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Performance analysis of a discrete-time GeoX/G/1
queue with single working vacation

Shan Gao, and Zaiming Liu

Abstract—This paper treats a discrete-time batch arrival queue
with single working vacation. The main purpose of this paper is
to present a performance analysis of this system by using the
supplementary variable technique. For this purpose, we first analyze
the Markov chain underlying the queueing system and obtain its
ergodicity condition. Next, we present the stationary distributions of
the system length as well as some performance measures at random
epochs by using the supplementary variable method. Thirdly, still
based on the supplementary variable method we give the probabil-
ity generating function (PGF) of the number of customers at the
beginning of a busy period and give a stochastic decomposition
formulae for the PGF of the stationary system length at the departure
epochs. Additionally, we investigate the relation between our discrete-
time system and its continuous counterpart. Finally, some numerical
examples show the influence of the parameters on some crucial
performance characteristics of the system.

Keywords—Discrete-time queue; Batch arrival; Working vacation;
Supplementary variable technique; Stochastic decomposition

I. INTRODUCTION

DURING the last two decades, discrete-time queues with
vacations have been well investigated because these sys-

tems are more appropriate than their continuous-time counter-
parts for modeling computer and telecommunication systems
since the basic units in these systems are digital such as a
machine cycle time, bits and packets, etc. Past work may be
divided into two categories: (i) the case of server vacation
and (ii) the case of working vacation. In the case of server
vacation, the readers are referred to the survey paper by Chang
and Choi[2], Doshi [3], Takagi [13], Tian and Zhang [14]and
Zhang and Tian [19], Shanthikumar[12] and references therein.
In the case of working vacations, Servi and Finn [11] first
examined an M/M/1 queue with multiple working vacations
(Such model is denoted by M/M/1/WV queue) and modeled
a wavelength division multiplexing (WDM) optical access
network using multiple wavelengths which can be reconfig-
ured. The work of [11] is rooted in performance analysis
of gateway router in fiber communication networks. On the
other hand, working vacation policy has practical application
background in optimal design of the system. When the number
of customers in the system is relatively few, we set a lower
speed operating period in order to economize operating cost
and energy consumption. Furthermore, Liu et al. [10] obtained
the stochastic decomposition structures of the system indices
in the M/M/1 queue with working vacations. Later Kim et
al. [4], Wu and Takagi [16], Li et al. [8] generalized results
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in Servi and Finn [11] to an M/G/1 queue with working
vacations. Yi et al.[17] presented a Geo/G/1 queue with
disasters and multiple working vacations and Li et al. [9]
analyzed a GeoX/G/1 queue with working vacations. Wu and
Takagi [16] used the methods of embedded Markov Chain and
plural function. Embedded Markov chain method and M/G/1-
type matrix analytic technique were mainly used in Li et al.
[8] and Li et al. [9]. One thing to be mentioned is that Li et al.
[9] applied the connection of the M/G/1-type matrix analytic
approach and the stochastic decomposition method. Based
on the supplementary variable method, Yi et al.[17] firstly
considered a Geo/G/1 queue with disasters and then used its
results to analyze the working vacation queue. Baba [1] and
Li et al.[5] respectively discussed a continuous-time GI/M/1
and a discrete-time GI/Geo/1 queue with working vacations.
Recently, Li and Tian [6] analyzed a GI/Geo/1 queue with
working vacations and introduced a new policy: vacation
interruption. Under such a policy, the server can come back to
the normal working level no matter whether the vacation ends.
They obtained the steady-state distributions for the number of
customers in the system at arrival epochs and waiting time for
an arbitrary customer using matrix-geometric solution method.
Subsequently, its continuous counterpart, the GI/M/1 queue
with working vacations and vacation interruption, was studied
by Li et al.[7]. Lately, Zhang and Hou [18] discussed an
M/G/1 queue with multiple working vacations and vacation
interruption. To the best of our knowledge, most of the existing
literatures focus on multiple working vacation queues and
there are no works on discrete-time batch arrival queueing
systems with single working vacation. In order to fill the
existing gap in the literature about the working vacations
in discrete-time systems, this article studies a GeoX/G/1
queue with single working vacation which is denoted by
GeoX/G/1/SWV .

The rest of this paper is organized as follows. In Section
2, we give the description of the model and give the ergod-
icity condition for the Markov chain underlying the queueing
system. Section 3 analyzes the joint distribution of the server
state and the system length together with the main performance
measures by using supplementary variable method. In section
4, we obtain the stochastic decomposition formulae for the
PGF of the stationary queue length at the departure epochs.
Moreover, section 5 focuses on the relationship between our
discrete-time queue system and its corresponding continuous-
time queue system. Section 6 gives some numerical examples
to illustrate the effect of varying parameters on some crucial
performance measures.



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:5, No:8, 2011

1402

II. MODEL FORMULATIONS AND THE MARKOV CHAIN

Thereinafter, we denote x̄ = 1−x for any real number x ∈
(0, 1). The GeomX/G/1 queue with single working vacation
we considered here is an early arrival system that is, a potential
arrival can only take place in (n, n+) and a potential departure
can only take place in (n−, n). We assume that the beginning
and ending of vacations occurs at the instant n+. Arriving
customers are queued according to the first-come, first-served
(FCFS) discipline. The server can serve only one customer at
a time. Various stochastic processes involved in the system are
independent of each other.

The detailed description of the model is given as follows:
(1). Batches of customers arrive at the system according to
a Bernoulli arrival process with parameter p(0 < p < 1),
p is the probability that a batch of customers arrives in the
interval (n, n+). The batch size sequence {Xi}∞i=1 consists of
independent and identically distributed (iid) random variables
distributed as X having the probability mass function (PMF)
P (X = j) = xj , j = 1, 2, · · · , and n-th factorial moments
ξn, n = 1, 2.
(2). The service time Sb in a regular busy period has a general
PMF P (Sb = i) = sbi , i ≥ 1, and PGF S̃b(z) =

∑∞
i=1 s

b
iz
i

and n-th factorial moments βb,n, n ≥ 1, (Obviously βb,1 =
E[Sb]

�= 1
μb

).
(3). The Working vacation is an operating period in a lower
rate, the service time Sv in a working vacation period has
a general PMF P (Sv = i) = svi , i ≥ 1, and PGF S̃v(z) =∑∞
i=1 s

v
i z
i and mean E[Sv] = 1

μv
, μv < μb.

(4). The server begins a working vacation at the epoch when
the system becomes empty, the distribution of vacation time
V is geometrically distributed with rate θ(0 < θ < 1), i.e.,
P (V = j) = θθ̄j−1, j ≥ 1, 0 < θ < 1.

If a customer arrives during a working vacation period
then the server serves the customer at the lower rate μv . At
a vacation completion instant, if there are customers in the
system, the server will immediately come back to the normal
working level and restart to serve the interruptive customer
and a regular busy period starts. Otherwise, the server stays in
a idle period, the server begin a new busy period immediately
once there are customers arrived in the system.

Next, we will study the Markov chain underlying the
queueing system at random epochs.

At time n+, the system can be described by the process
Yn = {J(n), ζ(n), N(n)}, where J(n) denotes the state of
the server (0 or 1 according whether or not the system stays
in a working vacation period) and N(n) is the number of
customers in the system. If J(n) = i,N(n) ≥ 1, ζ(n)
represents the remaining service time of the customer being
served immediately after the n-th slot, i=0,1. It can be shown
that {Yn, n ∈ N} is the Markov chain of our queueing system
with state space S = {(0, 0), (1, 0)} ∪ {(i, j, k) : i = 0, 1, j ≥
1, k ≥ 1}.

For the Markov chain {Yn, n ∈ N} we have the following
results.
Theorem 1. Define ρ = pξ1

μb
. The Markov chain {Yn, n ∈ N}

is ergodic if and only if ρ < 1
Proof It is not difficult to see that {Yn, n ∈ N} is irreducible

and aperiodic. To prove it is also positive recurrent, we
shall use the following Foster’s criterion: An irreducible and
aperiodic Markov chain is ergodic if there exists a nonnegative
function f(s), s ∈ S, called test function, and ε > 0 such that
the mean drift xs = E[f(Yn+1) − f(Yn)|Yn = s] is finite for
all s ∈ S and xs ≤ −ε for all s ∈ S except perhaps a finite
number. In our case, we choose the following test function on
the state space S:

f(s) =

⎧⎪⎨
⎪⎩

1
μb

− 1, s = (0, 0), (1, 0),
k+1
μb

+ θ
θ , s = (0, j, k), j ≥ 1, k ≥ 1,

j − 1 + k
μb
, s = (1, j, k), j ≥ 1, k ≥ 1.

(1)

To obtain its mean drift xs, it is necessary to specify the one-
step transition probability probabilities of {Yn, n ∈ N}:
If Yn = (0, 0):

Yn+1 =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(0, 0), with probability p̄θ,
(0, j, k), with probability pθxksvj ,

j ≥ 1, k ≥ 1,
(1, 0), with probability pθ,
(1, j, k), with probability pθxksbj ,

j ≥ 1, k ≥ 1.

If Yn = (1, 0):

Yn+1 =

⎧⎨
⎩

(1, 0), with probability p̄,
(1, j, k), with probability pxksbj ,

j ≥ 1, k ≥ 1.

If Yn = (0, 1, k), k ≥ 1:

Yn+1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(0, 0), with probability p̄θ, k = 1,
(1, 0), with probability p̄θ, k = 1,
(0, j, k − 1), with probability pθsvj ,

j ≥ 1, k ≥ 2,
(1, j, k − 1), with probability pθsbj ,

j ≥ 1, k ≥ 2,
(0, j, k +m− 1), with probability pθxmsvj ,

j ≥ 1,m ≥ 1,
(1, j, k +m− 1), with probability pθxmsbj ,

j ≥ 1,m ≥ 1.

If Yn = (0, i, k), i ≥ 2, k ≥ 1:

Yn+1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(0, i− 1, k), with probability pθ,
(0, i− 1, k +m), with probability pθxm,

m ≥ 1,
(1, j, k), with probability pθsbj ,

j ≥ 1,
(1, j, k +m), with probability pθxmsbj ,

j ≥ 1,m ≥ 1.

If Yn = (1, 1, k), k ≥ 1:

Yn+1 =

⎧⎨
⎩

(0, 0), with probability p, k = 1,
(1, j, k − 1), with probability psbj , k ≥ 2,
(1, j, k +m− 1), with probability pxmsbj .

If Yn = (1, i, k), k ≥ 1, i ≥ 2:

Yn+1 =
{

(1, i− 1, k), with probability p,
(1, i− 1, k +m), with probability pxm.



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:5, No:8, 2011

1403

Therefore, the mean drift is given by

xs =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ρ+ δi,0
pθ

θ
, s = (i, 0), i = 0, 1, (2)

ρ− 1 − 1
μb

− δk,1
pθ

θ
, s = (0, 1, k), k ≥ 1, (3)

ρ− 1, s = (0, i, k) or (1, j, k),
i ≥ 2, j ≥ 1, k ≥ 1, (4)

where δi,k denotes the Kronecker delta.
If ρ < 1, taking ε = (1 − ρ)/2 > 0 and it follows from

(2)(3)and (4), we know that xs < −ε for all states except for
states (i, 0), i = 0, 1. Therefore, ρ < 1 is a sufficient condition
for the ergodicity of the Markov chain {Yn, n ∈ N}. This
condition is also necessary since p0,0 > 0 (the exact expression
of p0,0 is obtained in the next section).�

III. STEADY-STATE DISTRIBUTION

In this section, we study the steady-state distribution for
the system under consideration. First, we introduce some
generating functions to be used later.

Let Ax be the number of the batches arriving during the
random length x,

ak = P (ASb
= k) =

∑
j=max(1,k)

sbj

(
j

k

)
pkpj−k, k ≥ 0,

bk = P (ASv
= k, Sv < V )

=
∑

j=max(1,k)

svj

(
j

k

)
pkpj−kθ

j
, k ≥ 0,

ck = P (ASv = k, Sv = V )

=
∑

j=max(1,k)

svj

(
j

k

)
pkpj−kθθ

j−1
, k ≥ 0,

vk = P (AV = k, V < Sv)

=
∑

j=max(1,k)

θθ
j−1

(
j

k

)
pkpj−k

∞∑
i=j+1

svi , k ≥ 0.

Then ak is the probability that there are k batches arriving
during Sb (normal service time), bk is the probability that Sv <
V and k batches arrive during Sv (vacation service time), ck
is the probability that Sv = V and k batches arrive during
Sv , and vk is the probability that V < Sv and k batches
arrive during V . The z-transforms of {ak, k ≥ 0}, {bk, k ≥
0}, {ck, k ≥ 0} and {vk, k ≥ 0} are given, respectively, as
follows:

A(z) =
∞∑
k=0

akz
k = S̃b(p+ pz),

B(z) =
∞∑
k=0

bkz
k = S̃v(θ(p+ pz)),

C(z) =
∞∑
k=0

ckz
k =

θB(z)
θ

,

V (z) =
∞∑
k=0

vkz
k =

θ

θ(1 − θ(p+ pz))

(
θ(p+ pz) −B(z)

)
.

Putting αk =
∑k
j=0 ajx

(j)
k , βk =

∑k
j=0 bjx

(j)
k , γk =∑k

j=0 cjx
(j)
k , δk =

∑k
j=0 vjx

(j)
k , k ≥ 0, where x

(j)
k is the

probability that k customers arrive in j batches and is the
j-fold convolution of xk, and x

(0)
0 = 1. Then αk is the

probability that there are k customers arriving during Sb, βk
is the probability that Sv < V and k customers arrive during
Sv , γk is the probability that Sv = V and k customers arrive
during Sv , and δk is the probability that V < Sv and k
customers arrive during V .

Let η(z) = p + pX(z), the PGFs of {αk}∞k=0, {βk}∞k=0,
{γk}∞k=0 and {δk}∞k=0 are given by as follows:

α(z) =
∞∑
k=0

αkz
k = A(X(z)) = S̃b(η(z)),

β(z) =
∞∑
k=0

βkz
k = B(X(z)) = S̃v(θη(z)),

γ(z) =
∞∑
k=0

γkz
k = C(X(z)) =

θβ(z)
θ

,

δ(z) =
∞∑
k=0

δkz
k = V (X(z)) =

θ

1 − θη(z)

(
η(z) − β(z)

θ

)
.

Evidently,

α(1) = 1, β(1) = S̃v(θ̄), γ(1) =
θβ(1)
θ

, δ(1) = 1 − β(1)
θ

.

Thus {βk, k ≥ 0}, {γk, k ≥ 0} and {δk, k ≥ 0} are three
non-complete probability distributions.

Let hk =
∑k
j=0 δjak−j , k ≥ 0, then hk represents the

probability that the vacation time V is smaller than the
vacation service time Sv and k customers arrive during V plus
Sb and H(z) =

∑∞
k=0 hkz

k = δ(z)α(z). For these PGFs, we
have

θ(β(z) + γ(z)) = β(z),

α′(1) =
pξ1
μb

= ρ, β′(1) = θpξ1S̃
′
v(θ),

β′(1) + θ̄δ′(1) = θ̄(β′(1) + γ′(1) + δ′(1)) =
θ̄pξ1
θ

(1 − β(1)),

H ′(1) + β′(1) + γ′(1) =
pξ1
θ

(1 − β(1)) + ρ
(
1 − β(1)/θ

)
, .

We also¡¡need the following lemma whose proof is omitted.
Lemma 1 If ρ < 1, the equation z = S̃b(η(z)) has the min-
imal nonnegative root z = 1 and the equation z = S̃v(θη(z))
has the unique root r in the interval (0, 1).
Remark 1 (1) If θ → 1, our model is approximately reduced
to the classical discrete-time GeoX/G/1 queue (without va-
cation), in this case, r → 0.
(2) If no service exists during vacation, i.e., S̃v(z) = 0, the
root of the equation z = S̃v(θη(z)) is r = 0 and our model
is changed to the classical single vacation model,

Based on the above results, we derive the steady-state
distribution of the process {Yn, n ∈ N}. Under the stability
condition ρ < 1, we define

pj,0 = lim
n→∞P (J(n) = j,N(n) = 0), j = 0, 1,

pj,i,k = lim
n→∞P (J(n) = j, ζ(n) = i,N(n) = k),

j = 0, 1, i ≥ 1, k ≥ 1.
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Then we have the following theorem.
Theorem 2 Under the stationary condition ρ < 1, the
generating functions of the stationary joint distribution of the
Markov chain {Yn, n ∈ N} are given by:

p0,0 =[θpξ1(1 − ρ)(1 − β(1))]×
{θξ1[p+ θ(p+ pX(r))](1 − β(1))

+ p(1 −X(r))(θpξ1(1 − β(1)) − θρβ(1))}−1,
p1,0 =

θ(p+ pX(r))
p

p0,0,

φ0(x, z) =
θp[S̃v(x) − β(z)]

x− θη(z)
X(z) −X(r)
z − β(z)

xzp0,0,

φ1(x, z) =
S̃b(x) − α(z)
p(1 −X(z))

xzp0,0
1

(z − α(z))(z − β(z))
×

{(p+ θη(r))(X(z) − 1)(z − β(z))+

p[X(z) −X(r)](β(z) + θzδ(z) − θz)}.

Proof Based on the one-step transition probabilities, we have
the following set of equilibrium equations

p0,0 = pθp0,0 + pθp0,1,1 + pp1,1,1, (5)
p1,0 = pp1,0 + pθp0,0 + +pθp0,1,1, (6)

p0,i,k = pθxks
v
i p0,0

+ θ

(
pp0,i+1,k + pθ

k−1∑
m=1

xmp0,i+1,k−m

)

+ θ

(
pp0,1,k+1 + p

k∑
m=1

xmp0,1,k−m+1

)
svi ,

i ≥ 1, k ≥ 1, (7)

p1,i,k = pθxks
b
ip0,0 + pxks

b
ip1,0 + pp1,i+1,k

+ p
k−1∑
m=1

xmp1,i+1,k−m

+

(
pp1,1,k+1 + p

k∑
m=1

xmp1,1,k−m+1

)
sbi

+ θ

(
pp0,1,k+1 + p

k∑
m=1

xmp0,1,k−m+1

)
sbi

+ θ

⎛
⎝p

∞∑
j=2

p0,j,k + p
k−1∑
m=1

∞∑
j=2

xmp0,j,k−m

⎞
⎠ sbi ,

i ≥ 1, k ≥ 1, (8)

(by convention
∑0
m=1 = 0) and the normalization condition

is

p0,0 + p1,0 +
∞∑
i=1

∞∑
k=1

π0,i,k +
∞∑
i=1

∞∑
k=1

p1,i,k = 1.

In order to obtain the solution of (5)-(8), we define the

following generating functions:

φ0,i(z) =
∞∑
k=1

p0,i,kz
k, i ≥ 1, φ0(x, z) =

∞∑
i=1

xiφ0,i(z),

φ1,i(z) =
∞∑
k=0

p1,i,kz
k, i ≥ 1, φ1(x, z) =

∞∑
i=1

xiφ1,i(z).

Multiplying (7) by zk and summing over k leads to

φ0,i(z) =θpX(z)svi p0,0 + θη(z)φ0,i+1(z) +
θη(z)
z

svi φ0,1(z)

− pθsvi p0,1,1, i ≥ 1. (9)

Multiplying (9) by xi and summing over i yields

x− θη(z)
x

φ0(x, z) =θS̃v(x)(pX(z)p0,0 − pp0,1,1)

− θη(z)
z

(z − S̃v(x))φ0,1(z). (10)

Choosing x = θη(z) in (10), the left hand side of this equation
vanishes and therefore we have

φ0,1(z) =
zβ(z)(pX(z)p0,0 − pp0,1,1)

η(z)(z − β(z))
. (11)

From lemma 1, the denominator at the right-side of (11) is
equal to 0 if z = r, so does the numerator. Then we have

pp0,1,1 = pX(r)p0,0.

Substituting the above expression into (11) yields

φ0,1(z) =
pzβ(z)(X(z) −X(r))

η(z)(z − β(z))
p0,0. (12)

Substituting (12) into (10), we obtain

φ0(x, z) =
θp[S̃v(x) − β(z)]

x− θη(z)
X(z) −X(r)
z − β(z)

xzp0,0. (13)

Similarly, multiplying (8) by zk and xi, summing over k and
i leads to
x− η(z)

x
φ1(x, z)

=

⎛
⎝pX(z)(θp0,0 + p1,0) − p(θp0,1,1 + p1,1,1) +

⎛
⎝ ∞∑
j=2

φ0,j(z)

+
φ0,1(z)
z

)
θη(z)

)
S̃b(x) +

η(z)[S̃b(x) − z]
z

φ1,1(z). (14)

Inserting pp0,1,1 = pX(r)p0,0 into (5) and (6) we can get

pp1,1,1 = (1 − θ(p+ pX(r)))p0,0, (15)
pp1,0 = θ(p+ pX(r))p0,0. (16)

From (12) and (13), after some calculations we can obtain that
∞∑
j=2

φ0,j(z) +
φ0,1(z)
z

= φ0(1, z) +
(1 − z)
z

φ0,1(z)

=
pθ[X(z) −X(r)]

z − β(z)
γ(z) + zδ(z)

θη(z)
p0,0.

(17)
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Inserting (15)-(17) into (14) and using the equality θ + θp =
p+ θp yields

x− η(z)
x

φ1(x, z) =
η(z)[S̃b(x) − z]

z
φ1,1(z) + p0,0

S̃b(x)
z − β(z)

×
{(p+ θη(r))(X(z) − 1)(z − β(z)) + p[X(z) −X(r)]×
(β(z) + θzδ(z) − θz)}. (18)

Taking x = η(z) in (18), the left hand side of (18) vanishes
and then

φ1,1(z) =
zα(z)

η(z)(z − α(z))(z − β(z))
p0,0×

{(p+ θη(r))(X(z) − 1)(z − β(z)) + p[X(z) −X(r)]×
(β(z) + θzδ(z) − θz)}. (19)

Combining (18) with (19), we have

φ1(x, z) =
S̃b(x) − α(z)
p(1 −X(z))

xzp0,0
1

(z − α(z))(z − β(z))
×

{(p+ θη(r))(X(z) − 1)(z − β(z))+

p[X(z) −X(r)](β(z) + θzδ(z) − θz)}.
Finally, from the normalization condition p0,0 + p1,0 +
φ0(1, 1)+φ1(1, 1) = 1 and (16), we can obtain the expression
of p0,0 and p1,0. �
Remark 2 In (5)-(8), if we take θ = 1, then these equilibrium
equations are corresponding to the classical discrete-time
GeoX/G/1 queue (without vacation), in this case, the state
that the serve is busy with lower service doesn’t exist any
more, and P0,0+P1,0 is the probability that the server is idle,
denoted as PI . Then we can get the generating functions of the
stationary joint distribution function for the classical discrete-
time GeoX/G/1 queue without vacation as follows:

pI = 1 − ρ,

φ1(x, z) =
S̃b(x) − α(z)
α(z) − z

xz(1 − ρ)

and the generating function of the number of customers in
system at arbitrary epochs is

L0(z)
�= pI + φ1(1, z) =

(1 − ρ)(1 − z)α(z)
α(z)

,

which is the wellknown result.

Corollary 1 (1) The marginal generating function of the
system size when the server is busy with lower rate service
is:

φ0(1, z) =
θp[1 − β(z)]
1 − θη(z)

X(z) −X(r)
z − β(z)

zp0,0.

(2) The marginal generating function of the system size when
the server is busy with normal service is:

φ1(1, z) =
1 − α(z)

p(1 −X(z))(z − α(z))(z − β(z))
zp0,0×

{(p+ θη(r))(X(z) − 1)(z − β(z))+

p[X(z) −X(r)](β(z) + θzδ(z) − θz)}.

(3) The PGF of the system size, denoted as P (z), is given by:

P (z) =p0,0 + p1,0 + φ0(1, z) + φ1(1, z)

=
1 − z

1 −X(z)
N (z)
D(z)

p0,0
p
, (20)

where

N (z) =(p+ θη(r))(X(z) − 1)(z − β(z))α(z)

+ p[X(z) −X(r)](θH(z) + β(z) − θα(z)),
D(z) =(z − α(z))(z − β(z)).

In the following corollary, we provide some performance
measures at the stationary regime.
Corollary 2 (1) The probability that the server is in working
vacation period is :

p0,0 + φ0(1, 1) =
θ + θp(1 −X(r))

θ
p0,0.

(2) The probability that the server is idle is

p1,0 =
θη(r)
p

p0,0.

(3) The probability that the server is busy with normal service
is

φ1(1, 1) =
ρp0,0

θpξ1(1 − ρ)(1 − β(1))
×

{θξ1(1 − β(1))(p+ θη(r)) + p(1 −X(r))×
(θpξ1(1 − β(1)) − θβ(1))}.

(4) The probability that the system is empty is

P (empty) = p0,0 + p1,0 =
p+ θη(r))

p
p0,0.

IV. ANALYSIS OF SYSTEM SIZE AT THE DEPARTURE
EPOCHS

In this section, we mainly use the supplementary variable
method to obtain the expression for the PGF of the system
size at the departure epochs and its stochastic decomposition.
To this end, we firstly derive the queue length at the beginning
of the regular busy period, and the expected busy period and
expected busy cycle.
4.1 The queue length at the beginning of the busy period and
expected busy cycle

In this subsection, we will use the supplementary variable
method to obtain the PGF of the queue length at the beginning
of the regular busy period.

The duration in which the server works at the normal service
rate continuously is called a (regular) busy period, denoted by
Lb. Denote the number of customer at the beginning of a
busy period Qb, and its PGF Qb(z) =

∑∞
n=1 z

nP (Qb = n).
Let Lv be the working vacation which begins when a busy
period expires and ends at the expire instant of a vacation,
LI be the length of the period in which the server is not in
working period but available which begins when the vacation
ends without customers waiting in the queue until the new
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customers arrive. A busy cycle Θ is then defined as the sum
of LV , LI and Lb. Let D̃, with PGF D̃b(z), represent the
length of busy period beginning with only one customer in
non-vacation classic GeoX/G/1, Tian et al. (2008) showed
that D̃b(z) fulfils the implicit equation D̃b(z) = S̃b(z(p +
pX(D̃b(z)))) and E[D̃] = E[Sb]

1−ρ . Thus in our mode, we have
that

E[Lb] = E[D̃]E[Qb]. (21)

In the following, we first derive the PGF Qb(z).
Conditioning on the system states at the epoch prior to the

beginning of the regular busy period, we have that

P (Qb = n)

= K

[
pθxnp0,0 + pθ

∞∑
i=2

p0,i,n + pθ

n−1∑
m=1

∞∑
i=2

p0,i,n−m

+pθp0,1,n+1 + pθ
n∑

m=1

xmp0,1,n−m+1 + pxnp1,0

]
, n ≥ 1.

Multiplying both sides of the above expression by zn and
summing over n from 1 to ∞, we obtain after simplification

Qb(z) =K[θ + θ(1 + pX(r))(X(z) − 1)]

+K

[
θp(X(z) −X(r))(γ(z) + zδ(z))

z − β(z)

]
p0,0.

(22)

The unknown constant K can be determined by using the
normalization condition Qb(1) =

∑∞
n=1 P (Qb = n) = 1,

which leads to

K =
1

(θ + θp(1 −X(r))p0,0
.

Then we obtain

E[Qb] =Q′
b(1) =

1
θ(1 − β(1))(θ + θp(1 −X(r)))

×

{θξ1 (p+ θ(p+ pX(r))) (1 − β(1))

+ p(1 −X(r))
(
θpξ1(1 − β(1)) − θβ(1)

)}. (23)

Therefore,

E[Lb] =
E[Sb]

[θ(1 − β(1))(θ + θp(1 −X(r)))](1 − ρ)
×

{θξ1 (p+ θ(p+ pX(r))) (1 − β(1))

+ p(1 −X(r))
(
θpξ1(1 − β(1)) − θβ(1)

)}. (24)

By using the alternating renewal theorem, we may write

φ1(1, 1) =
E[Lb]
E[Θ]

, p1,0 =
E[LI ]
E[Θ]

and p0,0+φ0(1, 1) =
E[Lv]
E[Θ]

.

By Corollary 2 and (24), we can get E[Θ], E[LI ] and E[Lv]
as follows:

E[Θ] =
1

(θ + θp(1 −X(r))p0,0
, (25)

E[LI ] =
θ(p+ pX(r))

p(θ + θp(1 −X(r))
, (26)

E[Lv] =
θ + θp(1 −X(r))
θ(θ + θp(1 −X(r))

=
1
θ
. (27)

4.2 The PGF of the queue length at departure epochs and its
stochastic decomposition

In this subsection we will derive the PGF Π(z) of the
stationary distribution {πn}∞n=0 of the queue size at the
departure epochs. Let Pv(Pb) be the probabilities that an
arbitrary customer is served completely at the lower service
rate(at the normal service rate), denoted by S = 0(S = 1), and
Pv,n, (Pb,n) be the probability that there are n customers in the
system immediately after the slot when one customer is served
completely at the lower service rate (at the normal service
rate). Define Pv(z) =

∑∞
n=0 Pv,nz

n, Pb(z) =
∑∞
n=0 Pb,nz

n.

By analyzing relations between arbitrary and departure
epochs and considering various possibilities one can easily
see that πn, Pv,nPb,n and p0,1,n, p0,1,n are connected by the
relation

πn = Pv,n + Pb,n

= K1

[
pp0,1,n+1 + (1 − δ0,n)p

n∑
m=1

xmp0,1,n−m+1

]

+K1

[
pp1,1,n+1 + (1 − δ0,n)p

n∑
m=1

xmp1,1,n−m+1

]
,

which leads to

Π(z) = Pv(z) + Pb(z) = K1
η(z)
z

(φ0,1(z) + φ1,1(z)),

Pv(z) = K1
η(z)
z
φ0,1(z), Pb(z) = K1

η(z)
z
φ1,1(z)).

From (12) and (19), we know that

Pv(z) =K1
pβ(z)(X(z) −X(r))

z − β(z)
p0,0, (28)

Pb(z) =K1
α(z)

(z − α(z))(z − β(z))
p0,0×

{(p+ θ(p+ θpX(r)))(X(z) − 1)(z − β(z))

+ p[X(z) −X(r)](β(z) + θzδ(z) − θz)}. (29)

Then we can obtain that

Π(z) = K1p0,0
N (z)
D(z)

.

The unknown constant K1 can be determined by using the
normalization condition Π(1) = Pv(1) + Pb(1) = 1, then we
can obtain K1 = 1

pξ1
.

We summarize the preceding results in the following theo-
rem.
Theorem 3 For the PGFs Π(z), Pv(z), Pb(z), we have

Π(z) =
p0,0
pξ1

N (z)
D(z)

, (30)

Pv(z) =
β(z)(X(z) −X(r))

z − β(z)
p0,0
ξ1

, (31)

Pb(z) =
α(z)

(z − α(z))(z − β(z))
p0,0×

{(p+ θ(p+ θpX(r)))(X(z) − 1)(z − β(z))

+ p[X(z) −X(r)](β(z) + θzδ(z) − θz)}. (32)
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Remark 3 Comparing (20) with (30), we find that

Π(z) = P (z)
1 −X(z)
ξ1(1 − z)

. (33)

It is not surprising that this is same as that in the standard
GeoX/G/1 queueing system.
Corollary 3 (1)The probability that an arbitrary customer
is served completely at the lower service rate(at the normal
service rate) is

Pv = Pv(1) =
β(1)(1 −X(r))

1 − β(1)
p0,0
ξ1

.

(2)The probability that an arbitrary customer is served com-
pletely at the normal service rate is

Pb = Pb(1) = 1 − Pv.

Remark 4 If there is no service during the vacation period,
i.e. β(1) = S̃v(θ) = 0, we have Pv = 0 and Pb = 1, which
means that all customers are served completely by the normal
service rate.

By using the conditional argument

Π(z) = PvE[zL|S = 0] + PbE[zL|S = 1]

= Pv
Pv(z)
Pv

+ Pb
Pb(z)
Pb

,

After manipulating, we can easily get that

Π(z) =Pv
β(z)(X(z) −X(r))

z − β(z)
1 − β(1)

β(1)(1 −X(r))

+ Pb
(1 − ρ)(1 − z)α(z)

α(z) − z
Ld(z),

where

Ld(z) =
1 −Qb(z)

E[Qb](1 − z)
.

Then we get the following theorem.
Theorem 4 If ρ < 1, the probability generating function Π(z)
of the stationary queue length L at departure epochs is

Π(z) =Pv
β(z)(X(z) −X(r))

z − β(z)
1 − β(1)

β(1)(1 −X(r))

+ Pb
(1 − ρ)(1 − z)α(z)

α(z) − z

1 −Qb(z)
E[Qb](1 − z)

.

Denote by L1 = E[L|S = 1]. From above discussion, we
can obtain the following conditional stochastic decomposition
discipline.
Theorem 5 If ρ < 1, the conditional queue length L1 can
be decomposed into the sum of two independent random
variables: L1 = L0 + Ld, where L0 is the stationary queue
length of a classic GeoX/G/1 queue without vacations with
PGF

L0(z) =
(1 − ρ)(1 − z)α(z)

α(z) − z
.

From the above theorem, we can get the expected queue
length at the departure epochs, denoted by Πs, as follows

Πs =Pv

(
β′(1)
β(1)

+
ξ1

1 −X(r)
− 1 − β′(1)

1 − β(1)

)

+ Pb

(
ρ+

(pξ1)2βb,2 + pξ2βb,1
2(1 − ρ)

+ L′
d(1)

)
.

Let Łs be the expected system length at random epochs, then
Łs = P ′(1), by (33) we have

Ls = P ′(1) = Πs − ξ2
2ξ1

.

and by Little’s low, the mean sojourn time in the system (
denoted by Ws) is given by

Ws =
Ls
pξ1

.

V. RELATIONSHIP TO THE CONTINUOUS-TIME SYSTEM

This section is dedicated to the analysis of the relation-
ship between our discrete-time system and its continuous-
time counterpart. More specifically, we will show that the
continuous-time MX/G/1 queue with single exponentially
working vacation can be approximated by the corresponding
discrete-time system. To this end, time is slotted into intervals
of equal length, so the approximation tends to the exact value
when the length of the intervals goes to zero.

We consider the continuous-time MX/G/1 queue with sin-
gle working vacation where batches of the customers arrive ac-
cording to a Poisson process with rate λ > 0 and the batch size
X has PMF P (X = j) = xj , j = 1, 2, · · · , and PGF X(z)
and n-th factorial moments ξn, n = 1, 2. Normal service times
( lower rate service times during a vacation period) in a regular
busy period are independent and identically distributed with
distribution function Gb(x)(Gv(x)), Laplace-Stieltjes trans-
form G∗

b(s)(G
∗
v(s)) and a finite mean μ−1

1 (μ−1
2 , μ2 < μ1).

Vacation time V is exponentially distributed with parameter
δ. Various stochastic processes involved in the system are
independent of each other. If we suppose that time is divided
into intervals of length Δ ∈ (0, 1/λ), the previous continuous-
time system can be approximated by our discrete-time model
choosing the parameters as follows:

p = λΔ, θ = δΔ,

sbi =
∫ iΔ

(i−1)Δ
dGb(x), svi =

∫ iΔ

(i−1)Δ
dGv(x), i ≥ 1

where Δ is sufficiently small so that p is a probability. It is not
difficult to check the following equalities using the definition
of the Lebesgue integral:

lim
Δ→0

ρ = lim
Δ→0

pξ1βb,1

= ξ1 lim
Δ→0

λΔ
∞∑
i=1

i

∫ iΔ

(i−1)Δ
dGb(x)

= λξ1

∫ ∞

0

xdGb(x) =
λξ1
μ1

�
= ρ̃,
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lim
Δ→0

S̃b(p+ pX(z))

=
∫ ∞

0

e−λ(1−X(z))dGb(x) = G∗
b(λ(1 −X(z))).

lim
Δ→0

S̃v(θ(p+ pX(z)))

=
∫ ∞

0

e−(δ+λ(1−X(z)))dGv(x) = G∗
v(δ + λ(1 −X(z))).

Therefore we have

lim
Δ→0

α(z) = G∗
b(λ(1 −X(z)))

�
= α̃(z),

lim
Δ→0

β(z) = G∗
v(δ + λ(1 −X(z)))

�
= β̃(z),

lim
Δ→0

δ(z) = lim
Δ→0

θ

1 − θη(z)

(
η(z) − β(z)

θ

)

=
δ

δ + λ(1 −X(z))
[1 −G∗

v(δ + λ(1 −X(z)))],

lim
Δ→0

H(z) = lim
Δ→0

δ(z)α(z)

=
δ

δ + λ(1 −X(z))
×

[1 −G∗
v(δ + λ(1 −X(z)))]G∗

b(λ(1 −X(z)))
�
= H̃(z),

and

lim
Δ→0

p0,0 = [δλξ1(1 − ρ̃)(1 −G∗
v(δ))]×

{λ(1 −X(r))[λξ1(1 −G∗
v(δ)) − δρ̃G∗

v(δ)]

+ δξ1(λ+ δ)(1 −G∗
v(δ))}−1 �

= ψ0,0,

where r is the unique root in the range (0, 1) of the equation
z = G∗

v(δ + λ(1 −X(z)). Taking into account these results,
we achieve

lim
Δ→0

P (z) =
1 − z

1 −X(z)
1

(z − α̃(z))(z − β̃(z))
ψ0,0×

{(λ+ δ)(1 −X(z))(β̃(z) − z)α̃(z) (34)

+ λz(X(z) −X(r))(H̃(z) + β̃(z) − α̃(z))},

and

lim
Δ→0

Π(z) =
ψ0,0
ξ1

1

(z − α̃(z))(z − β̃(z))
×

{(λ+ δ)(1 −X(z))(β̃(z) − z)α̃(z)

+ λz(X(z) −X(r))(H̃(z) + β̃(z) − α̃(z))}, (35)

which are respectively the PGFs of the system sizes in the
MX/G/1 queue with single working vacation at random times
and departure times.

VI. NUMERICAL RESULTS

In this section, we present some numerical examples to
study the effect of the varying parameters on the main per-
formance characteristics of our system. For simplicity, it is
assumed that the service times Sb and Sv follow the geomet-
rical distributions with parameters μb and μv , respectively, and
μb = 0.8, μv varies from 0 to 0.8, the batches size follows a

geometrical distribution with mean ξ1 = 2 and p = 0.2. The
model is denoted as GeoGeo/(Geo1, Geo2)/1/SWV .

We will concentrate our attention on four important per-
formance descriptors: Ls, the mean system size, P (empty),
the probability that the system is empty, E[Θ], the expected
busy cycle and Pb, the probability that a customer is served
completely by the normal service rate.

In Fig. 1, Ls is plotted against the parameter θ. Obviously,
the system size Ls is decreasing as function of θ, that is, the
bigger the probability θ, the shorter the vacation time, and then
the chance that the customer is served by the normal service
rate (which can also be seen in Fig.4) is increased which leads
to the decrease of Ls. Additionally, we study the influence
of the lower service rate μv on Ls. Specially, three curves
are presented corresponding to μv = 0, 0.15, 0.25, 0.45, 0.65.
As is to be expected, Ls decrease with increasing values of
μv , which also agrees with the intuitive. We should note that
when θ approaches to 1, Ls will achieve a fixed value, i.e.,
the system size without vacation.

Figs. 2-4 depict the behavior of the P (empty), E[Θ] and
Pb against μv . Obviously, P (empty) is increasing as function
of μv and E[Θ] and Pb decrease with increasing values of
μv . Meanwhile, in Figs. 2-4, P (empty), E[Θ] and Pb are
compared with varying values θ = 0.25, 0.45, 0.65, 1. As we
expected, P (empty) and Pb increase and E[Θ] decreases with
increasing values of θ. It can be observed from Figs.2-3 that
the effect of θ can be ignored when μv = μb = 0.8, in this
case, P (empty) and E[Θ] achieve fixed values, respectively,
i.e., the probability that the system is empty and the mean busy
cycle in the queueing system without vacation corresponding
to θ = 1. However, when μv = 0, that is, the model is reduced
to the classical discrete-time queue with single vacation, the
effect of θ can’t be ignored any more. On the other hand,
Fig.4 shows that when μv = 0, θ has no effect on Pb, because
customers can only be served by the normal service rate, i,e,
Pb = 1.
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Fig.1 Ls vs. θ for different μv .
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VII. CONCLUSION

In this paper, we consider a discrete-time GeoX/G/1/
queue with single working vacation. For this model, we obtain
the distributions for queue length at departure epochs and
at arbitrary epoch, also we discuss some important system
characteristics. With these indices of the system, we can model
some practical problems in the communication networks and
computer and evaluate the performance of those systems.
Meanwhile, we also present the stochastic conditional decom-
position result for the queue size at a departure epoch and
establish the theoretical framework for the GeoX/G/1 queue
with single working vacation. For future research, one could
consider the case with single working vacation and vacation
interruption.
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