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MTSSM - A Framework for Multi-Track
Segmentation of Symbolic Music

Brigitte Rafael and Stefan M. Oertl

Abstract—Music segmentation is a key issue in music in-
formation retrieval (MIR) as it provides an insight into the
internal structure of a composition. Structural information about
a composition can improve several tasks related to MIR such
as searching and browsing large music collections, visualizing
musical structure, lyric alignment, and music summarization.
The authors of this paper present the MTSSM framework, a two-
layer framework for the multi-track segmentation of symbolic
music. The strength of this framework lies in the combination of
existing methods for local track segmentation and the application
of global structure information spanning via multiple tracks.
The first layer of the MTSSM uses various string matching
techniques to detect the best candidate segmentations for each
track of a multi-track composition independently. The second
layer combines all single track results and determines the best
segmentation for each track in respect to the global structure of
the composition.

Index Terms—Pattern Recognition, Music Information Re-
trieval, Machine Learning.

I. INTRODUCTION

DURING the last years plenty of research has been done
in the field of music information retrieval (MIR), also

including various aspects of music segmentation [1], [2].
Music segmentation targets at the identification of boundaries
between structurally relevant parts of a composition to enable
or improve MIR-related tasks such as effective searching and
browsing within large music collections [3] as well as the com-
pression, classification and visualisation of music [4], music
summarization [5], lyric alignment [6], and the development
of recommendation systems. Current approaches are based on
a similarity matrix [7], [8], [9], hidden Markov models [1], or
the application of the shortest path algorithm [2]. The most
common approach aims at detecting structure boundaries with
the aid of a novelty score which is described in [6] and [7].
Methods using that score are limited to compositions following
certain rules and principles as they require the existence of
domain knowledge (extraopus). To the contrary, analyzing
music based on its self-similarity is not dependent on this kind
of a priori knowledge but focuses on the information provided
within the piece itself (intraopus). In consequence, methods
using self-similarity can be applied to a broader musical
spectrum and are therefore chosen for the MTSSM. The local
segmentation methods of the MTSSM make use of repetitions
to detect segments and then cluster similar segments to create
segment groups (i.e., collections of several nonoverlapping
segments that fulfill a given similarity condition). However,
as the MTSSM is a modular framework, it can be extended to
apply methods based on novelty scores as well.

Music audio formats like MP3, WAV, or MPEG dominate
digital music collections, therefore creating a focus on audio
data for most past and current projects. There are, however,
also music formats representing music in symbolic form. The
most popular one is the MIDI (Musical Instrument Digital
Interface) format which is used in the MTSSM framework. An
advantage of MIDI compared to digital audio is the availability
of separate tracks. Instead of having all instruments merged
into one common data stream, the information in MIDI files is
separated into single tracks. Nevertheless current approaches
in MIR working on symbolic music do not take advantage
of the single track data but still merge all data and try to
achieve one global segmentation for the whole composition.
There are, however, compositions where local track structures
differ from each other (because of polyrhythmic tracks or time
offsets between local patterns). Achieving local segmentations
for each track can provide additional information about the
global structure of the composition. If one global segmentation
is needed, the local segmentations can still be weighted and
summed up to form a global segmentation.

In this paper the authors present a framework that combines
single track segmentations to find the best segmentation for
each track in respect to the global structure of a multi-
track composition. Following the introduction, the second
section gives an overview of the architecture of the MTSSM
framework. The third section introduces the reader to the
application of string matching techniques for pattern matching
in symbolic music data since they are used for the segmen-
tation of single tracks. The fourth section demonstrates the
combination of single track segmentations to achieve a multi-
track segmentation for each track. An outlook on future work
concludes the paper.
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II. MTSSM

The MTSSM is a modular framework that allows the
application of existing segmentation methods for the segmen-
tation of single tracks and includes their global combination
to provide information about the geometrical structure of a
composition. The algorithm of the framework is not limited
to one local segmentation method but offers the possibility to
apply various methods to each track.

Fig. 1 shows the architecture of the MTSSM. The first layer
of the framework creates several candidate segmentations for
each track by applying local segmentation methods. All results
are evaluated to produce a local score for each candidate
segmentation. The second layer of the MTSSM performs a
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Fig. 1. Structure of the MTSSM-framework

pairwise comparison of all local results belonging to different
tracks and calculates a global score for each local segmentation
based on the correlation to segmentations of other tracks. As
a final step the algorithm chooses the best segmentation for
each track resulting from a combination of the local and global
score. The following sections give a more detailed description
of the MTSSM’s components.

III. LOCAL SEGMENTATION METHODS

MIDI data provides exact information about pitches and
rhythms of a composition. Consequently, each music sequence
can be expressed as one or several strings allowing the
application of string matching techniques for pattern recog-
nition [10], [11], [12], [13]. Since string matching techniques
are very common in MIR, they have also been chosen for
the local segmentation component of the MTSSM. Fig. 2
illustrates the architecture of this component. An arbitrary
number of methods can be applied to each track to produce
its local candidate segmentations. For the first version of the
MTSSM the authors chose to apply one exact string matching
method using a correlative matrix and one approximate string
matching method using dynamic programming. Both methods
are described in section III-A and III-B, respectively.

There are several possibilities to transform a musical se-
quence into a string. Most authors choose a numerical rep-
resentation since using letters leaves room for ambiguities
(e.g., C# and Db could be seen as different symbols al-
though representing the same pitch enharmonically) and does
not provide information about the current octave. Expressing
pitches with their MIDI pitch values (e.g., 60 for Middle C)
avoids ambiguities. To get an octave-invariant representation
the modulo operator can be applied to all pitches.

String matching algorithms are available in a broad range
for analyzing music data represented by strings. Charras et al.

Fig. 2. Local Segmentation of each track

[14] give a good introduction to several of them. Common
approaches for exact matching are described in [15], [16],
[17]. Exact matching is limited to the detection of exact rep-
etitions. In many compositions approximate patterns are more
frequent than exact ones. Their detection is also important for
most applications so the focus in music information retrieval
has switched to approximate string matching [18]. Some
approaches combine exact and approximate string matching in
an effort to benefit from the advantages of both methods [17].
The MTSSM framework uses both exact and approximate
string matching, taking advantage of the details given by the
MIDI representation.

MIDI data offers a wide variety of attributes to be extracted
from a music sequence. Some basic features include exact
pitch values, relative and absolute onset and offset times
of notes, and velocity values. From these features many
more note characteristics can be derived: pitch intervals, pitch
contour, relative and absolut durations of notes, polyphonic
notes, positions and durations of rests, etc. All these fea-
tures can be used for pattern matching. However, as some
attributes (e.g., pitch, onset and offset times) can be expressed
in different ways, the best representation–or a combination
of representations–has to be selected for each feature. The
authors of this paper have chosen to use a combination of
exact pitch values, pitch intervals, pitch contour, and note
durations measured in beats (accepting a tolerance interval for
the comparison of durations).

Fig. 3 illustrates an extract from the notes of one track.
The upper part shows a graphical representation of notes
as it might be familiar to the reader. The lower part is
similar to the representation above. It also contains five staff
lines and an additional line to indicate Middle C. Notes are
displayed as boxes. Box widths depend on the durations of the
corresponding notes. Lines above notes indicate an increment
of the pitch value by one semitone. Rests are represented as
lighter boxes. Vertical lines correspond to the vertical lines in
the upper picture and represent bar changes. Rectangles below
notes symbolize a sample segmentation. Segments of the same
shade of gray belong to the same segment groups.
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Fig. 3. Graphical representation of a MIDI track

Fig. 4. Correlative matrix–standard and parametrized version

A. Parameterized Exact String Matching

The exact string matching part is based on the repetition of
exact sequences. A common method to find repeating patterns
is the similarity matrix where each note or time frame is
compared to all other notes or time frames of the composition,
respectively. In a note-based matrix each cell [i, j] contains a
value representing the similarity between the ith and the jth
note.

Hsu et al. [19] describe how to employ a correlative
matrix to find all exact patterns within a musical sequence.
The correlative matrix builds up patterns by considering the
previous cells. If the ith and the jth notes have the same pitch
and i, j > 0 then the new value for cell [i, j] results from
the value of cell [i− 1, j − 1] + 1. If the pitches are identical
but i = 0 or j = 0 the value is set to 1. In the end the
value in each cell gives the longest possible pattern ending
at the corresponding note. The left table in Fig. 4 gives the
correlative matrix for the music sequence of Fig. 5. The gray
boxes indicate that there are three possible patterns of length
3 with two occurences each.

The authors use a parameterized version of the correlative
matrix. Whereas in [19] patterns only consist of notes with
identical pitch values, the authors’ approach also accepts notes

with corresponding pitch intervals or a similar combination
of pitch contour and note durations. As a result, the algo-
rithm detects transpositional invariant patterns, as well. In the
parameterized correlative matrix the value of a cell [i, j] is
increased if the similarity between the ith and the jth note
(calculated from pitch, contour and duration values) exceeds
the similarity threshold. The right table in Fig. 4 gives the
parametrized correlative matrix for the music sequence of Fig.
5. The gray boxes indicate that there is one possible pattern
of length 3 with three and one with two occurences as well
as a pattern of length 5 with two occurences.

Derived from the result of the correlative matrix the algo-
rithm creates pattern groups by clustering identical patterns.
These pattern groups are evaluated and the best pattern group
is chosen. The quality of a pattern group depends on its size
(= the number of patterns in the group) and its pattern length
(= the number of notes within one pattern). Patterns must
not overlap so all overlapping patterns are removed from the
other pattern groups. The algorithm repeats these evaluation,
selection, and deletion steps until no more pattern groups are
left. The result of the parameterized exact matching is a list
of pattern groups that form a nonoverlapping segmentation
of the composition. The patterns within the groups can be
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Fig. 5. Segmentation with exact matching

Fig. 6. Segmentation with approximate matching

further processed (e.g., combined or extended) to increase
the covering range of the segmentation. Fig. 5 shows some
possible pattern groups found by the exact string matching
algorithm. Patterns labeled with the same letter belong to the
same pattern group. Apostrophes indicate that patterns within
a group are not identical but just similar (like A, A’, and A”).

B. Approximate String Matching

The exact string matching algorithm achieves good results
for structured tracks with a high number of (almost) identical
repetitions of a pattern. Its weakness is the incapacity to detect
pattern repetitons that do not have the same number of notes as
notes have been inserted into or deleted from any of the pattern
occurences. Therefore, the authors also use an approximate
string matching algorithm for the segmentation of tracks
with less similar repetitions. The approximate string matching
algorithm borrows the concept of dynamic programming from
the field of bioinformatics which has already been introduced
to MIR [20]. Dynamic programming targets at the alignment
of two musical sequences, thus allowing insertion, deletion,
and replacement of notes. It uses a matrix to assign scores
to matches or mismatches between pairs of notes, and a gap
penalty for matching a note in one sequence to a gap in
the other (which is the result of deletion and insertion). A
traceback algorithm then finds the best alignment with the
highest score.

The approximate string matching algorithm performs a
fragmentation of a track into several segments of the same
beat length. It compares all possible segment pairs by means
of dynamic programming and calculates similarity scores in

pairs. If the similarity score of two segments exceeds a certain
threshold, the segments are assigned to the same segment
group. As a result the algorithm creates a list of segment
groups with nonoverlapping segments for each fragmentation.
This process is repeated for various segment lengths, shifting
the start position forward to each possible beat. Segment
lengths range from one beat up to half the duration of the
composition. In the end the algorithm evaluates each list and
calculates a total score for each potential segmentation to
find the optimal segmentation for the track. Fig. 6 provides
an example for several results for one track achieved by the
approximate string matching algorithm plus their total scores.

C. Evaluation of Local Segmentation Results

The evaluation of the local segmentation results retrieved
from the local segmentation methods in the previous step
is crucial to the success of the algorithm. The evaluation
method has to determine the quality of each local candidate
segmentation. As the reader can see in Fig. 1, the evaluation
component of the MTSSM is modular and independent of
the other components so it can be exchanged or extended for
experimentation with various evaluation methods.

The evaluation procedure has to assess several criteria to
calculate the local score of a segmentation. An example for
such an equation to calculate the local score could look like
this:
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Fig. 7. Multiple segmentations for one track

score =
∑
g∈G

|segident(g)| ∗ wident

+
∑
g∈G

|segsim(g)| ∗ wsim

+ |segnotes| ∗ wnotes

+ |segbars| ∗ wbars

+ |segreg| ∗ wreg

+
∑
g∈G

|segduration(g)| ∗ wduration

− |groupsduration| ∗ wdurationgroup

− |segclip| ∗ wclip

− |segshort| ∗ wshort

−
∑
g∈G

|diversity(g)| ∗ wdiv

(1)

Variables used in the evaluation function are explained in
Table I.
wident, wsim, wnotes, wbars, wreg , wduration,

wdurationgroup , wclip, wshort, and wdiv are parameters
for weighting the factors of the evaluation function. They
have been tested and fine-tuned by composers and music
experts. The evaluation concludes the first layer of the
MTSSM resulting in a list of candidate segmentations for
each track along with their local scores.

IV. GLOBAL COMBINATION OF SINGLE TRACK
SEGMENTATIONS

The result of the first layer of the MTSSM is a list of multi-
ple candidate segmentations for each track. The segmentation
with the highest score is the optimal local segmentation for the
respective track. From a global view, however, also candidates
having a lower score might turn out as the best segmentation
if they fit into the global structure of the composition better
than the best single track segmentation. If more than one
candidate share the highest score like in the example in Fig. 7,
one of them can be chosen using global structure information
retrieved by the candidate segmentations of other tracks. Fig.
7 shows a track with two potential segmentations that contain
the same number of identical segments of the same length so
their evaluation results in the same single track score.

The second layer of the MTSSM (displayed in Fig. 8)
calculates a global (geometric) score for each candidate seg-
mentation of each track by comparing it to all candidate

Fig. 8. Global combination of local segmentations

segmentations of all other tracks. Given a composition with
three tracks, A, B, and C, each list of track A is compared
to all lists of B as well as to all lists of C. For each pair
of lists the geometric score is calculated and assigned to the
respective lists.

The global evaluation component searches for correspond-
ing segment groups between two lists. The score increases with
the number of segments of a segment group in the first list
that occur at the same positions as segments of one segment
group in the second list. The longer the common regions of
such segments, the better the score. An even higher score is
reached if two segments have the same starting and ending
points. Fig. 9 gives three examples for corresponding segment
groups. Rectancles around segments indicate pairs of segments
of different tracks that occur at the same time. The lists of the
first example have a high score already since all segments of
the segment group in list A have corresponding segments of
one segment group in list B. The second example results in an
even higher geometric score since the overlapping regions have
the same durations as in the first example and the segments of
lists A and B also share the same ending points. The highest
geometric score is computed for the last example. Although
segments themselves are shorther and yield lower local scores
for lists A and B, the durations of the overlapping regions
are the same as in the other examples and starting as well as
ending points are shared by all segment pairs resulting in a
high geometric score.
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TABLE I
VARIABLES OF THE EVALUATION FUNCTION

Variable name Variable description
G set of all segment groups (each group is a set itself, containing all segments within the group)
S set of all segments of the segmentation
N set of all notes of the track
segident(g) set of identical segments in segment group g

s ∈ g|∃s′ ∈ g : s = s′

segsim(g) set of similar segments in segment group g
s ∈ g|∃s′ ∈ g : s! = s′ ∧ sim(s, s′) >= thresholdsim

sim(s, s′) calculates the similarity value between two segments
thresholdsim similarity threshold: segments with a similarity value above the threshold are similar
segnotes set of segments where start points coincide with note starts: s ∈ S|∃n ∈ N : start(n) = start(s)
segbars set of segments that start at the first beat of a bar: s ∈ S|start(s) mod beatsPerBar = 0
segreg set of segments with regular distances to other segments: s2 ∈ S|start(s2) − start(s1) = meanDistance

where s1 and s2 are succeeding segments and meanDistance is the mean distance between succeding segments
segduration(g) set of segments with the mean segment duration of g: s ∈ g|duration(s) = meanDuration(g)
meanDuration(g) mean duration of all segments in segment group g
groupsduration set of segment groups that have a different mean segment duration than the other segment groups

g ∈ G|meanDuration(g)! = meanDuration(G)
segclip set of segments where segment boundaries clip notes

s ∈ S|∃n ∈ N : (start(n) < start(s) ∧ end(n) > start(s)) ∨ (start(n) < end(s) ∧ end(n) > end(s))
segshort set of segments that do not contain enough notes to be valid: s ∈ S||notes(s)| < minNotesForSegment

diversity(g) diversity between the segments of segment group g:
∑
s∈g

|segdiv|/|g|

segdiv(s, g) number of segments in g that are not identical to s: s ∈ g|s! = s′

Fig. 9. Geometric comparison of segmentations

Fig. 10 shows extracts of sample segmentations for two
tracks. After the removal of bad segmentations in the filtering
process, the first track has just one potential segmentation. The
two candidate segmentations of the second track (the same as
in Fig. 7) have the same local score but the first list has a
higher global score and is therefore chosen as the better one.
Whereas in this example there is only one solution for one of
the tracks and also the other one has two lists only, in general
segmentation problems are more complex. Compositions on
average consist of 6 to 10 tracks with each track comprising
up to 10 or more candidate solutions. Still the MTSSM finds
the best solution for each track by weighting each candidate
solution by its local and global score.

With a set of the best geometric segmentations a hierarchical
structure can be created for each track using top-down and
bottom-up methods. A hierarchical structure provides struc-
tural information on various granularity levels. The upper hi-
erarchy levels contain longer segments (e.g., verse and chorus)
while the segments on lower levels are reduced to rather short
repeating patterns. Geometrical comparison is used here as

well to get the best segment structures on each hierarchy level.
Fig. 11 shows a sample of a hierarchical structure for the first
track of Fig. 10. Again, it is only a very simple structure as
the hierarchical structure for a track can consist of up to five
hierarchy levels or more.

V. CONCLUSION

The MTSSM framework is a modular framework for the
multi-track segmentation of symbolic music. Due to its modu-
larity it allows the application of various existing segmentation
methods for local track segmentation as well as the replace-
ment of the local and global evaluation components and the
weighting function, resulting in a flexible test environment.
The main strength of the MTSSM is the incorporation of
global structure information spanning over multiple tracks. As
a result, new information about the structure of a composition
is obtained.

The framework presented in this paper already achieves
good results for a large pool of test compositions. Consid-
ering both exact and approximate string matching techniques,
segmentations for tracks with various characteristics can be
found. For tracks allowing multiple segmentations with similar
scores, the framework finds the best solution in respect to the
geometry of the composition.

An advantage of the framework presented in this paper is the
embedding of each track’s segmentation into the global struc-
ture of the composition. However, if a track does not fit into the
global structure of a composition (e.g., if it is polyrhythmic),
its local segmentation is preserved and it is not adapted to the
global structure. The final score is a combination of local and
global score, thus paying respect to strong local scores. As a
consequence, the result of the framework is a segmentation
for each track instead of one segmentation for the whole
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Fig. 10. Multi-track combination of segmentations

Fig. 11. Hierarchical segment structure

composition. Its results can therefore not be compared to
existing results as the latter consider segmentations of whole
compositions only. All results of the framework have been
validated by professional composers and musicologists.

Future work will concentrate on optimizing the first layer
of the approach to decrease the runtime of the algorithm. The
concept of dynamic programming described in section III-B
is very powerful but also time and memory consuming. Other
approximate string matching techniques have to be tested
to get the best trade-off between runtime and segmentation
quality.
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