
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

3249

Abstract—Low power consumption is a major constraint for

battery-powered system like computer notebook or PDA. In the past,
specialists usually designed both specific optimized equipments and
codes to relief this concern. Doing like this could work for quite a
long time, however, in this era, there is another significant restraint,
the time to market. To be able to serve along the power constraint
while can launch products in shorter production period, object-
oriented programming (OOP) has stepped in to this field.

Though everyone knows that OOP has quite much more overhead
than assembly and procedural languages, development trend still
heads to this new world, which contradicts with the target of low
power consumption. Most of the prior power related software
researches reported that OOP consumed much resource, however, as
industry had to accept it due to business reasons, up to now, no
papers yet had mentioned about how to choose the best OOP practice
in this power limited boundary.

This article is the pioneer that tries to specify and propose the
optimized strategy in writing OOP software under energy concerned
environment, based on quantitative real results. The language chosen
for studying is C# based on .NET Framework 2.0 which is one of the
trendy OOP development environments. The recommendation gotten
from this research would be a good roadmap that can help developers
in coding that well balances between time to market and time of
battery.

Keywords—Low power consumption, object oriented
programming, power conscious system, software.

I. INTRODUCTION
N this era, mobile devices gain much more popular from so
many supportive reasons such as lower price and better

communication infrastructure. When mentioning about
mobile equipments, one of the major issues we have to
concern is the battery life.

In the past, these devices were specifically created in term
of both hardware and software. About the software, the
languages used for development were mostly hardware
specific assembly. The pro of doing like this was gaining high
performance while did not consume so much battery.
However, the major con of this strategy was it could not
produce software fast and various enough. Not just the
supportive software, the system software, sometimes, was

Kayun Chantarasathaporn is a Ph.D. student in Faculty of Information

Technology, Rangsit University, Muang, Pathumtani, 12000, Thailand (e-
mail: kayun@kayun.com).

Chonawat Srisa-an is the assistant professor in Faculty of Information
Technolgy, Rangsit University, Muang, Pathumtani, 12000, Thailand (e-mail:
chonawat@rangsit.rsu.ac.th).

pressured by time-to-market factor.
Right now, in desktop application market, the trend of

software development has been migrated to OOP (Object-
Oriented Programming) creation. Using this strategy has main
benefits in reusable objects while can conceal some secret
things by encapsulation. With OOP, the software house can
loosen time-to-market constraint. However, the output of this
style development has a significant drawback as it consumes
much higher resources. This is the major contradiction to the
nature of mobile equipments that having longer battery life
need to have low power consumption system.

Low power consumption is related to both hardware and
software. However, the scope of this article is focused in just
software aspect. As the trend of applications developed for
mobile devices goes in the same direction as ones on desktop,
using OOP, this research tries to find the appropriated way,
recommendation, of using major OOP principles while
consuming as less power as possible.

The details in this article are as follows. There will be the
mention about other studies related to low power consumption
software. Next, the major characteristics of OOP those can
substitutes to one another are raised. Then, the results of
resource consumption comparisons among the comparable
commands are discussed. Finally, the conclusion of this study
is the recommendation of major OOP command usage in
development under power conscious system.

II. LOW POWER CONSUMPTION SOFTWARE RELATED STUDY
Up to now, there have been quite numerous research

articles pointing at software and its energy consumption.
However, they can be classified to just a few scopes, such as,
power analysis at low level language, compilation techniques
those can create energy optimized codes, strategies for
creation and implementation of software for power concerned
system, boundary of usage time in embedded software, tools
that help automatically find power critical points, and
comparison of energy needed among different writing styles at
the layer of high level language. The samples of researches
just mentioned are as follows.

A well-known article [5] which is considered as the first
research in the field of low power consumption in the software
viewpoint is one from Tiwari and his team. They studied the
power consumption of each major assembly command for
specific CPU, 486DX2-S and the reasons in low level of
software those affect power desire, such as, inter-instruction

Object-Oriented Programming Strategies in C#
for Power Conscious System

Kayun Chantarasathaporn, and Chonawat Srisa-an

I

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

3250

and cache miss effects. Though everyone had known that
different commands should need different level of power, this
Tiwari's work clarified how much they were.

Tiwari also recommended compilation techniques for the
focus of low energy in another article [1]. He pointed out that
the compiler should reorder the instructions to reduce
switching since this activity required more power. Also, the
code generated from compiler should choose using register
instead of memory when possible since the registers use less
power than memory.

Naik and Wei proposed strategies for software
implementation in energy concerned environment [6]. They
said in their 3 ECs implementation techniques those were,
EC1, coding by using energy saving techniques, EC2,
choosing appropriated algorithms and, EC3, deploying with
selected strategies could help in lessen power utilization. By
the way, in some cases, three mentioned things could not be
all applied to the project. They proposed 3Ps1 which agreed
with Tiwari's recommendation that the program should avoid
using memories and use registers since the latter required less
energy. In their study, they matched blocks of high level
code, written in C, with the assembly outputs and could show
that registers were less power greedy. Similar to EC, in some
situations, using all 3 Ps is not possible, such as, it is hardly
possible to calculate matrix while get along with P2.

Studying about the time boundary used in software was
done by Li and Malik [4]. They tried to find the time scope
and critical points of software implementation with the help of
linear programming techniques those applied to the high level
language source code written in C.

Seeking automatic tool that can help code optimization was
studied by Peymandoust et al. Usually, in embedded system,
software should be optimized as much as possible to consume
less power. However, in the past, this process was done
manually. Peymandoust used Profiler to help in finding
critical points in term of basic blocks and proposed Symsoft
which aimed automatically find some way that could produce
acceptable outputs from the same input while using less
power.

There was also a study of comparisons in term of power
consumption and performance between Object-Oriented and
Procedural coding style [2]. The result was as expected that
OOP consumed more resources than procedural one.
However, the study demonstrated that this should be
acceptable when compared with the benefits gaining from
development in OOP style, such as, reusability, member
private management, etc.

III. MAJOR CHARACTERISTIC OF OBJECT-ORIENTED
PROGRAMMING

Object Oriented Programming has been more popular
because it is appropriated for this time-to-market-oriented
production era. Not just OOP is easy to reuse, the

1 P1. Assign live variables to registers. P2. Avoid repetitive computation

of addresses. P3. Minimize memory access.

encapsulation capability makes it appropriated for security
concerned development.

In OOP, all kinds of member, data and function, should
reside in class, as seen in Fig. 1.

Fig. 1 General class structure and other components

Class is like a frame for its members, data and function.

When the users want to use a class, they usually create an
instance from the class. This class instance is often called as
object. Object gets a frame from its class, however, detail of
the object's members can be different object by object.

Another important characteristic of OOP is inheritance.
Class can inherit from class, abstract class or interface.
Abstract class is a class that has at least one abstract method.
Abstract method can be thought as a frame of method, so it
has no method detail inside. Interface is considered as a
blueprint of class since it has no method body as well. Often,
class inherited action is called "extend" while interface
inherited action is called "implement".

Both kinds of class member, data member (attribute) and
function member (method), can be either static or dynamic.
Users can imagine static members as members of class while
dynamic members are members of object. So, to use dynamic
members, first, users need to create object from class. After
object is created, users can use the non-static members by
asking the object to refer or call them.

An additional characteristic of OOP is accessibility control.
Usually, there are at least 3 keywords for this task, public,
private and protected. Public means members from any
classes can access while private just allows only members
from the same class. Protected is in between, it is where
everyone is prohibited except members from the same class
and ones from inherited classes. Accessibility can be applied
to both data and function members.

As mentioned above, it is clear that class is a foundation of
OOP. In some case, if developers want to create a frame that
do not have function members, only data ones, they may
choose structure as an alternative choice.

Not just the above programming components are different
in structure, to focus in this article scope, their dissimilar
complexities make them diverse in power consumption.
Therefore, to write OOP for power conscious system,

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

3251

developers need to choose the right and light one if there are
options.

IV. C# OOP STYLE & POWER CONSUMPTION ANALYSIS
In this research, we had tried to measure and compare the

power consumption of some significant usages in OOP. What
we raised for comparing had details as follows.

Classes
• Class (data member only)
• Struct
Prototypes
• Abstract Class
• Interface
Attributes
• Static Attribute
• Dynamic Attribute
Methods
• Static Method
• Dynamic Method
• Dynamic Anonymous Method
Dynamic Variables Call
• Bare Usage
• Using "this" Keyword
Variable Accessibility
• Private
• Protected
• Public
Method Accessibility
• Private
• Protected
• Public
About the tool in this research, we developed the software,

TOM - Time Operation Measurement, which circular checked
(every 10 Milliseconds) the timespan the specified process
used. TOM will terminate checking itself when the watched
process ends. The software can snapshot User Processor Time
(UPT), Privileged Processor Time (PPT), Total Processor
Time (TPT) and Memory used by the specific software
process. UPT is the timespan processor uses just for that
process, PPT is the time processor spends for the operating
system to support that process and the TPT is the summation
of UPT and PPT.

Vivek Tiwari mentioned in his paper that time the processor
used was directly related to the power it needed [5].
Therefore, to get the same output from similar essential
working steps while controlling other kinds of element, the
shorter the processor time uses the better performance of the
chosen component is - in term of the power optimization.

The results from the measurement shown in this paper were
done on the system that used AMD Athlon™ XP 1800+ CPU
with 1 GB RAM. The software in the system were regular
Microsoft Windows XP SP2, Microsoft .NET Framework
Redistributable Package 2.0, the codes to be measured and
TOM.

Usually, the primary concern of developers is successfully

runnable program. However in this article, the focus is
beyond that, we want to seek some ways that can work similar
while consume less power. There are some proves showing
that comparable commands require different energy levels.

A. Class and Struct
As the topic just raised, first, we compare the data-member-

only class and struct. Both of them can contain group of
variables or data members, but, from graph in Fig. 2 and
results from TOM in Table I, it is easy to distinguish the
difference of time spent. The more timespan the process takes
the more power the process spends. This rule applies to this
and all further comparisons. Therefore, static variable
consumes more power than the dynamic because it takes
around 40% longer time than dynamic variable.

Fig. 2 CPU time usage comparison between Class and Struct

B. Abstract Class and Interface
Fig. 3 is the result of comparison between Abstract Class

and Interface. Both of them can be used as class prototype,
however, Interface is more restrictive since the methods inside
must not have method body while Abstract Class can have
some attributes or method bodies, just at least only one class is
abstract. There is no significant different between using
Abstract Class and Interface in similar situation.

Fig. 3 CPU time usage comparison between Abstract Class and

Interface

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

3252

TABLE I
CPU TIME USAGE IN DIFFERENT CONDITIONS OF C# OOP CODING

MAX PROCESSOR TIME (MSEC)
ISSUE SUB-ISSUE

User Time Privilege Time Total Time Difference (%)

Class (data members only) 1832.63 60.08 1892.71 43.24 % less Classes

Struct 3304.75 30.04 3334.79 used as base
Abstract Class 1011.45 40.06 1051.51 4.55 % less Prototypes

Interface 1041.50 60.09 1101.59 used as base
Static Attribute 1932.78 40.06 1972.84 41.72 % less Attributes

Dynamic Attribute 3344.81 40.06 3384.87 used as base
Static Method 3625.21 60.09 3685.30 56.71 % less
Dynamic Method 1772.55 70.10 1842.65 78.35 % less

Methods

Dynamic Anonymous Method 8331.98 180.26 8512.24 used as base
Bare Usage 3414.91 40.06 3454.97 0.29 % less Dynamic Variables Call

Using "this" Keyword 3414.91 50.07 3464.98 used as base
Private 1842.65 60.09 1902.74 44.28 % less
Public 1842.65 50.07 1892.72 44.57 % less

Variable Accessibility

Protected 3354.82 60.09 3414.91 used as base
Private 951.37 60.09 1011.46 used as base
Public 961.38 40.06 1001.44 0.99 % less

Method Accessibility

Protected 961.38 40.06 1001.44 0.99 % less

C. Dynamic and Static Variable
Fig. 4 and Table I show that dynamic variable works slower

than the static around 40%.

Fig. 4 CPU time usage comparison between Dynamic and Static

variable (attribute)

D. Dynamic, Static and Dynamic Anonymous Method
 In contrast with class attribute, dynamic method runs faster

than the static around 50%. The comparison in this case has
another candidate which is dynamic anonymous method.
Usually, to use dynamic method, users need to declare and
define object from the class, first. Yet, there is another way to
be able to use dynamic method without explicit creation of
object. That way is by using anonymous method. Though it
is another alternative, anonymous dynamic method is very
CPU intensive as the result from both Fig. 5 and Table I show
that it takes around 80% longer time than regular dynamic

method.

Fig. 5 CPU time usage comparison between Dynamic, Static and

Dynamic Anonymous Method

E. Using "this" keyword and not using
When using dynamic class attribute locally, users may just

use it barely or use with "this" keyword. There is no
significant difference in term of CPU usage of this pair. The
results are shown in Table I and Fig. 6.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

3253

Fig. 6 CPU time usage comparison between using and not using

"this" keyword

F. Private, Protected and Public Attribute
Another important feature in OOP is variable accessibility

control. The most CPU consuming field is protected variable
while private and public ones spend time quite close to each
other. Protected attribute is slower than the other two around
40% as shown in Fig. 7 and Table I.

Fig. 7 CPU time usage comparison among Private, Protected and

Public attribute

G. Private, Protected and Public Method
Accessibility control also applies to method but the result in

term of CPU usage from private, protected and public
methods are different from what they were in attribute. Result
in Table I and Fig. 8 demonstrates that, in CPU consumption
aspect, all of them are not significant different.

Fig. 8 CPU time usage comparison among Private, Protected and

Public Method

About the memory cost in each section of the experiments,

the usages of memory were almost equal in the same section,
so, the difference of memory usages is not a major factor that
affects power consumption in these cases.

V. CONCLUSION
Trend of power conscious system development has shifted

from proprietary software and hardware design to more
generic standard platform. Programming tools used in
application development has changed from low level assembly
to high level procedural language and tended to be object
oriented approach. OOP goes to power conscious system just
because it can accelerate development lifecycle which is the
crucial issue in time-to-market oriented era.

When compared with older systems, OOP is the technique
that has most overhead. However, the industry has more
accepted it since the limitation of resources nowadays is
relaxed and also business reasons. By the way, as battery
system can not long last, power usage is still a major concern.
So, the research tries to find approach within OOP
development that uses lower energy while provides similar
output.

As shown in above research result, it is clear that though the
outputs from the codes may be indifferent, each CPU
timespan might not be the same significantly. The time CPU
spends is direct variant to energy consumption. This is a factor
we should consider when coding under power conscious
system.

Table II illustrates the strategies of writing code in OOP
style for lessen energy expense.

TABLE II
SUMMARY OF C# CODING STRATEGIES FOR POWER CONSCIOUS SYSTEM

What to work with Choice 1 Choice 2 Choice 3 Recommendation
Group of attributes creation class struct class
Class prototype abstract class interface any
Class attribute static dynamic static
Class method static dynamic dynamic anonymous dynamic
Dynamic local variable call bare use with "this" keyword any
Attribute accessibility private public protected private or public
Method accessibility private public protected any

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

3254

VI. FUTURE WORK
This study is targeted in the OOP codes those are going to

be written for the low power consumption purpose. However,
in real world, there are so many useful existing OOP codes
those run well in regular system. If these codes can be
automatically converted from regular codes to lower power
consumption ones, they will be very useful and can reduce
time and resources spending for rewriting codes manually.
With this reason, our future research would be developing
algorithms those can convert regular OOP codes to the lower
power consumption ones.

APPENDIX A
The following are sample of basic codes used in comparing

Dynamic and Static attribute. Other testing codes in this
research were in similar complexity.
1) Dynamic Attribute

using System;
class TestDynamicVariable
{
 double i;
 public TestDynamicVariable()
 {
 for(i = 0; i < 2000000; i+=0.01)
 {
 }
 }
 public static void Main()
 {
 TestDynamicVariable tdv = new TestDynamicVariable();
 }
}

2) Static Attribute
using System;
class TestStaticVariable
{
 static double i;
 public TestStaticVariable()
 {
 for(i = 0; i < 2000000; i+=0.01)
 {
 }
 }
 public static void Main()
 {
 TestStaticVariable tdv = new TestStaticVariable();
 }
}

APPENDIX B
 Fig. 9 is the sample detail graph rendered from result of
TOM in testing the CPU usage of Dynamic and Static
Attributes. The thick line is the static attribute that works
faster and needs less CPU time than dynamic attribute.

Fig. 9 Detail compared graph rendered from result of TOM in testing

dynamic and static variable

REFERENCES
[1] V. Tiwari, S. Malik and A. Wolfe. Compilation Techniques for Low

Energy: An Overview. In 1994 Symposium on Low-Power Electronics,
San Diego, CA, October 1994.

[2] Chatzigeorgiou and G. Stephanides. Evaluating Performance and Power
of Object-Oriented Vs. Procedural Programming in Embedded
Processors. In Ada-Europe 2002, 2002.

[3] Peymandoust, T. Simunic and G.D. Micheli. Low Power Embedded
Software Optimization using Symbolic Algebra. In IEEE Proceeding of
the 2002 Design, Automation and Test in Europe Conference and
Exhibition, 2002.

[4] Y-T S. Li and S. Malik. Performance Analysis of Embedded Software
Using Implicit Path Enumeration. In IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, December 1997.

[5] V. Tiwari, S. Malik, and A.Wolfe. Power analysis of embedded
software: A first step towards software power minimization. In IEEE
Transaction VLSI Systems, December 1994.

[6] K. Naik and D.S.L. Wei. Software Implementation Strategies for Power-
Conscious Systems. In Mobile Networks and Applications, June 2001.

