out in MATLAB Simulink module using 

a virtual model based on the real model. In our case, results 

from system using no controller is compared to using NN 

optimized with GA. 

Our basic idea was to include neural networks in the model 

of the robot arm whose weights are changed (optimized) using 

GA. Because robot is controlled using Forward Kinematics, 

we introduced five NN modules, one for each robot joint in 

order to allow individual operation of joints so that they do not 

depend on each other. Each NN block takes one joint angle 

input which is the feedback error and gives one output which 

is the voltage to be fed into the motors. 

 

 

Fig. 4 Robotic Arm [12] 

A. Robotic Arm System 

A typical closed-loop feedback system is used for 

controlling the robotic arm, Fig. 5. The system consists of two 

main blocks, the controller and plant. In our case the controller 

module has been replaced with NN blocks. Robotic arm 

mechanical system block contains sensors, which measure the 

current position of all five joints, and these values are fed back 

to be subtracted in order to get the error, which is then fed to 

NN to calculate the voltage value to produce motion using 

virtual motors in Simulink. 

 

 

Fig. 5 Block diagram of robotic arm feedback system 

B. 3D Robotic Arm Model Simulation 

The robotic arm in this paper has also been modeled in 3D 

using SolidWorks and then imported in MATLAB using 

SimMechanics Link which generates a basic block diagram of 

the model which represents only the geometrical aspect of the 

model which can be used for various analysis of the robotic 

arm, such as the usage of structural genetic algorithm to 

optimize the NN. The 3D model design and simulation of the 

arm has a number of advantages such performing analysis on 

PC which require high processing power and which can be 

completed faster than in microcontrollers and also these 

analyses are performed by quickly prototyping control systems 

using Simulink blocks.  
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Fig. 6 3D virtual model of the robotic arm 

III. THE INCLUSION OF A NEURAL NETWORK MODEL OF THE 

ROBOTIC ARM 

The neural network consists of one input neuron, ten 

neurons used in the hidden layer and one neuron in the output 

layer. Such a structure satisfied our requirements. In the event 

of an increase in the number of neurons in the hidden layer, 

this would lengthen the time simulation. It is known that the 

time required for the simulation by using the GA is longer. 

GA has served us to calculate the weights of neural networks 

and let us eliminate vulnerability of neural networks, because 

only this can be the bad choice of weights trapped in a local 

minimum. Fig. 7 shows structure of the neural network, where 

one can see the separation of the network into two levels. 

 

 

Fig. 7 Appearance of neural networks separated by layers 

 

Considering the fact that the robotic arm motors can only 

operate up to 180 degrees, the input and output of the NN are 

processed by limiting in and out values to a certain range. 

Input values are usually limited to -90 to 90 (degrees), while 

the output values are limited to -5 to 5 (volts), and this is done 

to avoid unnecessary values. 

 

 

Fig. 8 Illustration of Neural Network - Layer 1 

 

Figs. 8 and 9 show an image of the hidden layer weights 

(Layer 1) of neural network with ten neurons. 

 

 

Fig. 9 Implementation of the Neural Network hidden layer weights in 

MATLAB Simulink - Layer 1 

 

The second layer is similar to the first, except that in the 

hidden layer there are ten neurons (with weights IW{1,1}{1-

10} which are fed as input in the second layer. 

Neural network weights (IW) initially are set to initial 

values which do not represent correct input-output 

relationship. After GA optimization is done, these weights are 

altered to optimized values along with bias. 

IV. SIMULATION RESULTS 

The work presented in this paper is based on the simulation 

of neural network control and genetic algorithm optimization. 

Simulations have been carried out under the 

MATLAB/Simulink environment.  

For the given robotic arm with 5 D.O.F we used five NN 

block for all five joints. In particular, we needed to carry out 

the movement of robotic arm with minimum overshoot and, 

consequently minimizing errors.  

The simulation was carried out under various datasets for 

neural network. Final input/output dataset was defined as: 

 

inputs = [-90 -80 -70 -60 -50 -40 -30 -20 

-10 0 10 20 30 40 50 60 70 80 90]; 

 

outputs = [-5 -5 -5 -5 -5 -5 -5 -5 0 0 0 

5 5 5 5 5 5 5 5]; 

 

The above input/output dataset represents the relationship 

between joint angle input values and motors’ voltage output 
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values which should result with an optimized curve 

representing this input/output relationship. As input reaches 

zero, so that voltage should decrease to avoid unnecessary 

overshoots. 

The initial values of the weights and biases for both the first 

and second layer are randomly generated based on NN input 

dataset. Number of weights which are needed for performing 

the simulation is 20, more specifically 10 weights for input 

and 10 weights for output. Also there are 10 biases for the 

hidden layer and one bias at the output layer. Values for these 

parameters are set after the genetic algorithm optimization is 

done. 

The number of generations used for optimization is 300 as 

higher numbers would lengthen the optimization time. In each 

iteration the mean square error is calculated. The optimization 

is performed using different numbers of population in order to 

get a good curve which is closest to the ideal dataset curve. 

Table I shows the best Fitness Value (FV) for three different 

population numbers through 300 iterations.  

 
TABLE I 

GA OPTIMIZATION RESULTS WITH DIFFERENT POPULATION SIZES 

Population Iterations Weights for 2 Layers Best FV 

50 300 20 0,690598 

100 300 20 0,643956 

150 300 20 0,677765 

 

The lowest value of Best FV was given with population of 

100 which resulted with a value of 0.643956. Fig. 10 shows 

the best fitness value falling from ~40 – 0.643956. 

 

 

Fig. 10 Best fitness value for population size 150 

 

But considering the neural network optimization results 

with new weights and biases values, it turned out that the 

optimization with population size of 150 gave best results. Fig. 

11 below represents the input/output relationship for the given 

dataset with blue line, green line represents this relationship 

before optimization (randomly generated weights values) and 

red line shows how the NN is about to behave after the 

optimization using GA. It results with a smooth curve which 

tries to follow the path of the input dataset curve. 

 

 

 
 

Fig. 11 Neural network after GA optimization 

 

The neural network block with new weights and biases 

values replaces all five existing blocks in Simulink model in 

order to get results of joint movements with and without NN 

controller. 

 

 

Fig. 12 Base joint movement without controller 

 

In order to get a clearer comparison between joint 

movements with and without controller, the value of motors’ 

stall torque has been increased. Fig. 12 shows the results of the 

base joint movements from 0 to 90 degrees. It shows some 

oscillations caused by overshooting when joint positions reach 

90 degrees and settling time is about 0.5 seconds.  

Fig. 13 shows the base joint movement with NN controller 

(optimized with GA). The overshoot is much smaller in this 

case and settling time is about 0.2 seconds.  
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Fig. 13 Base joint movement with NN controller 
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