
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:5, 2010

1001

Optimal Generation Expansion Planning Strategy
with Carbon Trading

Tung-Sheng Zhan Chih-Cheng Kao Chin-Der Yang Jong-Ian Tsai

Abstract—Fossil fuel-firing power plants dominate electric
power generation in Taiwan, which are also the major contributor to
Green House gases (GHG). CO2 is the most important greenhouse
gas that cause global warming. This paper penetrates the relationship
between carbon trading for GHG reduction and power generation
expansion planning (GEP) problem for the electrical utility. The
Particle Swarm Optimization (PSO) Algorithm is presented to deal
with the generation expansion planning strategy of the utility with
independent power providers (IPPs). The utility has to take both the
IPPs’ participation and environment impact into account when a new
generation unit is considering expanded from view of supply side.

Keywords—Carbon Trading, CO2 Emission, Generation
Expansion Planning (GEP), Green House gases (GHG), Particle
Swarm Optimization (PSO).

I. INTRODUCTION

he third United Nations Framework Convention on
Climate Change (UNFCC) conference met in Kyoto in

December 1997 and produced the Kyoto Protocol, under
which 39 of the industrialized countries agreed to imperative
reduction of GHG emission. The protocol signed by more than
160 nations has promised to achieve the convention’s 
objective to prevent the Greenhouse effects related to global
warming. The agreement calls for industrialized countries to
cut their emissions by an average of 5 percent from 1990
levels by 2010. The protocol propose the three flexible
mechanisms, namely Emissions trading schemes (ETS), Joint
implementation(JI) and Clean development mechanism
(CDM), to help countries meet their obligation of emission
reduction. ETS underpins the“cap-and-trade”mechanism that
was designed to govern CO2 emission from various emission
sources of each nation. The “cap”mechanism ensures that
emission reduction objective can be met. The “trade”implies
that the environment objectives will be achieved at the lowest
possible cost. For example, there are two companies, A and B,
each year-estimated CO2 emission is 10,000 metric tons and
each has been allocated allowances for 9,500 metric tons per
year. Thus, each company has emission shortage of 500 metric
tons unless some action is taken, either to make the reduction
to fit the cap or to purchase credits on the carbon market
which currently trading at $10/ton. For company A, the cost
to cut 1,000 metric tons is $5/ton, so it decides to make that
reduction by diminished production planning. The marginal
abatement costs (MACs) of company B is $15/ton, and thus it
is cheaper for this company to purchase on the market.
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The net result is that company A receives $5,000 from the
sale of its surplus emission cuts, this revenue covers the cost
of its reduction and $2,500 extra profit. For company B, with
higher MAC, the cap has been met at a cap credit cost of
$5,000, instead of the $7,500 it would have cost to make the
required self-reduction.

The Power industry is certainly a major contributor (about
33%) to global CO2 emissions, which traps the heat radiation
and increase the temperature of atmosphere. Generating
technologies consist of nuclear, coal, gas, and oil fired plants
[1]. There are three-types of generators depending upon
generation characteristics: the base-type, middle-type, and
peak-type. The scheduling order for generations to satisfy the
load profile is generally nuclear, coal, oil, and liquefied
natural gas (LNG) or gas generations respectively. IPPs want
to sell as much electricity as possible for various load profiles.
The utilities need to minimize the total cost under operational
constraints for all types of generations. It is important to
determine what type of generating units to be constructed and
when the unit should be on line over a planning horizon to
maximize profits or minimize the investment and operation
cost while meeting the load demand with a pre-specified
reliability criterion. In order to achieve the objective, utilities
will perform the generation expansion planning to determine
the minimal-cost capacity addition. For better economy and
efficiency, they will consider options of either constructing
new generating units or purchasing electricity from other
utilities or IPPs. Generation expansion planning is an
important decision-making activity in a competitive market.

Besides minimizing GEP cost, environmental issues are
important and must be taken into account. Thus, the other
objective of this paper is to investigate an influence of carbon
trading on GEP issue. In recent years, rigid environmental
regulations and CO2 emission tax [2]-[4] force utility planners
to consider emission as a cost and an important constraint in
generation expansion planning. Besides, the plan must satisfy
a desired level of reliability generally defined by two indices:
loss-of-load probability (LOLP) and the expected energy
demand not served (EENS)[5]-[7].

Choosing a generation expansion planning is complicated,
especially finding the best strategy in a world of uncertainty.
Mathematical methodologies used are linear programming,
non-linear programming, dynamic programming, and mix-
integer programming techniques with certain simplifications
[8]. With the non-linearity and discrete nature considered in
generation expansion planning, the problem becomes more
difficult to solve. Recently, new algorithms based on the
artificial intelligence (AI) have been developed, such as
simulated annealing (SA) [9], genetic algorithm (GA) [10]-
[12], immune algorithm (IA) [13]-[16]. Solution strategies
proposed by most AI algorithms need to consider a large
solution space. On the other hand, conventional methods may
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be faster; they are very often limited by the problem structure
and may diverge or could lead to a local minimum. Eberhart
and Kennedy developed particle swarm optimization (PSO)
based on the analogy of swarm of bird and fish school [17].
These researches are called "Swarm Intelligence" [18], [19].
PSO has been found to be robust in solving continuous
nonlinear optimization problems [20]–[23]. The PSO
technique can generate high-quality solutions within shorter
calculation time and stable convergence characteristic than
other stochastic methods [21]–[23].

In this paper, PSO algorithm was presented to deal with
GEP problem which can be formulated as a mixed-integer and
non-linear optimization problem. This paper focused on the
minimization of cost for a short-term GEP problem subjected
to carbon trading, operational constraints and reliability.
Numerical examples are also provided to show its
effectiveness. Testing results shows that PSO algorithm can
offer an efficient way in determining the generation expansion
planning.

II. PROBLEM FORMULATION

When IPP provides a relatively low transaction price for
similar types of generation, they will replace the utility
generation. The utility needs to minimize the cost consisting
of generation expansion and purchasing cost from IPPs while
satisfying the load balance and operational constraints. The
objective function can be formulated as
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where Y is number of years in a planning horizon, T is
number of utility generation technology (Nuclear, Coal, Oil
and Gas are included), M is number of IPP. a is the fixed
construction cost of n/m-th power plant of utility/IPP
(US$/MW), and b is variable cost of n/m-th power plant of
utility/IPP (US$/MWh). UPG is capacity of generation plant
of utility in MW. QUPG and QIPG are annual energy
production of power plant of utility and IPPs, respectively.
BPPm is the purchase price for m-th IPP (US$/MWh), and
BPCO2 is clear price of carbon spot market (US$/metric-
tons). QCO2_buy is carbon purchase quantity and
QCO2_sale is carbon sale quantity. Nm_Exi and Nm_Exp are
number of cumulative existing and expanding plant for
generation technology in planning horizon, respectively.
Nm_Exp is will be arranged optimally year-by-year in this
research. The constraints considered and trading condition are
described as follows.

(A) Power Bargain Condition

In this paper, the bargain condition is only the purchase
price is higher than the average generation cost, That is

[( ) / ]m m m m m ma IPG b QIPG QIPG BP    (2)

(B) CO2 Emission Constraints
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Total_CO2 is the total limit of CO2 emission, then LimCO2
limit CO2 emission limit of each plant. The CO2 emission
model is assumed to be a combination of polynomial and
exponential term of the form [24]
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(C) Power Balance Constraints
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where the PD and Pres are the peak load and reserve power at
target year.
(D) Capacity Limit Constraints

maxmin
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(E) Reliability Constraints
limitLOLPLOLP _
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LOLP_limit is the level of loss of load probability, and
EENS_limit is the level of expected energy not supplied. In
this paper, LOLP and EENS are estimated by using the
probabilistic production cost approach [5] and the load curve
is expressed as in Fig. 1.
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(F) Carbon Trading Condition
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Co2_allow : CO2 emission allowances, Metric Tons.
Co2_buy_cost : cost of purchased carbon credit.
P_reduce_cost : power reduction cost of utility for more

power purchased from IPPs.

III. SOLUTION ALGORITHM

In a PSO system, Birds (particles) flocking optimizes a
given objective function. Each agent (pbest) knows its best
value so far and its position. This information is analogy of
personal experiences of each agent. Moreover, each agent
knows the best value (gbest) so far in the group among pbests.
This information is analogy of knowledge of how the other
agents around them have performed [17].

This modification can be represented by the concept of
velocity. Velocity of each agent can be modified by the
following equation:

   1
1 1 2 2

t t t t t t
i i i i iv w v c rand pbest p c rand gbest p         (6)

where
vi : velocity of agent i at iteration (t+1)
w : weighting function
c1, c2 : weighting factor
pi : current position of agent i at iteration t
pbesti : pbest of agent i
gbest : gbest of the group
rand : random number between 0 and 1,

The following weighting function is usually utilized as
follow

 max max min max( ) / _w w w w iter time iter    (7)
where

iter_timemax : maximum iteration number
iter : current iteration number
wmax : initial weight
wmin : final weight

Using the above equation, a certain velocity, which
gradually gets close to pbest and gbest can be calculated. The
current position (searching point in the solution space) can be
modified by the following equation:

1 1t t t
i i ip p v   (8)

The execution step of PSO for solving optimal generation
expansion planning problem with carbon rrading can be
described as follows:

Step. 1 Initial Condition: Generate each agent or particle
Initial searching point pi

0 and velocities vi
0 of each agent

are usually generated randomly within limited range. The
particle coding scheme can be illustrated in Fig. 2, where
each particle indicates a combination of number of expanding
plant for generation technology and purchase price each year.
The current searching point is set to pbest for each agent.
pbest with best fitness value evaluated is set to gbest and its
index number will be stored.

Step. 2 Evaluation of searching point of each particle
The fitness function or objective function value is

calculated for each particle. If the value is better than the
current pbest of the particle, the pbest value is replaced by the

current value. If the best value of pbest is better than the
current gbest, gbest is replaced by the best value and the
particle index number with the best value is stored.

Step. 3 Modification of each searching point
The current searching point of each particle is changed

using Eq.(6), Eq.(7) and Eq.(8).

Step. 4 Check the stopping rule
When current iteration number reaches the predetermined

maximum iteration number, then exit. Otherwise, go to step 2.

Fig. 2 Particle Coding Scheme

IV. CASE STUDY

The PSO algorithm was implemented using the MATLAB 7
on an IBM PC with Intel Core2 Quad Q6600 2.4GHz CPU
and 4GB DRAM.

4.1 Test System Description
The proposed algorithm was applied to a 5-year test system

with a power utility and three IPPs. Table 1 and 2 show the
fixed cost, variable cost, outage rate and construction
capacities of each participant for future additions respectively.
Table 3 is the forecasted peak demand over the study period is
given and each forecasted demand includes 20% power
reserve. By considering the CO2 emission, the emission
model can be formulated as Eq. (4). The CO2 Emission
Allowances are assigned year-by-year with increasing
forecasted carbon price also shown in Table 3. In this paper,
the optimal GEP strategy for utility and optimal purchase
prices for IPPs on every planning year was determined by the
PSO process.

Table 1 5-year test system data for the utility
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Table 2 5-year test system data for IPPs

Table 3 Load forecasting and CO2 trading data of 5-year test system

4.2 Generation Combination
Table 4 shows optimal GEP results for each generation

technology for test system under carbon trading scheme. It
shows the trading scheme force utility to expand low CO2
emission plant, i.e. nuclear, LNG etc., and utility consider
purchasing electricity from IPPs to avoid CO2 emission
increasing.

Table 4 Accumulated unit number for each generation technology

Fig. 3 shows the percentage of utility and IPPs’energy
participation. In year 3 and 4, utility has more plant been
expanded, so IPPs’participation was reduced. Fig. 4 shows
generation percentage of each generation technology and
IPPs for study period. The number marked near the bar is the
generation quantity (in MWatt.) of each participant.

Fig. 3 Energy percentage of utility and IPPs

Fig. 4 Percentage of generation capacity combination

4.3 Cost Analysis and CO2 Emission Comparison
Table 5 is the simulation results of proposed test system

including purchase price for three IPPs, cost of purchase
electricity, generation & expansion cost and cost of purchase
emission credits. The annual cost is sum up all of cost
mentioned above and it is shown in the last row of Table 5. It
is shown that if the emission is strongly limited in the market,
the total cost will raise for the utility.

Table 5 Total cost analysis

Fig. 5 shows CO2 Emission of the Utility for GEP problem
without considering the CO2 limitation, CO2 trading scheme and
IPPs’participations. The number marked near the bar is the
CO2 emission quantity (in Tons.) of each participant.
Inversely, CO2 Emission of the Utility with considering all issues
mentioned above is demonstrated in Fig. 6. It is proved that all the
GHG produced from generation technologies can be suppressed and
governed effectively by taking consideration of carbon trading and
power transaction.

4.4 Convergence Test

Table 6 shows the convergence result of three optimal
algorithms, it shows maximum, minimum, and average
optimized cost of 100 trials. The population size of each trial
is 200. Fig. 7 illustrates the convergence characteristics of
GA, IA and PSO for 5-year test system. Although the
solution trend is subtle, it did show the capability of PSO in
exploring a more likely global optimum.
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Fig. 5 CO2 Emission without considering the CO2 trading scheme
and IPPs’participations

Fig. 6 CO2 Emission for the GEP with considering the CO2 trading
scheme and IPPs’participations

Table 6 The total cost analysis of various conditions
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Fig. 7 The comparison of GA, IA and PSO methods

V. CONCLUSION

In this paper, it is shown that strongly emission limit result
in the total cost raise by a carbon trading scheme for the
utility. PSO was proposed to determine the generation
expansion plan in the electricity market. With the advantages
of PSO, it supersedes the conventional ideals in threefold: the
complicated problem is solvable, with a better performance
than other AI algorithms, and the more likelihood to get a
global optimum than heuristic methods. The effectiveness of
PSO has been demonstrated by numerical examples. PSO has
great potential to be further applied to many ill-conditioned
problems in power system planning and operations.
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