
International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:1, No:3, 2007

190

Abstract—A strip domain decomposition parallel algorithm for

fast direct Poisson solver is presented on a 3D Cartesian staggered
grid. The parallel algorithm follows the principles of sequential
algorithm for fast direct Poisson solver. Both Dirichlet and Neumann
boundary conditions are addressed. Several test cases are likewise
addressed in order to shed light on accuracy and efficiency in the
strip domain parallelization algorithm. Actually the current
implementation shows a very high efficiency when dealing with a
large grid mesh up to 93.6 10× under massive parallel approach,
which explicitly demonstrates that the proposed algorithm is ready
for massive parallel computing.

Keywords—Strip-decomposition, parallelization, fast direct
poisson solver.

I. INTRODUCTION
HE Poisson equation is one of the most basic equations in
scientific calculation in many different fields of interest

such as, for instance, acoustics, electromagnetism and fluid
dynamics, just to quote a few. In fluid dynamics, among the
flows that are of importance and interest to mankind, the
category of low Mach-number or incompressible flow is by
far the largest. As recently put forward by Löhner et al. [1],
incompressible solvers have recently been enhanced in a
variety of ways such as sub-stepping for advection, implicit
treatment of convective terms and linelet preconditioning flow
the pressure-Poisson equation. The combined effect of these
improvements leads to speed-up factors of the order of 1 to
10; In addition, massive parallel approach is a way to
significantly reduce time simulation for academic and
industrial problems. However, even if numerous solvers have
already been addressed in the past in view of solving the
pressure-Poisson equation, solver efficiency drastically falls
with parallel computing. This is naturally a key problem
because pressure-Poisson equation solving requires significant
CPU time.

A standard procedure for solving the Poisson equation by

Minh Vuong PHAM, LET – ENSMA, UMR CNRS 6608, 1, avenue

Clément Ader, BP 40109, 86960 Chasseneuil Futuroscope Cedex, France (e-
mail: phammg@ensma.fr).

Frédéric PLOURDE, LET – ENSMA, UMR CNRS 6608, 1, avenue
Clément Ader, BP 40109, 86960 Chasseneuil Futuroscope Cedex, France
(corresponding author to provide phone: +33549498119; fax: +33549498130;
e-mail: plourde@let.ensma.fr).

Son DOAN KIM, LET – ENSMA, UMR CNRS 6608, 1, avenue Clément
Ader, BP 40109, 86960 Chasseneuil Futuroscope Cedex, France (e-mail:
doan@let.ensma.fr).

direct method requires 6()O N operations for 3N grid points
in a 3D problem, which makes such a direct method
prohibitive for a large-scale physical problem. Fast direct
Poisson solver development began in 1965 when Hockney [2]
used Fourier analysis and fast Fourier transform (FFT) [3],
which leads to computation speed up to (log)O N N on a
N N× grid. Such a method is often used [4, 5, 6] for 3D
Poisson problems [7, 8, 9] since it costs only about

3(log)O N N for a N N N× × grid points. With large-scale
problems, particularly incompressible 3D Navier-Stokes
equations, large mesh point grids are carried out. Therefore,
parallelization of Poisson solver is required and the latter must
be as fast as possible. Thus, several methods for parallel fast
Poisson algorithms have been developed and one should first
distinguish two main groups of parallel techniques dependent
on parallel machine architecture. The first one was proposed
according to parallel vectorial machine [10, 11]. Thus,
solution of Poisson equation is carried out by distributing
various computational segments from the direct solver. That is
to say, parallel algorithm was developed for both fast Fourier
transform and solution of tridiagonal systems [12]. The
second group considered a massive parallel philosophy [13,
14, 15, 16] in which the computational domain is split into
multi-domains [17]. Each computational sub-domain is then
performed on one single processor and data transfer between
processors is naturally requested. Several techniques of
domain decomposition were presented for 2D Poisson solver
[13, 18] using FFT parallelization on multiprocessors [19, 20].
Unfortunately, such development is rather complex to achieve
and, in addition, its cost in data transfer is significantly high.

However, fast direct Poisson solver on a massively parallel
machine was first introduced by Swarztrauber and Sweet [21]
in which FFT parallelization is avoided. Each processor
should perform the same amount of data and the latter are then
dynamically redistributed between the whole sub-domains.
This approach is called the transposed method, a technique
that is generally preferred on account of several advantages.
First, and foremost, it requires less communication between
processors than other techniques. A second reason to prefer
the transposed method is its simplicity of use. The method is
based only on already existing efficient algorithms and no
specific and complex development is required to address
parallel FFT. This technique has successfully been used for
the solving of a 2D cylindrical Poisson solver problem [22]
but to author’s knowledge, transposed method has been rarely

Minh Vuong Pham, Frédéric Plourde, Son Doan Kim

Strip Decomposition Parallelization of Fast
Direct Poisson Solver on a 3D Cartesian

Staggered Grid

T

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:1, No:3, 2007

191

applied to tri-dimensional problems.
Direct methods are often used ensuring stability in the

computing process, which is often requested especially when
Poisson equation must be solved every time-step. Then, fast
algorithms are generally built to take advantage on FFT
algorithm. However, FFT algorithms bring their own
drawbacks. Spatial discretization must be constant in the
spectral directions, i.e. which render complex geometry in
fluid mechanics for instance not easy to target. However, a
new trend in fluid mechanics solver is actually under
development. Nowadays, there is interest in investigating a
novel grid generation concept, the Immersed Boundary
Method, as an improved methodology to boundary fitted
grids. With such algorithms, the grid does not coincide any
longer with the geometry being solved. Since the grid does not
fit the surface geometry, this type of grid used is often chosen
for computational efficiency instead of geometry, which
allows the use of simple orthogonal grids. Furthermore the
grid generation complexity and time is greatly reduced as the
complex geometry only needs to be mapped onto the
underlying orthogonal grids. Yang and Balaras [23], Balaras
[24], Fadlum et al. [25], just to mention a few, successfully
approaches carried out with various algorithms to address
complex flow simulations. Ranges of application are naturally
very broad. A parallel version of such method is easy to
develop even if the major difficulties are to solve Poisson
equation in an efficient and fast way.

The aim of this paper is to propose a very fast parallel way
for solving 3D Poisson solver. As far as the author’s knows,
only 2D Poisson equations were addressed with a transposed
method. In addition, in a massively parallel implementation,
one should develop a very efficient and clever way of
parallelization in order to provide efficient computing. As we
will see later, strip domain decomposition will be found to be
sufficiently efficient when solving the Poisson equation.
Therefore, we will also analyze the efficiency of direct fast
Poisson solver when dealing with a massive parallel
environment. First, section 2 briefly describes and rapidly
recalls the mathematical preliminaries of Fast Fourier
Transform. Sequential implementations as well as parallel
algorithm based on strip decomposition are described.
Naturally, the key point concerns its efficiency. Therefore,
two test cases are shown with close attention being paid to
errors and efficiency of the parallel implementation. Data
transfer may be considered as a major drawback, and
efficiency will be tested on massive parallel simulations with
mesh grid points up to 93.6 10× points so as to shed light on
the potential of the proposed algorithm.

II. PRELIMINARY ANALYSIS
Mathematical formulation for fast direct solver of the

Poisson equation is first recalled; we arbitrarily chose to focus
on a staggered grid arrangement in the Cartesian coordinates.
However, application of the proposed algorithm to co-located
grids is straightforward. The Poisson equation in (x, y, z)

system is:
2 2 2

2 2 2 (, ,) for (, ,)u u u f x y z x y z
x y z

∂ ∂ ∂
+ + = ∈ Ω

∂ ∂ ∂
 (1)

where () () ()0, 0, 0,x y zL L LΩ = × × is the computational

domain. Boundary conditions applied on each limit face may
be either the Dirichlet or the Neumann boundary condition.
For the Dirichlet boundary condition:

(, ,) (, ,) for (, ,)u x y z x y z x y zφ= ∈ ∂Ω (2)
where (, ,)x y zφ are the values of solution at ∂Ω , i.e.
boundary condition. For the Neumann boundary condition:

(, ,) (, ,)
i

u x y z x y z
x

φ∂
=

∂
 (3)

for (, ,) and (, ,)ix x y z x y z= ∈ ∂Ω
In order to discretize the Poisson equation, the domain Ω

is covered with a regular grid mesh
(), ,x y zΔ Δ Δ corresponding to (, ,)x y z directions with

(, ,)L M N points in each direction. Each grid point (, ,)i j kx y z

is obtained by (0.5)ix i x= − Δ , (0.5)jy j y= − Δ ,

(0.5)kz k z= − Δ for 1: , 1: , 1:i L j M k N= = = . Replacing
the derivatives by second-order central-difference
approximation, the interior points of Poisson's equation can be
written as:

1, , , , 1, , , 1, , , , 1,
2 2

, , 1 , , , , 1
2

2 2

2
(, ,)

i j k i j k i j k i j k i j k i j k

i j k i j k i j k

u u u u u u
x y

u u u
f i j k

z

+ − + −

+ −

− + − +
+ +

Δ Δ
− +

=
Δ

 (4)

while the boundary values , ,i j ku are specified at the interface
of Ω .

The direct Poisson solver was performed by a direct Fourier
transform. Note that a direct transform method requires

2()O N arithmetic operations for N points i.e. such a method
is exceedingly expensive in terms of CPU time. However, a
very clever and well-known algorithm, the Fast Fourier
transform (FFT) algorithm [3] requires (log)O N N arithmetic
operations to directly solve the Poisson equation. According
to the kind of boundary condition applied, sine or cosine
transforms are addressed. The fast Fourier-sine transform is
used for the Dirichlet boundary condition and the fast Fourier-
cosine transform is required for the Neumann boundary
condition. On a 3D staggered grid, these fast Fourier
transforms can be written as:

In z direction:

1

2 (1/ 2)ˆ sin

Dirichlet boundary condition

N

n k
k

n ku u
N N

π
=

−⎛ ⎞= ⎜ ⎟
⎝ ⎠

⇒

∑ (5)

1

2 (1)(1/ 2)ˆ cos

Neumann boundary condition

N

n k
k

n ku u
N N

π
=

− −⎛ ⎞= ⎜ ⎟
⎝ ⎠

⇒

∑ (6)

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:1, No:3, 2007

192

The resulting equation, after applying fast Fourier
transform in z direction, is written as:

1, , , , 1, ,
2

, 1, , , , 1,
, ,2

ˆ ˆ ˆ2

ˆ ˆ ˆ2 ˆˆ (, ,)

i j n i j n i j n

i j n i j n i j n
z i j n

u u u
x

u u u
u f i j n

y
λ

+ −

+ −

− +
+

Δ
− +

+ =
Δ

 (7)

where:

2

1 2cos 2

Dirichlet boundary condition

z
k
Nz
πλ ⎛ ⎞⎛ ⎞= −⎜ ⎟⎜ ⎟Δ ⎝ ⎠⎝ ⎠

⇒

 (8)

2

1 (1)2cos 2

Neumann boundary condition

z
k

Nz
πλ ⎛ − ⎞⎛ ⎞= −⎜ ⎟⎜ ⎟Δ ⎝ ⎠⎝ ⎠

⇒

 (9)

In y direction, the same Fourier transforms are applied for
M points. The resulting equations after fast Fourier transform
in y and z directions are rewritten as:

1, , , , 1, ,
, ,2

ˆ ˆ ˆ2 ˆˆ() (, ,)i m n i m n i m n
y z i m n

u u u
u f i m n

x
λ λ+ −− +

+ + =
Δ

 (10)

where:

2

1 2cos 2

Dirichlet boundary condition

y
j
My
πλ ⎛ ⎞⎛ ⎞= −⎜ ⎟⎜ ⎟Δ ⎝ ⎠⎝ ⎠

⇒

 (11)

2

1 (1)2cos 2

Neumann boundary condition

y
j

My
πλ ⎛ − ⎞⎛ ⎞= −⎜ ⎟⎜ ⎟Δ ⎝ ⎠⎝ ⎠

⇒

 (12)

The final tridiagonal systems can be written as:

1, , , ,2 2

1, ,2

1 2ˆ ˆ

1 ˆˆ (, ,)

i m n y z i m n

i m n

u u
x x

u f i m n
x

λ λ+

−

⎛ ⎞− − − +⎜ ⎟Δ Δ⎝ ⎠

=
Δ

 (13)

The systems contain L M N× × periodic tridiagonal
equations and the system of equations can be solved by using
a direct method in order to determine the solutions in Fourier's
space. Following that, solutions in the physical space can be
reconstructed via a double inverse Fourier transform in the y
and z directions. For example, the formulations of inverse
Fourier - sine and Fourier - cosine in z direction are written as:

1

2 (1/ 2)ˆ sin

Dirichlet boundary condition

N

k n
n

n ku u
N N

π
=

−⎛ ⎞= ⎜ ⎟
⎝ ⎠

⇒

∑ (14)

1
2

2 1 (1)(1/ 2)ˆ ˆ cos
2

Neumann boundary condition

N

k n
n

n ku u u
N N

π
=

⎛ − − ⎞⎛ ⎞= +⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

⇒

∑ (15)

In this section, homogeneous boundary conditions were
addressed whereas all the non-homogeneous boundary
conditions could be found in [5] and through these
mathematical preliminaries, sequential and mainly parallel
algorithm is presented in the following sections.

III. SEQUENTIAL AND PARALLEL ALGORITHM
The sequential algorithm of fast direct Poisson solver for

3D Cartesian staggered grid problem is straightforward to the
mathematical preliminaries presented above. For a L M N× ×
grid mesh, the main tasks for solving the Poisson equation are
listed:

• Compute fast Fourier transform in z direction for LM
sets of data (, ,)f i j k for 1,k N= following different
boundary conditions.

• Compute fast Fourier transform in y direction for LN
sets of data ˆ (, ,)f i j n for 1,j M= following different
boundary conditions.

• Solve LMN periodic tridiagonal systems using the
direct method.

• Compute the inverse fast Fourier transform in y
direction for LN sets of data ˆ (, ,)f i m n for 1,m M= .

• Compute the inverse fast Fourier transform in z
direction for LM sets of data ˆ (, ,)f i j n for 1,n N= .

The sequential algorithm recalled just above is a well-
known fast algorithm to access the solution of the Poisson
equation. However, insofar as a parallel computation is
required, a clever strategy must be selected. To provide a fast
and efficient algorithm, a strip domain decomposition is
proposed. The computational domain is decomposed into
several sub-domains, which are distributed on each processor.
The parallelization for fast Fourier transform is thereby
avoided for the proposed technique through the use of
crossing data transfers between every sub-domain and
processors. Strip domain decomposition also offers additional
benefits. First, for a specified grid mesh, the number of total
operations on all sub-domains for a parallel algorithm is
similar to the one necessary for sequential algorithm, which

domain 1

domain 2

domain 3

domain 4

x

y

z

domain 1

domain 2

domain 3

domain 4

x

y

z

Fig. 1 Schematic of strip domain decomposition in z direction on a
3D Cartesian grid for fast direct Poisson solver parallel algorithm.

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:1, No:3, 2007

193

means that total computational times of all processors used are
exactly equal to those of a single processor. Second, the
proposed algorithm can use almost the same subroutines as the
sequential algorithm. Finally, for a large grid mesh and a large
number of processors, the communication time between the
processors is minimized.

As mentioned in the introduction, our goal is to achieve
efficient parallel algorithm for solving the Poisson equation on
different architectures. However, with advances in parallel
computing, massive parallel approach with domain
decomposition is more and more widely used. The choice of
strip domain decomposition method allows one to avoid
solving fast Fourier transforms with parallel algorithms; in
fact, strip decomposition is performed in order to weaken as
much as possible the effect of data transfer on algorithm
efficiency. The computational domains divided into P sub-
domains in the z direction as shown in Figure 1, where a 4-
sub-domain decomposition is given as an example.

The data in the z direction is divided into P sub-domains,
whose contents N/P points in the z direction. Then, each sub-
domain contains data associated with the grid points (, ,)f i j k

with ()1: , 1: , / 1: (1) /i L j M k pN P p N P= = = + + , in which
p corresponds to the index of the considered sub-domain. To
avoid parallelization of Fast Fourier Transform on multi-
domains, one needs to transfer necessary data. In order to
minimize time transfer, each strip is also divided (virtually)
into P sub-domains corresponding to the P processors in use.
Cross-data transfers between the P sub-domains and P
processors are then necessary and are schematically shown in
Figure 2. As soon as data are transferred, each processor
contains the LM/P data of the (, ,)f i j k right-hand side term

with ()1: , / 1: (1) / , 1:i L j pM P p M P k N= = + + = for
processor p. In order to optimize computational time, FFT on
each processor are computed simultaneously. At this point, the
discretized equation given in (7) corresponds to a 2D
Cartesian staggered grid, where each solution of LM points in
the xy plan corresponds to a Fourier mode in the z direction

To optimize the solver of N systems of the 2D Poisson
equation, the computational data are redistributed on the P
processors. Thus, each processor evaluates the solution of one
sub-domain decomposition. To do so, it is essential to carry
out a cross-data transfer between the processors and the sub-
domains in order to obtain the complete data after fast Fourier
transform in the z direction for each sub-domain. After that,
each sub-domain contains N/P sets of the LM coefficients of
the complete fast Fourier transform. Therefore, each processor
evaluates N/P systems of 2D Poisson equations. The FFT in
the y direction is carried out for each 2D Poisson equation in
order to obtain the final tridiagonal systems (13). Finally, the
tridiagonal systems are solved for each 2D Poisson equation.
The different steps of the proposed algorithm can be
summarized as follows:

• Each processor performs (P-1) sets of 2/LMN P cross-
data transfer between the strip sub-domain and data
divided by P processors in y direction.

• A set of LM/P fast Fourier transforms, which contains
N points in z direction, is computed on each processor.

• Each processor carries out (P-1) sets of 2/LMN P
cross-data transfer between the data divided by P
processors in the y direction and the strip sub-domain.

• Each processor solves a set of N/P systems of the 2D
Poisson equation (LM points) by using the fast direct
solver of the 2D staggered grid Poisson equation. Each
2D Poisson system corresponds to a mode of Fourier
transform. Compute the LN/P fast Fourier transforms
of the M points in y direction for each processor. Solve
LMN/P tridiagonal systems per processor to obtain the
solution of problem in the Fourier space. Compute the
LN/P inverse fast Fourier transforms of the M points in
y direction from the solution in the Fourier space for
each processor.

• Each processor performs (P-1) sets of 2/LMN P
crossing data transfer between the strip sub-domain and
the data divided by P processors in the y direction.

• A set of LM/P inverse fast Fourier transforms, which
contains N points in the z direction, is computed on
each processor.

• Each processor carries out (P-1) sets of 2/LMN P
crossing data transfer between the data divided by P
processors in the y direction and the strip sub-domain.

Finally, the solution of the problem is obtained in the
physical space. Therefore, each sub-domain Ω ,
corresponding to the processor p, contains the solution
associated with the grid points (, ,)u i j k with

()1: , 1: , / 1: (1) /i L j M k pN P p N P= = = + + . Such

domain 1

domain 2

domain 3

domain 4

pro
c 1

2

 3

4

red
ist

rib
uti

on
 in

 y
dir

ect
ion

x

y

z

domain 1

domain 2

domain 3

domain 4

pro
c 1

2

 3

4

red
ist

rib
uti

on
 in

 y
dir

ect
ion

x

y

z

Fig. 2 Schematic of strip domain decomposition in z direction, the
redistribution of data in y direction for several processors and
crossing transfer between sub-domain decomposition and processor
data distribution, for a 3D Cartesian grid for the parallel algorithm
fast direct Poisson solver.

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:1, No:3, 2007

194

algorithm is regarded as an attractive algorithm because,
despite domain decomposition, the Poisson equation is based
on a direct FFT solver. The major drawback is certainly linked
to the amount of data transfer but to shed light on the
efficiency of the proposed algorithm, numerical tests are
required.

IV. NUMERICAL TESTS

The main goal of the several numerical test cases shown

hereinafter is to highlight accuracy and efficiency of the
proposed strip domain decomposition parallelization
algorithm for fast direct Poisson solver. To achieve
portability, the MPI library [26] is used for inter-
communication between processors. For accuracy, relative

errors in norms
∞

• will be shown by computing the
difference between the numerical and the exact solutions
related to the exact solution and accuracy of the method
depends on the number of discretized points in each direction.

As mentioned in the introduction, performance of the
proposed algorithm is a key point for the physical problems
addressed. Thus, estimation of operations for the algorithm is
essential [21, 22]. Many tests are carried out in this section by
using a significant number of processors on a MPI library to
estimate the time required for several grid point resolutions.

A. Accuracy of fast direct Poisson solve
In order to estimate accuracy of the fast direct Poisson

solver, two problems were solved and results obtained were
directly compared with the exact solution. In addition, both

Fig. 3 Solution of Poisson's equation for a polynomial problem in a
3D Cartesian staggered grid with Dirichlet boundary conditions in
x,y,z direction. The solution is plotted versus x at y = 0.5 and z = 0.5.
Dotted curve shows the exact solution, whereas the open triangles
correspond to the numerical solution for 32 32 32× × grid points.

Fig. 4 Errors of Poisson's equation for a polynomial problem in a 3D
Cartesian grid with Dirichlet boundary conditions in x,y,z direction.
The error is plotted versus x at y = 0.5 and z = 0.5 for several grid
points.

TABLE I
RELATIVE ERRORS IN NORMS

∞
• AND RUNNING TIMES FOR PROBLEM 1 WITH REGARD TO THE NUMBER OF GRID POINTS AND PROCESSORS FOR TWO TESTS OF

BOUNDARY CONDITIONS

Grids Processors Times Errors

Case L M N L M N× × P t(s) Dirichlet Neumann

1 32 32 32 43.3 10× 1 0.0 42.61 10−× 32.41 10−×
2 64 64 64 52.6 10× 1 0.04 56.52 10−× 46.09 10−×
3 128 128 128 62.1 10× 1 0.51 51.63 10−× 41.53 10−×
4 256 256 256 71.7 10× 1 6.18 64.08 10−× 53.84 10−×
5 512 512 512 81.3 10× 16 6.05 61.02 10−× 69.42 10−×
6 1024 1024 1024 91.0 10× 64 22.6 72.55 10−× 62.35 10−×
7 1280 1280 1280 92.1 10× 64 41.0 71.63 10−× 61.51 10−×
8 1536 1536 1536 93.6 10× 256 24.0 71.11 10−× 61.03 10−×

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:1, No:3, 2007

195

Dirichlet and Neumann boundary conditions were addressed.
The numerical results were carried out by using double
precision on an IBM-P4 64 bit cluster. The test cases concern
a four-order polynomial distribution as well as a sine function.

Let us now use the technique discussed above to solve the
Poisson equation for a four-order polynomial in a three-
dimensional domain over a staggered grid. The exact solution
is given by:

4 4 4(, ,) (1)(1)(1)u x y z x y z= − − − (16)
on a cubic region (0,1) (0,1) (0,1)Ω = × × . The right-hand side
term of equation (4) is then given by:

2 4 4

2 4 4 2 4 4

(, ,) 12 (1)(1)
12 (1)(1) 12 (1)(1)

f x y z x y z
y x z z x y

= − − −

− − − − − −
 (17)

Table 1 gives details of the several mesh grids tested on
both Dirichlet and Neumann conditions. The first four cases
were carried out on one single processor, i.e. with the
sequential algorithm. On the contrary, as soon as grid points
exceed 256 256 256× × , simulations were carried out on
several processors due to the high memory capacity required.
The largest test case involved 256 processors with 3.6 billion
points in the mesh grid and each sub-domain contained
1536 1536 6× × grid points. Under these conditions, the
required computational time remained acceptable. Note that
error levels listed in Table 1 concern maximum level reached

in the whole sub-domains. As expected, errors were not linked
to sequential or parallel algorithm but rather to grid resolution
and the kind of boundary condition. Actually, errors were
always higher with Dirichlet conditions than with Neumann
conditions. Furthermore, these errors decrease drastically with

regard to the grid point number increase in each direction.
Figure 3 allows one to compare numerical solutions,

obtained by fast direct Poisson solver with 32 32 32× × grid
points with the exact solution at y = 0.5 and z = 0.5. Note that,
even for a small number of grid points, the numerical solution
fits relatively well with the exact solution. In order to follow
the error distribution, Figure 4 presents the error variation as a
function of x at y = 0.5 and z = 0.5 for different grid
resolutions. In this figure, the maximum error is obtained in
the center of the computational domain. The latter corresponds
to the maximum error shown in Table 1. Furthermore, the
errors decrease rapidly with regard to the grid mesh
resolutions.

Let us perform a similar analysis involving trigonometric
function of sine [27] given by:

Fig. 5 Contour of Poisson's equation solution for a trigonometric case
on a 3D Cartesian grid with Dirichlet boundary conditions in x,y,z
direction. The numerical solution is plotted versus x,y,z for
32 32 32× × grid points.

(a)

(b)

(a)

(b)

Fig. 6 Contour of numerical solution (a) and error (b) of Poisson's
equation for the trigonometric case on a 3D Cartesian staggered grid
with the Dirichlet boundary conditions in x,y,z direction. The
numerical solution is plotted in a plan xy at z = 0.5 for 32 32 32× ×
grid points.

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:1, No:3, 2007

196

() ()(, ,) sin () sinu x y z x y zπ π= + (18)

on a cubic region (0,1) (0,1) (0,1)Ω = × × . The source term of
Poisson's equation (4) is given by:

() ()2(, ,) 3 sin () sinf x y z x y zπ π π= − + (19)
Table 2 lists the errors obtained from fast direct Poisson

solver applied on the sine problem with regard to several
numbers of grid resolutions. It is necessary to mention that the
errors are of the same order of magnitude as those obtained in
Problem 1. The three-dimensional solution was shown in
Figure 5 for 32 32 32× × grid points. In order to clearly
observe variation on solution and its errors, Figure 6 plots the
numerical solution (a) and the error (b) in a xy plan at z = 0.5.
Maximum error levels were found to remain at a low level
underlining the accuracy of the algorithm.

B. Cost of the algorithm
The cost of the proposed algorithm is naturally of great

importance and the number of operations must be estimated.
In addition, the time required for sequential and parallel
algorithm of fast direct Poisson solver needs to be closely
studied. Finally, an estimation of asymptotic speedup and
efficiency of strip decomposition parallelization algorithm and
its performance will be presented.

First of all, in order to estimate the number of operations
and time required for the proposed algorithm, a standard
communication model for distributed memory computers may
be assumed. To normalize the time counting procedure, 1t is
supposed to correspond to the computational time required for
fast Fourier transform of one operation, 2t is the
computational time for the solver of tridiagonal system of one
operation, 3t is the time for communication between inter-
processors for a double precision number, the message startup
time for parallel communication is considered as negligible.
The number of operations and the computational time while
using a single processor can be estimated as follows:

• LM fast Fourier transforms for N points in z direction
costs 1 logt LMN N .

• LN fast Fourier transforms for M points in y direction
costs 1 logt LNM M .

• The solution of LMN tridiagonal systems costs
2t LMN .

• LN inverse fast Fourier transforms for M points in y
direction costs 1 logt LNM M .

• LM inverse fast Fourier transforms for N points in z
direction costs 1 logt LMN N .

Therefore, total time required for solving Poisson equation
on a single processor with a fast direct solver is:

() ()1 22 log logsT LMN N LNM M t LMN t= + + (20)
While using the strip parallel algorithm, the number of

operations and the computational time can be estimated as:

• Each processor performs (P-1) sets of 2/LMN P
crossing communication in order to obtain the total
right-hand side data for computing on each processor
fast Fourier transform. This task costs

2
3 (1) /t P LMN P− .

• Each processor carries out a set of LM/P fast Fourier
transforms for N points in z direction. This work costs

1 / logt LM PN N .

• Each processor performs (P-1) sets of 2/LMN P
crossing communication to obtain the total Fourier
coefficients on one sub-domain. This task costs

2
3 (1) /t P LMN P− .

• Each processor carries out a set of LN/P fast Fourier
transforms for M points in y direction. This work costs

1 / logt LN PM M .
• The solution of /LMN P tridiagonal systems for each

processor costs 2 /t LMN P .
• A set of LN/P inverse fast Fourier transforms for M

points in y direction on each processor costs
1 / logt LN PM M .

• (P-1) sets of 2/LMN P crossing communication to

TABLE II
RELATIVE ERRORS IN NORMS

∞
• AND RUNNING TIMES FOR PROBLEM 2 WITH REGARD TO THE NUMBER OF GRID POINTS AND PROCESSORS FOR TWO TESTS OF

BOUNDARY CONDITIONS

Grids Processors Times Errors

Case L M N L M N× × P t(s) Dirichlet Neumann

1 32 32 32 43.3 10× 1 0.0 44.70 10−× 33.34 10−×
2 64 64 64 52.6 10× 1 0.04 41.19 10−× 48.34 10−×
3 128 128 128 62.1 10× 1 0.52 52.99 10−× 42.08 10−×
4 256 256 256 71.7 10× 1 6.22 67.48 10−× 55.21 10−×
5 512 512 512 81.3 10× 16 6.06 61.84 10−× 51.31 10−×
6 1024 1024 1024 91.0 10× 64 22.4 74.59 10−× 63.26 10−×
7 1280 1280 1280 92.1 10× 64 40.9 72.94 10−× 62.09 10−×
8 1536 1536 1536 93.6 10× 256 24.1 72.00 10−× 61.42 10−×

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:1, No:3, 2007

197

obtain the total coefficients for the inverse fast Fourier
transform for a single processor is performed. This task
costs 2

3 (1) /t P LMN P− .
• A set of LM/P inverse fast Fourier transforms for N

points in z direction on each processor costs
1 / logt LM PN N operations.

• (P-1) sets of 2/LMN P crossing communication to
obtain the final solution of each sub-domain are
performed. This task costs 2

3 (1) /t P LMN P− .
Thus, the total time used for the computation of strip

parallel algorithm of fast direct Poisson solver is equal to:
()

() ()
1

2
2 3

2 / log / log

/ 4 (1) /
pT LM PN N LN PM M t

LMN P t P LMN P t

= +

+ + −
 (21)

Finally, speed-up for the parallel algorithm can be obtained by
the asymptotic estimation as:

() ()
() () ()

1 2

1 2 3

2 log log
2 log log 4 (1) /

s

p

TS
T

LMN N LNM M t LMN t
P

LMN N LNM M t LMN t P LMN P t

= =

+ +
+ + + −

(22)

and the corresponding E efficiency coefficient can be
estimated as:

() ()
() () ()

1 2

1 2 3

2 log log
2 log log 4 (1) /

SE
P

LMN N LNM M t LMN t
LMN N LNM M t LMN t P LMN P t

= =

+ +
+ + + −

 (23)

Therefore, it is obvious that the efficiency E is lower than
unity and that the latter decreases while increasing the number
of processors involved. According to the number of operation
analyses required for the fast direct Poisson solver with strip
decomposition parallelization, the number of operations for
the two y and z Fourier directions are (log)M MΟ and

(log)N NΟ respectively when the direct solver of tri-diagonal
system in x-direction takes about ()LΟ operations. Thus, for a
given problem involving L, M and N of different orders of
magnitude, a clever choice is to select the direction of the
highest point resolution for the tri-diagonal system resolution,
the two other directions being the Fourier’s direction. Note
that the number of points in the two Fourier directions must be
divided by the proposed processor number.

C. Efficiency
 In order to estimate the efficiency of the proposed

algorithm, several tests were carried out using Problem 1 with
Dirichlet boundary conditions. Details on the grid mesh are
given in Table 3. Case M1 corresponds to the largest test case
performed on a single processor while case M5 is the largest
grid mesh points performed on 256 processors. A so large
number of processors was necessary to estimate the
performance of the proposed algorithm (from 1 to 256
processors). Figure 7 presents running times while allocating
1, 2, 4, 8, 16, 32, 64, 128, 256 processors for several grids
given in Table 3. It is obvious that the time variation is
approximately linear in the logarithmic scale, i.e. the
algorithm offers a good performance for parallelization.
Moreover, it is important to emphasize that the slope of
variation time remained constant whatever the number of grid

points considered.
Moreover, in order to evaluate the cost of parallelization of

the proposed Poisson solver, speedup and efficiency were
estimated. Speedup is estimated by comparing running time
for a single processor against that obtained in a multiple
processor architecture. Table 4 presents running times for
parallel algorithm using up to 128 processors for case M1
grid. S Speedup factor is defined as the ratio of running time
on a single processor using the sequential algorithm with time
taken to solve the problem using P processors. For example,
in Table 4, the speedup reaches about 66 for a 128 processor
test.

Based on running times and speedup factor for M1 test

0.1

1

10

100

1 10 100 1000
number of processors

running time (s)

M1
M2
M3
M4
M5

0.1

1

10

100

1 10 100 1000
number of processors

running time (s)

M1
M2
M3
M4
M5

Fig. 7 Running times change with regard to the number of processors
used for a polynomial problem on a 3D Cartesian grid with Dirichlet
boundary conditions in x,y,z direction. Running times are plotted in a

log-log scale for several grids.

TABLE III
LIST OF GRIDS USED FOR TESTING PERFORMANCE AND EFFICIENCY OF THE

PROPOSED ALGORITHM

Case L M N L M N× ×

M1 256 512 512 76.7 10×
M2 512 512 512 81.3 10×
M3 1024 1024 1024 91.0 10×
M4 1280 1280 1280 92.1 10×
M5 1536 1536 1536 93.6 10×

TABLE IV
SPEED-UPS AND EFFICIENCIES OF STRIP DECOMPOSITION PARALLELIZATION

ALGORITHM OF FAST DIRECT POISSON SOLVER FOR TEST GRID M1

Number of

processors

Running

time (s)

Communication

time (s)

Speedup

S

Efficiency

1 36.40 0.00 1.0 1.00
2 19.00 0.80 1.9 0.96
4 9.80 0.70 3.7 0.93
8 5.20 0.65 7.0 0.88

16 2.80 0.53 13.0 0.81
32 1.53 0.39 23.8 0.74
64 0.88 0.31 41.4 0.65
128 0.55 0.27 66.2 0.52

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:1, No:3, 2007

198

case, it is useful to stress that the present algorithm offers a
very high degree of efficiency. First, FFT allows one to
minimize the number of operations. Second, the choice of
strip decomposition appears to be a clever way to achieve sub-
domain decomposition. In order to estimate the performance
of the proposed algorithm, efficiency is defined as E = S/P,
i.e. which corresponds to the ratio between speedup and
number of processors. Table 4 also shows efficiencies of the
proposed algorithm for case M1 using up to 128 processors. It
is obvious that the highest efficiency is obtained for P = 1 in
the case of sequential simulation while efficiency decreases
with the increase of number of processors considered.
Speedup and efficiency were estimated for grid M1 since it is
the only one that can be carried out by one single processor.
However, one may ask whether or not the degree of
implementation varied with the increase of the number of grid
points. Unfortunately, previous definitions of speedup and
efficiency are not estimated for other grid cases since the
computational problem cannot be carried out by a mono-
processor. Actually, the cost of the multi-processor running
time used for solving the problem includes computational time
and inter-communication time between each processor.
Following this idea, efficiency E can be defined as the ratio
between computational time and total running time. Such a
definition was applied to this case while total computational
time of direct Poisson solver for a specified grid is
independent of the number of processors. Figure 8 presents
efficiency (with the last definition) of the proposed algorithm
with regard to the increase of number of processors for several
test grids. It is obvious that the order of magnitude in
efficiency is similar to that obtained for grid M1. For a given
test grid, efficiency decreases with the increase of the number

of processors. However, efficiency increases significantly
with regard to the increase of the number of grid points. For
example, when using 128 processor, efficiency of the
algorithm for M1 grid is about 0.52 whereas for grid M5 this
efficiency is about 0.80. Actually, it is important to note that
the proposed algorithm is highly efficient, particularly when

each sub-domain is significantly loaded in terms of grid
points. As clearly observed in the results shown, it is indeed
true that a compromise needs to be found between amounts of
data to transfer with regard to grid points contained per sub-
domain.

V. CONCLUSION
A parallel algorithm based on strip decomposition for 3D

Cartesian staggered grid fast direct Poisson solver was
investigated. The algorithm was developed for the purpose of
solving the Poisson equation on a multi-processor architecture
machine. Two types of boundary conditions were applied for
the test cases and several grid resolutions. Several numbers of
grid points were performed to estimate errors between the
numerical and exact solutions. As expected, these errors
drastically decrease in relation to the increase of the grid
resolutions.

Moreover, performance of parallelization of the proposed
algorithm was particularly well-focused. In our procedure, the
number of operations was estimated. Running time decreases
exponentially with the increase of the number of processors.
In addition, several grids were tested to estimate the efficiency
of the algorithm. By using the MPI library on an IBM-P4
multi-processor machine, the Poisson equation was solved
with several grid resolution and various processor numbers,
the largest involving P = 256 processors with 93.6 10× grid
points. The CPU time was equal to 24 seconds so that
efficiency was about 0.80. The proposed algorithm offered a
high efficiency for large grid meshes and the communication
times were found smaller than 20 percent of total running
times. As a result, one may conclude that the efficiency of the
proposed method when dealing with Poisson solver is quite
significant for large-scale physical problems as well. Finally,
based on this proposed parallel algorithm, it is possible to
develop such techniques of strip decomposition parallelization
for other coordinate grid meshes as well as 3D cylindrical
problems.

ACKNOWLEDGMENT
Computations were carried out at the Institut de

Développement et des Ressources en Informatique
Scientifique (IDRIS), the computational center of the Centre
National de la Recherche Scientifique (CNRS). The authors
wish to warmly thank the head of IDRIS department, V.
Alessandrini, for his constant willingness to provide needed
support.

REFERENCES

[1] R. Löhner, C. Yang, J, J. Cebral, F. Camelli, O. Soto and J. Waltz,

“Improving the speed and accuracy of projection-type incompressible
flow solvers”, Comput. Methods Appl. Mech. Engrg, vol. 195, 2006, pp.
3087-3109.

[2] R. W. Hockney, “A fast direct solution of Poisson equation using Fourier

analysis”, J. Assoc. Comput. Mach., vol. 8, 1965, pp. 95-113.

0.00

0.25

0.50

0.75

1.00

1 10 100 1000number of processors

efficiency

M1
M2
M3
M4
M5

0.00

0.25

0.50

0.75

1.00

1 10 100 1000number of processors

efficiency

M1
M2
M3
M4
M5

Fig. 8 Efficiencies of strip domain decomposition parallelization
variation for fast direct Poisson solver with regard to the number of
processors. Efficiencies were obtained from the tests of Poisson's
equation for a polynomial problem on a 3D Cartesian grid with
Dirichlet boundary conditions in x,y,z direction for several grids.

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:1, No:3, 2007

199

[3] J. Cooley and J. Tukey, “An algorithm for the machine calculation of

complex Fourier series”, Math. Comput., vol. 19, 1965, pp. 297-301.
[4] A. McKenney, L. Greengard and A. Mayo, “A fast Poisson solver for

complex geometries”, J. Comput. Phys., vol. 118, 1995, pp. 348-355.
[5] U. Schumann and R. A. Sweet, “Fast Fourier transforms for direct solution

of Poisson's equation with staggered boundary conditions”, J. Comput.
Phys., vol. 75, 1988, pp. 123-127.

[6] C. Temperton, “On the FACR(l) algorithm for the discrete Poisson
equation”, J. Comput. Phys., vol. 34, 1980, pp. 314-329.

[7] E. Braverman, M. Israeli and A. Averbuch, “A fast solver for a 3D
Helmholtz equation”, SIAM J. Sci. Comput., vol. 20(6), 1999, pp. 2237-
2260.

[8] G. H. Golub, L. C. Huang, H. Simon and W. P. Tang, “A fast Poisson
solver for the finite difference solution of the incompressible Navier-
Stokes enquations”, SIAM J. Sci. Comput., vol. 19(5), 1998, pp. 1606-
1624.

[9] J. C. Adams and P. N. Swarztrauber, “SPHEREPACK 3.0: A model
development facility”, Monthly Weather Review, vol. 127, 1999, pp.
1872-1878.

[10] P. N. Swarztrauber and R. A. Sweet, “Vector and parallel methods for the
direct solution of Poisson's equation”, J. Comput. and Appl. Math., vol.
27, 1989, pp. 241-163.

[11] P. N. Swarztrauber, “The vector multiprocessor”, Int. J. High Speed
Comput., vol. 11, 2000, pp. 1-18.

[12] U. Schumann and M. Strietzel, “Parallel solution of Tridiagonal systems
for the Poisson equation”, J. Sci. Comput., vol. 10, 1995, pp. 181-190.

[13] T. F. Chan and D. C. Resasco, “A domain-decomposed fast Poisson
solver on a rectangle”, SIAM J. Sci. Stat. Comput., vol. 8, 1987, pp. 27-
42.

[14] T. Hoshino, Y. Sato and Y. Asamoto, “Parallel Poisson solver FAGECR-
implementation and performance evaluation on PAX computer”, J. Info.
Proc., vol. 12(1), 1988, pp. 20-26.

[15] S. Ghanemi, “A domain decomposition method for Helmholtz scattering
problems”, Ninth. Int. conf. Dom. Demcomp. Meth., 1998, pp. 105-112.

[16] J. -Y. Lee and K. Jeong, “A parallel Poisson solver using the fast
multipole method on networks of workstations”, Comput. Math. Appl.,
vol. 36, 1998, pp. 47-61.

[17] P. Grandclément, S. Bonazzola, E. Gourgoulhon and J. -A. Marck, “A
multidomain spectral method for scalar and vectorial Poisson equations
with noncompact sources”, J. Comput. Phys., 170, 2001, pp. 231-260.

[18] M. Israeli, L. Vozovoi and A. Averbuch, “Parallelizing implicit algorithm
fo time-dependent problems by parabolic domain decomposition”, J. Sci.
Comput,. Vol. 8(2), 1993, pp. 151-166.

[19] W. Briggs, L. Hart, R. A. Sweet and A. O'Gallagher, “Multiprocessor
FFT methods”, SIAM J. Sci. Stat. Comput., vol. 8, 1987, pp. 27.

[20] P. N. Swarztrauber, “Multiprocessor FFTs”, Parallel Computing, vol. 5,
1987, pp. 197-210.

[21] P. N. Swarztrauber and R. A. Sweet, “The Fourier and cyclic reduction
methods for solving Poisson's equation”, In: Handbook of Fluid
Dynamics and Fluid Machinery, J. A. Schetz and A. E. Fuhs, eds., John
Wiley and Sons, New York, NY, 1996.

[22] L. Borges and P. Daripa, “A fast parallel algorithm for the Poisson
equation on a disk”, J. Comput. Phys., vol. 169, 2001, pp. 151-192.

[23] J. Yang and E. Balaras, “An embedded-boundary formulation for large-
eddy simulation of turbulent flows interacting with moving boundaries”,
J. Comput. Phys., vol. 215(1), 2006, pp. 12-40.

[24] E. Balaras, “Modeling complex boundaries using an external force field
on fixed Cartesian grids in large-eddy simulations”, Computers & Fluids,
vol. 33(3), 2004, pp. 375-404.

[25] E. A. Fadlun, R. Verzicco, P. Orlandi and J. Mohd-Yusof, “Combined
Immersed-Boundary Finite-Difference Methods for Three-Dimensional
Complex Flow Simulations”, J. Comput. Phys., vol. 161(1), 2000, pp. 35-
60.

[26] P. Pacheco, “Parallel programming with MPI”, Morgan Kaufmann, San
Francisco, CA, 1997.

[27] G. Sköllermo, “A Fourier method for the numerical solution of Poisson's
equation”, Math. Comput., vol. 29, 1975, pp. 697.

