
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:3, 2007

722

Computer Proven Correctness of the Rabin
Public-Key Scheme

Johannes Buchmann, Markus Kaiser

Abstract— We decribe a formal specification and verification
of the Rabin public-key scheme in the formal proof system Is-
abelle/HOL. The idea is to use the two views of cryptographic
verification: the computational approach relying on the vocabulary
of probability theory and complexity theory and the formal approach
based on ideas and techniques from logic and programming lan-
guages. The analysis presented uses a given database to prove formal
properties of our implemented functions with computer support. The
main task in designing a practical formalization of correctness as well
as security properties is to cope with the complexity of cryptographic
proving. We reduce this complexity by exploring a light-weight
formalization that enables both appropriate formal definitions as
well as efficient formal proofs. This yields the first computer-proved
implementation of the Rabin public-key scheme in Isabelle/HOL.
Consequently, we get reliable proofs with a minimal error rate
augmenting the used database. This provides a formal basis for more
computer proof constructions in this area.

Keywords— public-key encryption, Rabin public-key scheme, for-
mal proof system, higher-order logic, formal verification.

I. INTRODUCTION

CRYPTOGRAPHIC algorithms are crucial security tools
for guaranteeing secrecy of sensitive data. Moreover,

their area of application is widely spread and growing. Conse-
quently, in domains where security is a major issue, as in elec-
tronic commerce or electronic voting, the need of confidence
in correct implementations is increasing dramatically. Leaks
in security, for example in a communication between banks,
could be very costly and should be prevented. Consequently,
the use of correct implementations of cryptographic algorithms
is essential for security.Therefore, implementing cryptographic
algorithms must be done with extreme care. A verification of
these algorithms with reliable methods is a central objective.

A verification of an algorithm can prove crucial properties or
in the optimal case all relevant facts needed for its application.
Verification approaches for cryptographic primitives have been
directed in two distinct directions: the computational approach
relying on the vocabulary of probability theory and complexity
theory and the formal approach based on ideas and techniques
from logic and programming languages (compare [1], where a
formal approach and a computational approach as well as their
combination are given, an example involving Isabelle/HOL
is presented in [6]). A proof of functional correctness of a
given implementation can be achieved by formal verification.
But, in the area of cryptography the used algorithms are often
very complex, hence formal verification is a big challenge and
therefore only achieved with much effort.

The authors are with the Technische Universität Darmstadt, 64289 Darm-
stadt, Germany. This work was partially funded by the German Federal
Ministry of Education and Technology (BMBF) in the framework of the
Verisoft project under grant 01 IS C38. The responsibility for this article
lies with the authors.

We show that a formal verification with computer sup-
port in the area of cryptography is possible by exploring
a light-weight formalization that enables both appropriate
formal definitions as well as efficient formal proofs. Our
formal analysis (functional correctness as well as arguments
concerning security of the given implementation) yields the
first computer-proved implementation of the Rabin public-key
scheme in Isabelle/HOL. Consequently, we get reliable proofs
with a minimal error rate augmenting the used database. This
provides a formal basis for more computer proof constructions
in this area.

This paper is part of an effort to unify the formal and
the computational views of cryptographic verification. The
idea is to unify both verification approaches in cryptography
by embedding one into the other: formalizing computational
aspects as well as their computer verification embed the
computational approach in the formal approach. We obtain a
formally verified computational description of a cryptographic
primitive, that can be used in pratice (compare II-D). More
specifically, this work continues our recent work that provides
useful formal descriptions of mathematical background and
cryptographic algorithms computer-proven with Isabelle/HOL
(compare [2] and [3]). Besides, the formally verified crypto-
graphic algorithms are components of a cryptographic client.

This paper is organized as follows. We review the Rabin
public-key scheme originally introduced in [5] (compare II).
Therefore, we explicate the original definition of the Rabin
public-key function (compare II-A), illustrate a corresponding
decryption algorithm (compare II-B), and outline the applica-
tion of the Rabin function for signatures (compare II-C). After
that, we show how the Rabin functions may be used in practice
(compare II-D). In III Isabelle/HOL is outlined (compare
III-A). III-B provides an overview of the formalization and
verification. Furthermore, we explore a formal description and
verification of the Rabin functions (compare IV). We introduce
our formal specification (compare IV-A) and a formal proof
of its correctness (compare IV-B). Moreover, we give further
computer-proven properties concerning security (compare IV-
C). Therefore, we introduce a formal computation model
that allows formal verification of computational effort of a
function. V provides a conclusion.

II. RABIN PUBLIC-KEY SCHEME

In 1979 Michael Rabin introduced in his well known paper
([5]) a new class of public-key functions, where a number
n = p · q with large primes p and q is involved. The number
n is the public key, moreover p and q are the private keys that
can be used for signing and decryption. A main result given in

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:3, 2007

723

[5] is that for any given number n the efficient inversion of the
function y = En(x) that is described below, for even a small
percentage of the values of y implies the efficient factorization
of n.

A. Public-Key Function

For a given number n = p · q that is a product of two large
prime numbers p, q, and for given b, 0 ≤ b < n the function
En,b(x) is defined for 0 ≤ x < n by

En,b(x) ≡ x(x + b) mod n,

where En,b(x) < n.

B. Decryption

An inversion of c = En,0(x) can be calculated by Algo-
rithm (1) (compare [5]) where the four square roots of c are
obtained by the computation of solutions mod p and mod
q that are composed to solutions mod n. For a0 ∈ Z with
a0 ≡ 1 mod p and a0 ≡ 0 mod q, a1 ∈ Z with a1 ≡ 1 mod q
and a1 ≡ 0 mod p and for mp and mq with c ≡ m2

p mod p
and c ≡ m2

q mod q, z0 = a0mp+a1mq solves the congruence
c ≡ z2 mod n and x0 = z0 mod n is a solution < n.

For a fixed prime r and a quadratic residue d mod r we
write

√
d for any of the two integer numbers with (

√
d)2 ≡

d mod r. Moreover −√
d denotes r −√

d.
A computation of a number x with

x2 + bx ≡ c mod r (1)

can be realized by the extraction of square roots mod r.
For d = b/2 mod r a computation of x given by (1) can be

denoted by (x+d)2 ≡ c+d2 mod r or by x = −d+
√

c + d
2

and x = −d − √
c + d

2
, respectively. Consequently, (1) (an

extraction of square roots mod r) can be used to compute x.
In the following we concentrate on the case that b = 0 and

p ≡ q ≡ 3 mod 4 (p = 4np − 1 and q = 4nq − 1).

Algorithm (1).
Input: c ≡ x2 mod n, p, q with p ≡ q ≡ 3 mod 4, a0 ∈ Z

with a0 ≡ 1 mod p and a0 ≡ 0 mod q, a1 ∈ Z with a1 ≡
1 mod q and a1 ≡ 0 mod p

Output: 0 ≤ xi < n, 1 ≤ i ≤ 4 with En,0(xi) = c

1) mp = c
p+1
4 mod p

2) mq = c
q+1
4 mod q

3) x1 = (a0mp + a1mq) mod n
4) x2 = (a0mp − a1mq) mod n
5) x3 = n − x1

6) x4 = n − x2

7) return (x1, x2, x3, x4)

C. Application for Signature

The application of the Rabin function E (compare II-A) for
signature needs two large prime numbers p and q that can be
produced by a primality test (compare [2]). As before, (n, b),
where n = p · q and 0 ≤ b < n, is public, but p and q remain
private.

Algorithm (2).
Input: message x0 ∈ N, public key (n, b), prime numbers

p and q, compression function h
Output: signature (z, x) of x0

1) choice of a random number z with length k
2) x1 = x‖z
3) c = h(x1) with binary length of c < n
4) if there is a solution x of x(x + b) ≡ c mod n then

return (z, x) else 1

For given (n, b), (z, x), h the number c = h(x‖z) as well
as the congruence x(x + b) ≡ c mod n can be computed or
tested, respectively.

D. Use of the Rabin Functions

We remark how the given algorithms can be used in practice.

Encryption:

For n = p · q, where p and q are large prime numbers, m ∈
Zn, the encryption (c, z, x, h) of m is computed as follows.

• Aencryption(m,n) = c
• Adigital(m,n, h, p, q) = (z, x)
• encryption: (c, z, x, h)

Decryption:
• Adecryption(c, z, x, h) = (x1, x2, x3, x4)
• For (j ∈ {1, 2, 3, 4}): if Averification(xj , z, x, n, h) = 1:

xj

In the following we discuss our formalized version of the
Rabin functions (compare II). Therefore we introduce a formal
description of these functions that provide a formal base for a
computer analysis of the Rabin encryption scheme as well as
the Rabin signature scheme. Moreover, we show that computer
verification of these schemes is practical.

III. OVERVIEW OF THE FORMALIZATION

We illustrate the formal proof system Isabelle/HOL and give
an overview of the formalization.

A. Isabelle/HOL

Formal proof systems provide computer support for formal
verification. But the correctness of a formal proof using a
formal proof system relies on the correctness of the applied
computer system. A formal proof system works on automated
or interactive proof constructions. In our work, we use the
interactive formal proof system Isabelle/HOL (proof assistant
for higher-order logic, which can be used for interactive proof
constructions, formal specifications, as well as verification in
higher-order logic and functional programming).

The formal proof language of Isabelle/HOL that consists of
higher-order logic and functional programming, is used to give
definitions and lemmata, which are based on a large database.
These definitions and (proven) lemmata can be used to prove
further lemmata and theorems, which results in an augmented
database for the purpose of building up new theories (compare
to Figure III-A).

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:3, 2007

724

Formal Proof Language

Properties

Formal Basis

(Logic, Functional Programming)

=⇒ Computer
=⇒ (formally) verified properties

Fig. 1. Construction pattern in Isabelle/HOL

In the lines below some Isabelle/HOL code examples are
explained.

Remark: (Isabelle/HOL code)
• int: integer number datatype
• num: natural number datatype
• bool: boolean datatype
• (x::int): variable of type int
• f x or (f x): function f applied to x
• consts example :: ”[int, num] ⇒ bool”; (declaration of a

function/predicate)
• defs example def: ”example i n ≡ i < (int n)”; (definition

of a function/predicate with an application of function int)
• lemma ”(x::int) < (y::int) =⇒ x ≤ y”; (computer lemma)
• ˆz: exponent z
• zprime: set of (integer) prime numbers
• zgcd: (integer) greatest common divisor

More information about Isabelle/HOL (that is successfully
applied in the Verisoft project (http://www.verisoft.de)) are
given in [4], which describes constructions with this tool.
A further useful reference is [7]. There, parts of the large
database are mapped. Besides [7] contains other references
about Isabelle/HOL.

B. Overview of the Formalization and Verification

Formal functions beeing useful for realizing the Rabin
encryption scheme as well as the Rabin signature scheme
are easy to define. They can directly be compiled from the
functions given in II. We implemented the functions modq,
mod prim, mod key0, and mod key1 as basic elements of our
formal description. These formalized functions correspond to
the functions Aencrypt, Adecrypt, Adigital, and Averification.
In the definitions of these functions the parameter b is con-
sidered as 0. Furthermore, we consider prime numbers p, q,
where p ≡ 3 mod 4 and q ≡ 3 mod 4. For n ∈ Z, n = p · q
and m ∈ {1, . . . , n − 1}:

• Aencrypt(m,n) = m2 mod n
• Adecrypt(c, p, q) = (m1,m2,m3,m4) where

c = m2
j mod (p · q) for j ∈ {1, 2, 3, 4},

| {m1,m2,m3,m4} |= 4 or Adecrypt(c, p, q) = x
where c = x2 mod (p · q)

• Adigital(m,n, h, p, q) = (z, x) where x ∈ Z random
number with length k ∈ N, and h(m,x) = z2 mod n
(h compression function with output length < n)

• Averification(m, z, x, n, h) = 0 or 1, whether h(m,x) �=
z2 mod n or h(m,x) = z2 mod n

In this paper a formal verification of the functions modq,
mod prim, mod key0, and mod key1 provides computer-proven
lemmata describing functional correctness as well as argu-
ments concerning security.

Our formal analysis is a light-weight verification, since in
some cases needed mathematical foundations are imported
to the computer system as facts. If these (mathematical)
facts are given as lemmata, they could be proven formally.
Consequently this paper describes a reliable formal verification
from the area of cryptography and provides computer support
in education as well as in research in this area.

IV. FORMAL ANALYSIS OF THE RABIN FUNCTIONS

We provide a formal analysis of the Rabin functions given
in II in the formal proof system Isabelle/HOL. The idea is
to unify the two views of cryptographic verification by a
construction of a Isabelle/HOL theory involving both formal
functional correctness as well as computational aspects. There-
fore we discuss a formal description of these functions. Be-
sides, we computer-prove some properties expressing aspects
of functional correctness or security.

A. Implementation

We present Isabelle/HOL functions that are based on the
Rabin functions. A formal function is given by its declaration
and its definitions as a constant.

Function modq

Function modq, given as follows, realizes the algo-
rithm Aencrypt and can be used to represent the algorithm
Averification. Fundamental datatype is int (type of integer
numbers).

consts modq :: ”[int, int] ⇒ int”;

defs modq def: ”modq m n ≡ (m∗m) mod n”;

This function implements the squaring of an integer m
modulo n.

Function mod prim

Function mod prim can be used for decryption and signing.
While a ciphertext is of type int, a prime is of type num and
must in some cases be mapped to type int by the function int.

consts mod prim :: ”[int, num] ⇒ int”;

defs mod prim def: ”mod prim c k ≡ cˆ ((k+1) div 4) mod
(int k)”;

Function mod prim realizes the computation of a square root
modulo a prime number. That means, for a prime number k,
this function computes a square root of c mod k, if c is a
quadratic residue mod k and k ≡ 3 mod 4 (the other square
root of c mod k is (k−(mod prim c k)) mod (int k)).

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:3, 2007

725

Function mod key0 and Function mod key1

Function mod key0 and function mod key1 using function
mod prim realize algorithm Adecrypt. Besides, they can be
used for a realization of algorithm Adigital. The main datatype
of the given computation is int. Primes are of type num.

(1)

consts mod key0 :: ”[int, int, num, num, int] ⇒ int”;
defs mod key0 def:

”mod key0 def x z p q c ≡ ((x∗(int p)∗(mod prim c
q))+((z∗(int q)∗(mod prim c p))”;

(2)

consts mod key1 :: ”[int, int, num, num, int] ⇒ int”;
defs mod key1 def:

”mod key1 def x z p q c ≡ ((x∗(int p)∗(mod prim c
q))−(z∗(int q)∗(mod prim c p))”;

These functions compute a composition of a square root of
c mod p and a square root of c mod q to a square root of c
mod p · q, if c is a quadratic residue mod p · q.

Formal Verification

A formal verification of these functions under given precon-
ditions in Isabelle/HOL is realized by a computer verification
of appropriate lemmata with consequences determined by
postconditions. A central aspect of this paper is to provide
a corresponding computer verification.

As mentioned before, we determine n ∈ Z given by the
product of two primes p, q, that is n = p · q. Furthermore,
m ∈ {1, . . . , n − 1} (message space). These conditions guar-
antee that modq implements the Rabin public-key encryption
Aencrypt(m,n) = m2 mod n. Moreover, the Rabin decryption
algorithm Adecrypt(j, c, p, q) = mj where mj ∈ {x ∈ Zn :
c = x2 mod n} for j ∈ {1, 2, 3, 4} (or Adecrypt(c, p, q) =
(m1,m2,m3,m4)) can be realized by mod prim, mod key0
and mod key1.

If h is a compression function with output length < n, the
Rabin algorithm for digital signature Adigital(m,n, h, p, q) =
(z, x) where x ∈ Z random number with length k ∈ N,
h(m,x) = z2 mod n as well as the Rabin algorithm for
verification Averification(m, z, x, n, h) = 0 or 1, whether
h(m,x) �= z2 mod n or h(m,x) = z2 mod n can be realized
by a composition of modq, mod prim, mod key0 and mod key1.

The square roots of c mod p · q are:
• (mod key0 x z p q c) mod n
• (n − (mod key0 x z p q c)) mod n
• (mod key1 x z p q c) mod n
• (n − (mod key1 x z p q c)) mod n
Beside the formal definitions of the Rabin functions, a

formulation (with proofs) of computer lemmata expressing
interesting properties of these functions, is of great relevance
with respect to a formal analysis. A property of interest in
this context provides information concerning the functional
correctness of a given implementation or the security of used
functions. Both aspects are illustrated below.

B. Correctness

In general, correctness of cryptographic encryp-
tion/decryption functions is formulated as follows.

Adecrypt(Aencrypt(x)) = x

But, the output of the Rabin decryption function is not
unique, what implies that this formulation is not used in
this paper. Therefore, we prove a different property to verify
the functional correctness of the Rabin encryption/decryption
scheme.

Aencrypt(Adecrypt(Aencrypt(x))) = Aencrypt(x)

This correctness property can be proven in the case of the
Rabin encryption/decryption scheme. A more precise formu-
lation is given below.

Correctness Property: If p and q are prime numbers, where
p ≡ 3 mod 4 and q ≡ 3 mod 4, n = p · q, and x, z ∈ Z with
x ·p+z ·q = 1, then for m ∈ {1, . . . , n−1} with gcd(m,n) =
1 (Adecrypt(j, m

2 mod n, p, q)2 mod n = m2 mod n, where
each Adecrypt(j, m

2 mod n, p, q) ∈ {i : i2 mod n = m2 mod
n} (j ∈ {1, 2, 3, 4}).

A formal compilation of this property is given below.

lemma ”[|prime p; prime q; p mod 4 = 3; q mod 4 = 3;
zgcd((m::int),(int n)) = 1; 0 ≤ m; x·(int p) + z·(int q) = 1|]
=⇒
((modq (mod key0 x z p q ((m·m) mod ((int p)·(int q))))
((int p)·(int q)))) = ((modq m ((int p)·(int q))))”;

lemma ”[|prime p; prime q; p mod 4 = 3; q mod 4 = 3;
zgcd((m::int),(int n)) = 1; 0 ≤ m; x·(int p) + z·(int q) = 1|]
=⇒
((modq (mod key1 x z p q ((m·m) mod ((int p)·(int q))))
((int p)·(int q)))) = ((modq m ((int p)·(int q))))”;

For a better understanding of these lemmata we skipped
the datatypes of the variables, furthermore we write · for a
multiplication.

C. Further Properties

Beside the correctness property we computer proved further
interesting lemmata given below. A main result are computer
lemma expressing security arguments. More interesting lem-
mata are given below.

Decryption and Factoring:

A main result given in [5] is that for any given number n the
efficient inversion of the function y = En(x), for even a small
percentage of the values of y implies the efficient factorization
of n. A paper proof of this result is given in [5].

We explored a computer analysis of this interesting math-
ematical property illustrated below. That means we formulate
appropriate formal lemmata proven with computer support.
For a better understanding of these formal lemmata, we give
these properties in a less formal way. A main aspect of this
formal verification is the easy construction compared with a
complete formal verification approach.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:3, 2007

726

A basis for our computer proof construction are Property
(1) and Property (2).

Property (1). If algorithm A0 computes p from input n effi-
ciently, and algorithm A1 computes q from input n efficiently,
where n = p · q and p, q are prime, and x · p + z · q = 1 for
x, z ∈ Z, then a computation of

modq(mod key0(x, z, p, q, modq(m,n)), n))
= modq(m,n) and
modq(mod key1(x, z, p, q, modq(m,n)), n))
= modq(m,n)
is efficient.

(A computation of p, q implies the recoverage of a message
m.)

Property (2). If n = p·q, where p, q are prime and p ≡ 3 mod
4, q ≡ 3 mod 4, for m,x ∈ {1, · · · , n−1} and gcd(m,n) = 1,
gcd(x, n) = 1, c = m2 mod n, c = x2 mod n, m mod p =
x mod p, m mod q = (q−x) mod q m mod p = (p−x) mod
p, m mod q = x mod q and algorithm A computes m from
input c efficiently, then a computation of

1) gcd(A(c) − x, n) = p, n/ gcd(A(c) − x, n) = q
2) gcd(A(c) − x, n) = q, n/ gcd(A(c) − x, n) = p

is efficient.

(A computation of a plaintext from a ciphertext c implies
the factorization of n.)

A computer compilation of Property (1) and Property (2)
can be done by the following lemmata. Complexity of the
involved functions is handled by an extra theory. That means,
we implemented a predicate efficient that holds when a func-
tion f can be computed efficiently (f ∈ P) in a defined way.
efficient is given in a minimal way in order to keep formal
proving practical.

Computation Model:

We express computational complexity of the formalized
Rabin functions by a formal light-weight computational model.
This computational model is very easy but effective. We
formalized a predicate efficient that holds when a function f
can be computed efficiently (f ∈ P) in a defined way. efficient
is given in a minimal way in order to keep formal proving
practical.

efficient: (Z −→ Z) −→ {0, 1},

where efficient(f) = 1
if f ∈ {fadd,z, fdiff,z, fmult,z, fx,z, fdiv,z, fzdiv,z, fmod,z,
fzmod,z, fgcd,z for all z ∈ Z} ((Z −→ Z) = {f : Z −→ Z}).

• fadd,z(z
′) = z + z′

• fdiff,z(z
′) = z − z′

• fmult,z(z
′) = z · z′

• fx,z(z
′) = zz′

• fdiv,z(z
′) = z/z′

• fzdiv,z(z
′) = z′/z

• fmod,z(z
′) = z mod z′

• fzmod,z(z
′) = z′ mod z

• fgcd,z(z
′) = gcd(z, z′)

Moreover efficient(f) ∧ efficient(g) =⇒ efficient(f o g).

Computer Lemmata (Property (1)):

A formal version of Property (1) is expressed by the
following computer lemmata.

lemma [| prime (p::num); prime (q::num); p mod 4 = 3;
q mod 4 = 3; A0((n::int))=p; A1(n)=q; n=(int p)·(int q);
zgcd((m::int),(int n)) = 1; 0 ≤ m; (x·(int p) + z·int q)) =
1|]

=⇒ (modq (mod key0 x z A0(n) A1(n) (modq m n)) n) =
(modq m n)”;

lemma ”[| prime (p::num); prime (q::num); p mod 4 = 3;
q mod 4 = 3; A0((n::int))=p; A1(n)=q; n=(int p)·(int q);
zgcd((m::int),(int n)) = 1; 0 ≤ m; (x·(int p) + z·(int q)) =
1|]

=⇒ (modq (mod key1 x z A0(n) A1(n) (modq m n)) n) =
(modq m n)”;

lemma ”[| efficient A0(n); efficient A1(n)|] =⇒ efficient
((add ((mult x) ((mult A0(n)) ((mod operator n) ((exponent
c) ((div operator 4) ((add A1(n)) 1))))))) o ((mult z) o (mult
A1(n)) o ((mod operator n) o ((exponent c) o ((div operator
4) o (add A0(n)))))))”;

lemma ”[| efficient A0(n); efficient A1(n)|] =⇒ efficient
((diff ((mult x) ((mult A0(n)) ((mod operator n) ((exponent
c) ((div operator 4) ((add A1(n)) 1))))))) o ((mult z) o (mult
(A1(n)) o ((mod operator n) o ((exponent c) o ((div operator
4) o (add A0(n)))))))”;

Remark:
• (add x) z = x+z
• (diff x) z = x−z
• (mult x) z = x∗z
• (mod operator n) x = x mod n
• (exponent x) n = xˆ n
• (div operator n) x = x div n
• (add ((mult x) ((mult A0(n)) ((mod operator n) ((expo-

nent c) ((div operator 4) ((add A1(n)) 1)))))) o ((mult z)
o (mult A1(n)) o ((mod operator n) o ((exponent c) o
((div operator 4) o (add A0(n))))))) = (modq (mod key0
x z A0(n) A1(n) (modq m n)) n)

• (diff ((mult x) ((mult A0(n)) ((mod operator n) ((expo-
nent c) ((div operator 4) ((add A1(n)) 1)))))) o ((mult z)
o (mult (A1(n)) o ((mod operator n) o ((exponent c) o
((div operator 4) o (add A0(n))))))))= (modq (mod key1
x z A0(n) A1(n) (modq m n)) n)

More Computer Lemmata (Property (2)):

A formal version of Property (2) is given by the following
computer lemmata.

lemma ”[|(n::num) = (p::num)·(q::num); zgcd((m::int),(int n))
= 1; 0 ≤ m; prime p; prime q; (c::int) = ((m::int)·m) mod ((int
p)·(int q)); (c::int) = ((x::int)·x) mod ((int p)·(int q)); m mod
(int p) = x mod (int p); (m mod (int q)) = (((int q)−x) mod
(int q)); (A c) = m|]

=⇒ (zgcd((A c)−x,n) = (int p))
∧ ((int n) div zgcd((A c)−x,n) = (int q))”;

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:3, 2007

727

lemma ”[|(n::num) = (p::num)·(q::num); zgcd((m::int),(int n))
= 1; 0 ≤ m; prime p; prime q; (c::int) = ((m::int)·m) mod ((int
p)·(int q)); (c::int) = ((x::int)·x) mod ((int p)·(int q)); m mod
(int p) = ((int p)−x) mod (int p); (m mod (int q)) = (x mod
(int q)); (A c) = m|]

=⇒ (zgcd((A c)−x,n) = (int q))
∧ ((int n) div zgcd((A c)−x,n) = (int p))”;

lemma ”efficient ((zgcd n) o (diff m))”;

lemma ”efficient ((div alg n) o ((zgcd n) o (diff m)))”;

Remark:
• (div alg n) x = n/x
• (zgcd n) x = zgcd n x
• (diff m) x = m−x
• ((div alg n) o (zgcd n) o (diff m)) = n/(zgcd n (m−x))

V. CONCLUSION

We formally described and computer-proved the Rabin
functions introduced in [5]. Therefore we reviewed relevant
aspects from [5] to illustrate the mathematical background of
the given formalized public-key functions.

A formal analysis with computer support provides a com-
plex, but useful approach to verify the functional correctness
of implementations of cryptographic algorithms. Moreover,
the computer-proven lemmata augment the given database
that is basic for many Isabelle theories. This implementation
is a component of a formally verified cryptographic client
compiled in the Verisoft project.

This paper is part of an effort to unify the formal and
the computational views of cryptographic verification. More
specifically, this work continues our recent work that provides
useful formal descriptions of mathematical background and
cryptographic algorithms computer-proven with Isabelle/HOL
(compare [2] and [3]).

In our paper we explored a formal specification and ver-
ification of the Rabin encryption and signing scheme in
order to computer-prove interesting properties of this formal
description. Therefore we used Isabelle/HOL to formally ver-
ify functional correctness as well as arguments concerning
security of the given implementation, what means that we
proved formal properties of the investigated functions with
computer support. This shows that formal verification in the
area of cryptography is possible. More exactly, we explored a
construction of proofs with a minmal error rate. Furthermore,
we augmented a proof database that can be used for further
proof constructions.

The idea is to unify both verification approaches in cryptog-
raphy by embedding one into the other: formalizing computa-
tional aspects as well as their computer verification embed the
computational approach in the formal approach. We obtained
a formal verified computational description of a cryptographic
primitive, that can be used in pratice (compare II-D).

REFERENCES

[1] Martin Abadi and Jan Jürjens. Formal Eavesdropping and its Computa-
tional Interpretation, 2001.

[2] Johannes Buchmann and Markus Kaiser. Computer Verification in
Cryptography. In International Conference of Computer Science, Vienna,
Austria, volume 12, 2006.

[3] Johannes Buchmann, Tsuyoshi Takagi, and Markus Kaiser. A Framework
for Machinery Proofs in Probability Theory for Use in Cryptography,
2005. Kryptotag in Darmstadt.

[4] Tobias Nipkow, Lawrence Paulson, and Markus Wenzel. Isabelle/HOL –
A Proof Assistant for Higher-Order Logic, volume 2283 of Lecture Notes
in Computer Science. Springer-Verlag, 2002.

[5] Michael Rabin. Digitalized signatures and public key functions as
intractable as factorization, 1979. Massachusetts Institute of Technology,
Laboratory for Computer Science, Cambridge, Massachusetts.

[6] Christoph Sprenger, Michael Backes, Birgit Pfitzmann, and Michael
Waidner. Cryptographically Sound Theorem Proving, 2006.

[7] http://isabelle.in.tum.de.

