
International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:3, No:1, 2009

117

Abstract—This paper describes an interfacing of C and the

TMS320C6713 assembly language which is crucially important for

many real-time applications. Similarly, interfacing of C with the

assembly language of a conventional microprocessor such as

MC68000 is presented for comparison. However, it should be noted

that the way the C compiler passes arguments among various

functions in the TMS320C6713-based environment is totally

different from the way the C compiler passes arguments in a

conventional microprocessor such as MC68000. Therefore, it is very

important for a user of the TMS320C6713-based system to properly

understand and follow the register conventions when interfacing C

with the TMS320C6713 assembly language subroutine. It should be

also noted that in some cases (examples 6-9) the endian-mode of the

board needs to be taken into consideration. In this paper, one method

is presented in great detail. Other methods will be presented in the

future.

Keywords—Assembly language, high level language, interfacing,

stack, arguments.

I. INTRODUCTION

N many real-time applications, execution-time is very

important. In order to achieve that, the relevant code should

be initially developed using a high-level language and then

converted into assembly language, which can then be called

from within the high-level language program [1], [2], [4].

The way in which compilers pass arguments among various

functions in a particular micro-based system varies from one

system to another [1]-[4]. Therefore, thorough understanding

of how compilers pass arguments among various functions in a

particular system plays an important role in interfacing high-

level and assembly language. In many micro-based systems,

the most efficient way of passing arguments among various

functions is through stack [1]-[2]. However, the way the C

compiler passes arguments from the calling function to the

called function in the TMS320C6713-based environment is

totally different from the way the C compiler passes arguments

in a conventional microprocessor such as MC68000 [1]-[3].

Hence, it is very important for a user of the TMS320C6713-

based system to properly understand and follow the register

conventions and take into account the endianness of the board

Abdullah Wardak is currently a senior lecturer in Southampton Solent

University, Faculty of Technology, School of Computing and

Communications, East Park Terrace, Southampton SO14 OYN, UK (phone:

0044(0)2380319213, fax. 0044(0)2380334441, e-mail:

Abdullah.wardak@solent.ac.uk).

(see examples 6-9) when interfacing C with the C6713

assembly language subroutine.

II. INTERFACING C AND MC68000 ASSEMBLY

Stack of the MC68000 microprocessor plays a major role in

interfacing C with the MC68000 assembly language. The

MC68000 stack is used as a tool for passing various arguments

from the main function in C to the MC68000 assembly language

subroutines and from one assembly language subroutine to

another.

When an argument is pushed onto the MC68000 stack, the

stack pointer (A7) is pre-decremented by the size of the

argument and then the argument is pushed onto the stack.

When an argument is popped off the stack, the stack pointer

(A7) is post-incremented by the size of the argument. For

example, in Fig. 1 the stack pointer (A7) is pre-decremented

by 4 each time an argument is pushed onto the stack. This is

because each argument occupies 4 bytes on the stack.

Similarly, wherever the stack pointer (A7) is pointing to, the

item is popped off the stack and the stack pointer is then

incremented by 4 afterwards.

Examples 1 and 2 describe the role of the MC68000 stack in

interfacing the two programming languages. In example 1, the

C function (asmfunc) is converted into MC68000 assembly

language subroutine as shown in Fig. 1. The MC68000

assembly language subroutine is then called from the main

function in C and the compiler pushes the arguments onto the

stack in a manner presented in Fig. 1. Similarly in example 2,

the equations which are used in 3-D image transformation and

animation are implemented in MC68000 assembly language

subroutine, rotx (see Fig. 2b). The implemented assembly

language subroutine (rotx) is then called from the main

function in C and the compiler pushes the arguments onto the

stack in the manner shown in Fig. 2a.

Example 1

Interfacing C and TMS320C6713

Assembly Language (Part-I)

Abdullah A. Wardak

I

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:3, No:1, 2009

118

Following is the MC68000 assembly language translation of

the above C function, asmfunc().

Fig. 1 Describes how the C compiler pushes arguments onto the
MC68000 stack

Example 2: In this example, the following equations

which are used in 3-D image transformation and animation are,

implemented in MC68000 assembly language. The way, the C

compiler pushes the arguments onto the MC68000 stack is

shown in Fig. 2. The relevant memory map which clearly

displays how the coordinates of each vertex is stored in the

memory is also presented. The memory map presented in Fig.

2, is essential and very helpful during the implementation

process.

main()

{

int size, sinA, cosA;

VERTEX eye[8];
eye[0].x = 0; eye[0].y = 0; eye[0].z = 0;

eye[1].x = 0; eye[1].y = 5; eye[1].z = 0;
eye[2].x = 5; eye[2].y = 5; eye[2].z = 0;

eye[3].x = 5; eye[3].y = 0; eye[3].z = 0;

eye[4].x = 5; eye[4].y = 0; eye[4].z = 5;

eye[5].x = 0; eye[5].y = 0; eye[5].z = 5;

eye[6].x = 0; eye[6].y = 5; eye[6].z = 5;

eye[7].x = 5; eye[7].y = 5; eye[7].z = 5;
sinA = 1;
cosA = 0;
size = 8;

rotx(&eye[0], size, sinA, cosA);
}

#include <stdio.h>

typedef struct vertex_rec {

int x;

int y;

int z;
} VERTEX;

extern rotx();

eye[0].x

eye[0].y

eye[0].z

eye[1].x

eye[1].y

eye[1].z

eye[2].x

eye[2].y

eye[2].z

eye[3].x

eye[3].y

eye[3].z

eye[4].x

eye[4].y

eye[4].z

eye[5].x

eye[5].y

eye[5].z

eye[6].x

eye[6].y

eye[6].z

eye[7].x

eye[7].y

eye[7].z

Memory
Low-Address

 + 0x4

 + 0x8

 + 0xC

 + 0x10

 + 0x14

 + 0x18

 + 0x1C

 + 0x20

 + 0x24

 + 0x28

 + 0x2C

 + 0x30

 + 0x34

 + 0x38

 + 0x3C

 + 0x40

 + 0x44

 + 0x48

 + 0x4C

 + 0x50

 + 0x54

 + 0x58

 + 0x5C

 + 0x60

High-Address
8-bit

MC68000 STACK

Return
Address

Value of

Value of

Value of
size

Address of

A7-2010

A7-1610

A7-1210

A7-8

A7-4

A7(Initially)

eye[0]

High-Address

Low-Address

cosA

sinA

8-bit

Fig. 2a Describes how the C compiler pushes arguments onto

MC68000 stack and the corresponding memory-map

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:3, No:1, 2009

119

Fig. 2b Implementation of the C function rotx() in MC68000

assembly language

III. INTERFACING C AND TMS320C6713 ASSEMBLY

There are three ways in which the C compiler passes

arguments from one function to another in the TMS320C6713-

based environment. In the case of pure C programming, the

user of the TMS320C6713-based system does not need to

know and also does not need to worry how the C compiler

passes the arguments from one function to another. However,

in the case of interfacing C with TMS320C6713 assembly

language subroutine, it is crucially important for a user to

understand how the C compiler passes the arguments from a C

function into a TMS320C6713 assembly subroutine. In the

following sections, only one way is presented in detail. Other

ways will be presented in the future.

A. Passing Arguments through the Registers Only

In this case, the C compiler places the arguments inside the

registers in a special manner and the user of the

TMS320C6713-based system needs to be aware of this fact

and use it correctly when interfacing C with the

TMS320C6713 assembly language [3], [8].

It is vitally important for a user of the TMS320C6713-based

system to properly understand and follow the register

conventions when interfacing C with TMS320C6713 assembly

language subroutine. The register conventions dictate how the

C compiler uses registers for passing arguments between

functions and how values are preserved across function calls

[3], [5].

When a calling function passes arguments to a called

function, up to the first 10 arguments are placed in registers

A4, B4, A6, B6, A8, B8, A10, B10, A12, and B12

respectively and the remaining arguments are placed on the

stack [3]. As shown in example-3, the integer values of the

arguments i and j are placed in registers A4 and B4

respectively; while the address of the argument k is placed in

register A6 (see Fig. 3a). By convention, the first argument is

the left most argument (i.e. i in this case). For better

understanding, the C function (asmfunc) is converted into the

TMS320C6713 assembly language subroutine (see Fig. 3b).

The return address to the calling function is normally placed in

B3 and for this reason a branch to B3 needs to be performed at

the end of the assembly language subroutine. It is worth

mentioning that the way the C compiler passes arguments from

the calling function to the called function in the

TMS320C6713-based environment is totally different from the

way the C compiler passes arguments in a conventional

microprocessor such as MC68000 [1]-[2]. It should be noted

that this example gives the same correct result when the

TMS320C6713 DSK board is operated either in little-endian

or in big-endian mode.

In example-4, the address of the first argument is placed in

register A4 and the integer value of the second argument is

placed in B4; while the floating-point values of the third and

fourth arguments are placed in registers A6 and B6

respectively (see Fig. 4a). This example presents the

implementation of the equations used in 3-D image

transformation and animation, in TMS320C6713 assembly

language. The C function (asmfunc) is converted into the

TMS320C6713 assembly language subroutine as shown in Fig.

4b. It should be noted that this example works correctly and

produces the same correct result in both little-endian and big-

endian mode of the TMS320C6713 DSK board (i.e.

endianness in this example does not really matter).

Example-5 demonstrates how the C compiler places the

floating-point values of the arguments x and y in registers A4

and B4 respectively and places the address of the argument z

in register A6 as shown in Fig. 5a. Appropriate

TMS320C6713 assembly language instructions such as single-

precision are used for floating-point data manipulation. The

conversion of the C function (asmfunc) into the

TMS320C6713 assembly language is presented in Fig. 5b. It

should be noted that in this example, the endianness of the

TMS320C6713 DSK board also does not matter.

In example-6, the double-precision values of the arguments

x and y are placed in register pairs A5:A4 and B5:B4

respectively; while the address of the argument z is placed in

register A6 (see Fig. 6a). In other words, the upper and lower

32-bits of x and y are placed in register pairs A5:A4 and

B5:B4 respectively. The double-precision value of z itself is

stored as 64-bits in memory as shown in Fig. 6b by the

memory layout. Appropriate assembly language instructions

such as double-precision addition (ADDDP) and double-

precision load (LDDW) are employed for data manipulation

[6]-[7]. The reader needs to pay attention to the way the final

double-precision value of z is stored into the memory when the

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:3, No:1, 2009

120

TMS320C6713 board is operated in the little-endian mode

(see Fig. 6b).

In example-7, the double-precision values of the arguments

x and y are placed in register pairs A5:A4 and B5:B4

respectively; while the address of the argument z is placed in

register A6. In other words, the upper and lower 32-bits of x

and y are placed in register pairs A5:A4 and B5:B4

respectively (see Fig. 7a). The double-precision value of z

itself is stored as 64-bits in memory as shown in Fig. 7b by the

memory layout. Appropriate assembly language instructions

such as double-precision addition (ADDDP) and double-

precision load (LDDW) are employed for data manipulation

[6]-[7]. The reader needs to pay attention to the way the final

double-precision value of z is stored into the memory when the

TMS320C6713 board is operated in big-endian mode.

Thorough comparison of examples 6 and 7 will clarify the

difference using the two modes of the board.

In example-8, the long values of the arguments x and y are

placed in register pairs A5:A4 and B5:B4 respectively; and the

address of the argument z is placed in register A6. In other

words, the upper and lower 32-bits of x and y are placed in

register pairs A5:A4 and B5:B4 respectively (see Fig. 8a). The

long value of z itself is stored as 64-bits as shown in the

memory-layout. Appropriate assembly language instructions

are employed for data manipulation. The reader is encouraged

to pay lots of attention to the implementation of the C function

(asmfunc) into the TMS320C6713 assembly language as

shown in Fig. 8b, especially to the way the final long value of

z is stored into the memory in little-endian.

Finally, in example-9, the long values of the arguments x

and y are placed in register pairs A5:A4 and B5:B4

respectively; and the address of the argument z is placed in

register A6. In other words, the upper and lower 32-bits of x

and y are placed in register pairs A5:A4 and B5:B4

respectively (Fig. 9a). The long value of z itself is stored as

64-bits as shown in the memory-layout. Appropriate assembly

language instructions are employed for data manipulation. The

reader is encouraged to pay lots of attention to the

implementation of the C function (asmfunc) into the

TMS320C6713 assembly language as shown in Fig. 9b,

especially to the way the final long value of z is stored into the

memory in big-endian mode. Thorough comparison of

examples 8 and 9 will highlight the difference.

Example 3

main()
{

int i,j,k;
i=5;

asmfunc(i, j, &k);
}

#include <stdio.h>

extern asmfunc (int , int , int *);

A4

cprog.c

j=6;

k=8;

{
a = a + b;

b = b + a;

}

asmfunc (int a, int b, int *c)

*c = *c + b;B4
A6

Fig. 3a Presents how C compiler places arguments into
TMS320C6713 registers

Fig. 3b Implementation of the C function asmfun() in

TMS320C6713 assembly language

Example 4: In this example, the following equations

which are used in 3-D image transformation and animation are,

implemented in TMS320C6713 assembly language. The way

the C compiler passes the arguments from the calling function

in C to a called function in TMS320C6713 assembly is

displayed. The memory map, which is crucially important

during the implementation process, also presented.

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:3, No:1, 2009

121

main()

{

int size;

VERTEX eye[8];

eye[0].x = 0.0; eye[0].y = 0.0; eye[0].z = 0.0;

eye[1].x = 0.0; eye[1].y = 5.0; eye[1].z = 0.0;

eye[2].x = 5.0; eye[2].y = 5.0; eye[2].z = 0.0;

eye[3].x = 5.0; eye[3].y = 0.0; eye[3].z = 0.0;

eye[4].x = 5.0; eye[4].y = 0.0; eye[4].z = 5.0;

eye[5].x = 0.0; eye[5].y = 0.0; eye[5].z = 5.0;

eye[6].x = 0.0; eye[6].y = 5.0; eye[6].z = 5.0;

eye[7].x = 5.0; eye[7].y = 5.0; eye[7].z = 5.0;

sinA = 0.5;

cosA = 0.866;

size = 8;

#include <stdio.h>

typedef struct vertex_rec {

float x;

float y;

float z;
} VERTEX;

cprog.c

float sinA, cosA;

rotx(&eye[0], size, sinA, cosA);
}

A4

B4

A6

B6

extern float rotx(VERTEX * , int , float , float);

Fig. 4a Presents how C compiler places arguments into

TMS320C6713 registers

eye[0].x

eye[0].y

eye[0].z

eye[1].x

eye[1].y

eye[1].z

eye[2].x

eye[2].y

eye[2].z

eye[3].x

eye[3].y

eye[3].z

eye[4].x

eye[4].y

eye[4].z

eye[5].x

eye[5].y

eye[5].z

eye[6].x

eye[6].y

eye[6].z

eye[7].x

eye[7].y

eye[7].z

Memory

Low-Address
.global _rotx

.text

NOP

LDW.D1

MPYSP.M1X

SUBSP.L1

STW.D1

MPYSP.M1

ADDSP.L1

STW.D1

SUB.D1

B

MPYSP.M1

MPYSP.M1X

NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

B4, A1

*+A4[0x1], A8

5

*+A4[0x2], A9

A8, B6, A10

A10, A11, A11

A11, *++A4[0x1]

A6, A8, A11

A10, A11, A10

A10, *++A4[0x1]

A1, 1, A1

loop

B3

A6, A9, A11

B6, A9, A10

5

5

5

5

5

5

5

5

5

5

5

5NOP

MV_rotx

LDW.D1loop

B[A1]

A4

A4 + 0x4

A4 + 0x8

A4 + 0xC

A4 + 0x10

A4 + 0x14

A4 + 0x18

A4 + 0x1C

A4 + 0x20

A4 + 0x24

A4 + 0x28

A4 + 0x2C

A4 + 0x30

A4 + 0x34

A4 + 0x38

A4 + 0x3C

A4 + 0x40

A4 + 0x44

A4 + 0x48

A4 + 0x4C

A4 + 0x50

A4 + 0x54

A4 + 0x58

A4 + 0x5C

A4 + 0x60

assembly.asm

Address

 of eye[0]

High-Address

8-bit

ADD.L1 4, A4, A4
5NOP

Fig. 4b The memory map and the translation of the function, rotx()

into the TMS320C6713 assembly language

Example 5

Fig. 5a How C compiler places arguments into C6713 registers

Fig. 5b Translation of asmfunc() into TMS320C6713 assembly

language subroutine

Example 6

Fig. 6a How C compiler places arguments into C6713 registers

Fig. 6b Memory-map and conversion of asmfunc() into C6713

assembly language subroutine in little-endian

Example 7

Fig. 7a How C compiler places arguments in C6713 registers

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:3, No:1, 2009

122

Fig. 7b Memory-map and conversion of asmfunc() into C6713

assembly language subroutine in big-endian

Example 8

Fig. 8a Describes how C compiler places arguments into

TMS320C6713 registers

Fig. 8b Memory-map and conversion of asmfunc() into C6713

assembly language subroutine in little-endian.

 Example 9

Fig. 9a Presents how C compiler places arguments into

TMS320C6713 registers

Fig. 9b Memory-map and conversion of asmfunc() into C6713

assembly language subroutine in big-endian

IV. CONCLUSION

One method of interfacing C with the TMS320C6713

assembly language has been comprehensively described. The

concept presented in this paper will be essential and of great

interest to many users who are employing a micro-based

system for their applications; and especially for those users

who want to use the TMS320C6713-based system for

assembly language programming and signal processing. It is

strongly recommended to the users of the TMS320C6713-

based systems to properly understand and follow the register

conventions when interfacing C with the TMS320C6713

assembly language subroutine; otherwise, it would cause lots

of confusion and erroneous debugging results as far as passing

arguments among various functions is concerned. The

presented software and concept have been tested extensively by

examining different types of examples under various conditions

and has proved highly reliable in operation. Finally, the user in

some cases needs to take into consideration the endianness of the

TMS320C6713 DSK board during the interfacing of C with the

TMS320C6713 assembly language (see examples 6-9).

ACKNOWLEDGMENT

I would like to thank Southampton Solent University,

Faculty of Technology, for giving me the opportunity and help

to carry out this work. I would also like to thank Kevin Walsh

and Jomo Batola for their support and encouragement.

REFERENCES

[1] A A Wardak, G A King, R Backhouse, Interfacing high-level and

assembly language with microcodes in 3-D image generation. Journal of

Microprocessors and Microsystems, Vol. 18, No.4, May 1994,

Butterworth-Heinemann Ltd.

[2] A A Wardak, Real-Time 3-D Image Generation with TMS320C30

EVM, Journal of Microcomputer Applications, Vol. 18, pp 355-373,

1995, Academic Press Limited.

[3] TMS320C6000 Optimizing C Compiler User’s Guide, SPRU187K,

Texas Instruments, Dallas, TX, 2002.

[4] R Chassaing, Digital Signal Processing and Applications with the 6713

and C6416 DSK, Wiley, New York, 2005.

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:3, No:1, 2009

123

[5] TMS320C6000 Programmer’s Guide, SPRU198G, Texas Instruments,

Dallas, TX, 2002.

[6] TMS320C6000 CPU and Instruction Set Reference Guide, October

2000, Literature Number: SPRU189F.

[7] TMS320C6000 Assembly Language Tools, User's Guide, Literature

Number: SPRU186K, October 2002.

[8] http://193.140.141.8/~redizkan/Interfacing_C_and_Assembly.pdf

Dr. Abdullah Wardak was a lecturer at the Kabul University, Faculty of

Engineering, Kabul, Afghanistan from 1978 to 1983, where he received his

BSc in electrical and electronics engineering in 1978. He received his MSc in

electronic control engineering in 1987 from Salford University, UK. He

received his PhD in 1991 from Bradford University, UK. Currently he is a

senior lecturer in Southampton Solent University, Faculty of Technology,

School of Computing and Communications.

