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Abstract—Extreme temperature of several stations in Malaysia is 

modelled by fitting the monthly maximum to the Generalized 

Extreme Value (GEV) distribution. The Mann-Kendall (MK) test 

suggests a non-stationary model. Two models are considered for 

stations with trend and the Likelihood Ratio test is used to determine 

the best-fitting model. Results show that half of the stations favour a 

model which is linear for the location parameters. The return level is 

the level of events (maximum temperature) which is expected to be 

exceeded once, on average, in a given number of years, is obtained. 

 

Keywords—Extreme temperature, extreme value, return level.  

I. INTRODUCTION 

XTREME weather may cause substantial damage to our 

lives through events such as droughts, floods and 

ecological disturbances as they affect human activities 

and the economy as well. Researchers are interested in 

developing appropriate statistical methods for extreme events 

that provide a significant help towards these problems. In the 

past few years, there have been several studies concerning 

extreme climatic events such as those by Flocas and 

Angouridakis [5], Katz et al. [14], Hurairah et al. [13], 

Gilleland and Katz [8], Siliverstovs et al. [17], Blain [1], and 

de Vyver [4].  

Extreme Value Theory (EVT) is a branch of statistics that 

deals with asymptotic behaviour of extreme events. Its 

applications include the area of meteorology (see [6], [7] and 

[11]), hydrology (see [9]), ecological disturbances (see [14]), 

and finance (see [10]). The aim of EVT is to characterize rare 

events and tails of distributions.  

The earliest application of EVT was by astronomers in 

rejecting outlying observation while Fuller in 1914 and 

Griffith in 1920 on applications and methods of mathematical 

analysis of EVT in flood flows and phenomenon of rupture 

and flow in solids, respectively [15]. 

A. Background 

Present climate trends in Southeast Asia have been 

associated with increasing surface air temperature, attributed 

to global warming that contributes to changes in global 
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climate patterns. The impact of global warming is felt in many 

aspects of human lives such as health, food supply, water 

supply and the environment (e.g. erosion of beaches, loss of 

habitats and species, and reduced diversity of ecosystems). For 

example, increasing intensity of forest fires in Southeast Asia 

is largely attributed to the rise in temperature and the decline 

in rainfall in combination with increasing intensity of land-

use.  

Although there has been some works on extreme value 

modelling of rainfall for Malaysia, none was dealing with 

extremes of temperature. In this paper, our focus is on extreme 

temperature in Malaysia. Located near the equator, the 

average temperature is about 80.6°F and is categorized as 

being hot and humid all year round. Daytime temperatures rise 

above 86°F year-round and night time temperatures rarely 

drop below 68°F. The country has abundant sunshine and 

solar radiation with an average of about 6 hours of sunshine 

every day. However, cloud cover cuts off a substantial amount 

of sunshine and solar radiation. 

Malaysia consists of Peninsular Malaysia and East 

Malaysia. The climate of the Peninsular Malaysia is directly 

affected by the wind from the mainland, while the East is 

affected more by the maritime weather. The changes of 

climate are likely to have a significant effect on Malaysia. 

During north-eastern monsoon months, there are clear changes 

in temperature in the east coast of Peninsular Malaysia and in 

the northern and eastern seas of Sabah. Average monthly 

temperatures are high in April and May and low in December 

and January. 

As climate variability increases due to global warming, it is 

expected that more extreme weather events will occur in 

Malaysia in the future. A report [2] revealed an increasing 

trend of the temperature in some areas such as Kuching, Kota 

Kinabalu, Kuantan and Petaling Jaya. Wan Hassan [18] 

reported that 31 out of 36 meteorological stations in Malaysia 

recorded highest maximum temperature during the 1990s and 

after. 

B. Objective 

Changes in temperature due to global warming affect 

Malaysia’s weather just like it does to the rest of the world. 

The study on extreme temperatures in Malaysia will provide 

stakeholders with useful information and understanding about 

its trend and behaviour. Furthermore, necessary steps can be 

taken by relevant authorities to prepare the public for the 

impacts of weather changes due to extreme temperatures. 

The objective of this study is to quantify and describe the 

behaviour of extreme temperature in Malaysia. Specifically, 
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our aim is to apply the GEV distribution in modelling monthly 

maximum temperatures in Malaysia. An analysis of annual 

extreme temperatures on a sample of stations can be found in 

[12]. 

C. Description of Data 

The data recorded at twenty-two meteorological stations in 

Malaysia are obtained from the National Climatic Data Center 

website which measured in degree Fahrenheit (°F). The data 

consists of average daily temperatures for the period of 

January 1981 to October 2012. The average daily temperature 

data is defined as the total amount of the temperatures 

collected for a particular day of a 24-hour observation starting 

from 08.00am on a particular day to 08.00am on the next day 

over the number of observation on that day. The selected 

meteorological stations are Bayan Lepas, Bintulu, 

Butterworth, KLIA, Kota Bharu, Kota Kinabalu, Kuantan, 

Kuching, Kudat, Labuan, Langkawi, Malacca, Mersing, Miri, 

Sandakan, SAS, SAAS, Senai, Sibu, Sitiawan, Subang and 

Tawau of which eight of them are located in East of Malaysia.  

II. RESEARCH METHODOLOGY 

The limiting distributions of large (or small) values in a 

random sample are used to obtain extreme value distributions. 

Suppose 
1 2 nX ,X ,...,X  are independent random variables with 

identical probability distribution and let 

( )1 2n nM max X ,X ,...X= . The Extremal Types Theorem states 

that if there exists normalizing constant { }0na > and { }nb such 

that  

 

( )n n
n

n

M b
Pr z Pr Z z G( z )

a

 −
≤ = ≤ → 

 
 as n → ∞  

 

where G  is a non-degenerate distribution function, then the 

distribution of G  belongs to either the Gumbel, Fréchet, or 

Weibull distribution. The combination of these three 

distribution families into a single-family model forms the 

GEV distribution [3], with cumulative function 

 

( )G z ; , ,µ σ ξ =  

      ( )( )
1

1exp z / ,
ξξ µ σ

−  − + −   
 for 0ξ ≠ , ( )1 0z /ξ µ σ+ − > , 

     z
exp exp ,

µ
σ

 − − −    
 for 0ξ =  , 

 

µ∈R, 0σ >  and ξ∈R are the location, scale and shape 

parameters, respectively. For notational convenience, the 

maximum of a sample 
1 2 nX ,X ,...,X  will be denoted by z  and 

the standardized variable, ( ){ }z µ σ−  in the GEV distribution 

formed a distribution that does not depend on location µ  and 

scale σ  but only depends on shape ξ .  

The classical GEV; ( )G z ; , ,µ σ ξ  model assumes that the 

three parameters of location, scale and shape are time-

independent [3]. However, if trends are detected in the data 

sample, the non-stationary case where parameters are no 

longer constants but expressed as covariates (e.g. time), should 

be considered. 

A. Selection Period and Stationary Test 

The data on extreme values are grouped into blocks of equal 

length n and the maximum of each block form a series of block 

maxima, 1 2n , n , n ,mM ,M ,...,M  to be fitted with the GEV 

distribution. A block represents the length of a period and the 

selection of block size is critical as too small block can lead to 

a bias and if too large, too few blocks maxima are generated, 

leading to a large estimation variance [3].  

In this study, data of maximum temperature are blocked into 

monthly lengths. Modelling of GEV distribution needs the 

assumption of ( )1 2imX i , ,...,n=  to have independent random 

variables with common distribution, F . The violation of the 

assumption will occur since seasonality will cause temperature 

data to vary accordingly. Failure to consider non-homogeneity 

into account, will affect the analysis of the data by producing 

inaccurate results.  

It is essential that the stationarity assumption be fulfilled 

before the classical GEV can be fitted. The Mann-Kendall 

Trend Test is a test to determine if the values of a random 

variable follow a monotonic trend. The null hypothesis states 

that no trend exists. This test does not conform to any 

particular distribution and is particularly useful if datasets 

have missing values [8]. 

B. Model Choices and Parameter Estimates 

The basic principle in selecting the best model is to obtain 

the simplest model possible that explains as much of the 

variation in the data as possible [3]. Two models are 

considered namely a stationary Model 1 (classical GEV), and 

non-stationary Model 2 (with time as covariates). The models 

are as follow: 

Model 1: ,µ σ  and ξ  are constants, 

Model 2: ( ) ( )0 1t t ,µ β β= + σ  and ξ are constants,  

where t  refers to units of the selection period (monthly).  

 Model 1 assumes that the three parameters are time-

independent. However, if trends are detected in the data, the 

non-stationary case where the parameters are no longer 

constants but time-dependent, will be considered. In this case, 

time is expressed as a covariate where the location parameter 

µ  is modelled as a linear trend (Model 2). Model 2 is a four-

parameter model, with the shape parameter ξ  remains 

constant since it is difficult to estimate with precision and 

unrealistic to model it as a smooth function of time. 

To estimate the parameters, the L-moments methods 

(LMOM) and maximum likelihood estimators (MLE) are 

used. The LMOM are based on linear combinations of data 

arranged in ascending order. They are more reliable than the 

MLE as they are less sensitive to outliers [16] while the 

advantage of MLE is its adaptability to changes in model 

structure. However, the LMOM methods can only be applied 

to estimate stationary parameters in Model 1 while MLE is 
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used to estimate the parameters in Model 2 since it is time-

dependent.  

C. Likelihood Ratio (LR) Test and Model Diagnostics 

The Likelihood Ratio (LR) test is used to compare the fit of 

two models where the null model, 
0L  is a special case of the 

other (alternative model, 
1

L ). The best model is determined by 

deriving the probability or p-value of the difference in γ , the 

LR test statistic, defined as: 0

1

2
L

ln
L

γ
 

= −  
 

, where γ  has a chi-

square distribution with one degree of freedom (since Model 1 

has three parameters model, while Model 2 and Model 3 have 

four parameters). 

The null model (Model 1) is preferred if, 2

1 0 95 3 8415, . .γ χ< = . 

Otherwise, the alternative model (Model 2) is preferred. The 

LR test requires nested models, which means that comparison 

can only be made between one complex model and one 

simpler model.  

Model diagnostics such as probability plots, quantile plots, 

return level plots and density plots are also looked into. 

Probability plots and quantile plots contain the same 

information but on different scales. The best fitted model has 

points on the probability plot that lie on the unit diagonal but 

these graphical tests are only used as complements to 

statistical tests.  

However for non-stationary cases (Model 2), some 

modification is needed due to the lack of homogeneity in the 

distribution assumptions for each observation [3]. It is only 

possible to apply to a standardized version of the data, 

conditional on the fitted parameter values. Thus, the 

diagnostic plots for Model 2 are applied to residuals (residual 

probability plot and residual quantile plot-Gumbel scale).  

D. Return Level Estimate 

The estimation of return level, 
pz  is the level of events 

(maximum temperature) which is expected to be exceeded 

once, on average, in a given number of months. Since the 

return level is associated with the 1 p -month return period, it 

is defined as the level which is expected to be exceeded on 

average once every 1 p -months. For more precisely, it is the 

level exceeded by the monthly maxima in any month with 

probability, p . Estimation of the return level, 
pz  is obtained 

from the stationary models by inverting the cumulative 

function for GEV distribution:  

 

                         1 py ,ξσ
µ

ξ
− − −   for 0ξ ≠  

                                plog y ,µ σ−         for 0ξ =   

 

where ( ) 1pG z p= − , log(1 )py p= − − , and 0 1p< < . Long 

return periods, corresponding to small values of p , which are 

greater interest. In this study, we focus on providing return 

level estimates for monthly maximum temperatures. 

Confidence intervals may be estimated based on the profile 

likelihood method by finding the intersection between the 

respective profile likelihood values and the average of the 

distance between the maximum of the profile log-likelihood 

and the α  quantile of a 2

1χ  distribution. 

III. RESULT AND DISCUSSIONS 

In this paper, we have used the average daily temperatures 

for 32 years covered from 1 January 1981 to 13 October 2012 

for twenty-two stations. The monthly block maximum is 

selected as a selection period to study the extreme temperature 

in Malaysia by using Generalized Extreme Value distribution. 

A. Descriptive Statistics 

Table I shows the descriptive statistics for monthly selection 

period.  
TABLE I 

DESCRIPTIVE STATISTICS FOR THE MONTHLY PERIODS 

Station N Min Max SD 

B-Lepas 382 81 87.4 1.24 
Bintulu 382 80 91.4 1.41 

Butterworth 111 75.5 87.3 1.56 

KLIA 76 81.7 86.3 0.94 
K-Bharu 382 79.3 88.1 1.65 

K-Kinabalu 382 79.6 88.6 1.36 

Kuantan 382 77.3 93.0 1.98 
Kuching 380 76.6 88.6 1.61 

Kudat 124 81.6 91.9 1.43 

Labuan 308 81.0 88.9 1.25 
Langkawi 112 78.8 90.1 1.37 

Malacca 382 80.5 87.6 1.30 

Mersing 100 80.6 85.3 1.11 
Miri 382 79.4 87.8 1.40 

SAAS 78 75.7 91.9 1.83 
Sandakan 382 81.3 90.3 1.42 

SAS 100 81.0 87.4 1.33 

Senai 153 73.4 87.0 1.35 

Sibu 382 79.8 91.6 1.65 
Sitiawan 382 80.2 87.3 1.25 

Subang 382 80.3 89.6 1.69 

Tawau 308 79.9 86.2 1.04 

N = sample size, SD = standard deviation 
 

Based on Figs. 1 (a) and 1 (b), it shows how the monthly 

maximum average daily temperatures have varied throughout 

the considered period for each station. A number of stations 

such as Bayan Lepas, KLIA, Kota Bharu, Kudat, Malacca and 

Subang appear to exhibit some kind of non-stationarity. 

B. Testing for Trend 

The Mann-Kendall (MK) trend test is performed to detect 

the presence of monotonic trend in the data for each station, 

under the null hypothesis of an absence of trends. 

The resulting normalized test statistics and p-values for the 

stations with trend are shown in Table II which led to the fact 

that half of the stations show the existence of trends. The 

remaining 11 stations did not have a trend that was statistically 

significant. 

 

 

 

 
 

pz =
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TABLE II 

MANN-KENDALL (MK) TREND TEST 

Station Normalised 

Test Statistic 

p-value Trend at 95% Level of 

Significant 

B-Lepas 9.1701 0.0000 Increasing 
KLIA 3.3591 0.0004 Increasing 

K-Bharu 3.4101 0.0003 Increasing 

Kuantan 4.5873 0.0000 Increasing 
Kuching 3.0525 0.0011 Increasing 

Malacca 6.8614 0.0000 Increasing 

Sitiawan 2.9680 0.0015 Increasing 
Subang 12.3904 0.0000 Increasing 

Kudat  -3.5914 0.0002 Decreasing 

SAAS -1.8916 0.0293 Decreasing 
Tawau -3.1386 0.0008 Decreasing 

 

  

  

  

  

  

  

Fig. 1 (a) Monthly Maxima Average Daily Temperature 

 

  

  

  

  

  

Fig. 1 (b) Monthly Maxima Average Daily Temperature 
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C. Parameter Estimates 

Based on the above result, we ought to model for both 

stationary and non-stationary of the data set for the stations 

listed in the Table II. Parameter estimates for Model 1 and 

Model 2 are shown in Tables III and IV, respectively.  

The negative values of ξ , indicates the bounded (or short 

tailed distribution) of the GEV distribution. The maximized 

log likelihood under the different models is listed to enable the 

Likelihood Ratio (LR) test statistic to be computed. 

 
TABLE III 

PARAMETER ESTIMATION FOR MODEL 1 

Station µ (se) σ (se) ξ (se) -log L 

B-Lepas 83.6(0.068) 1.21(0.048) -0.230(0.033) 622.387 
Bintulu 82.6(0.071) 1.29(0.049) -0.105(0.020) 669.642 

Butterworth 84.0(0.171) 1.69(0.118) -0.487(0.042) 199.887 

KLIA 83.5(0.109) 0.86(0.076) -0.172(0.075) 101.048 
K-Bharu 82.7(0.091) 1.63(0.063) -0.257(0.026) 732.441 

K-Kinabalu 83.5(0.074) 1.35(0.050) -0.220(0.021) 663.560 

Kuantan 81.9(0.107) 1.95(0.071) -0.149(0.014) 813.443 
Kuching 82.0(0.086) 1.57(0.058) -0.194(0.020) 721.744 

Kudat 83.9(0.120) 1.23(0.083) -0.070(0.040) 214.586 
Labuan 84.3(0.076) 1.23(0.051) -0.218(0.026) 507.585 

Langkawi 84.7(0.158) 1.50(0.089) -0.253(0.024) 200.416 

Malacca 83.2(0.069) 1.23(0.049) -0.192(0.032) 639.153 

Mersing 82.1(0.113) 0.99(0.081) -0.141(0.083) 149.148 
Miri 82.7(0.077) 1.39(0.052) -0.241(0.021) 671.881 

SAAS 84.3(0.258) 2.09(0.133) -0.229(0.027) 165.996 

Sandakan 83.6 (0.072) 1.27(0.050) -0.121(0.029) 666.436 
SAS 83.4 (0.137) 1.21(0.098) -0.164(0.075) 168.175 

Senai 81.8(0.138) 1.61(0.079) -0.293(0.018) 275.521 

Sibu 82.5(0.081) 1.45(0.057) -0.093(0.027) 720.729 
Sitiawan 82.8(0.067) 1.19(0.046) -0.197(0.029) 625.395 

Subang 83.7(0.092) 1.65(0.064) -0.236(0.026) 741.014 

Tawau 82.2(0.060) 0.96(0.040) -0.155(0.030) 442.889 

 

TABLE IV 
PARAMETER ESTIMATION FOR MODEL 2 

Station 
0β (se) 1β (se) σ (se) ξ (se) -log L 

B-Lepas 82.646 
(0.110) 

0.005 
(<0.001) 

1.05 
(0.041) 

-0.199 
(0.031) 

576.298 

KLIA 82.910 

(0.191) 

0.016 

(0.004) 

0.79 

(0.071) 

-0.175 

(0.082) 

95.053 

K-Bharu 82.110 

(0.171) 

0.003 

(0.001) 

1.57 

(0.062)  

-0.228 

(0.029) 

724.713 

Kuantan 81.025 
(0.201) 

0.005 
(0.001) 

1.87 
(0.069) 

-0.130 
(0.015) 

800.955 

Kuching 81.523 

(0.175) 

0.002 

(0.001) 

1.54 

(0.056) 

-0.174 

(0.020) 

717.839 

Malacca 82.391 

(0.118) 

0.004 

(0.001) 

1.11 

(0.044) 

-0.132 

(0.033) 

612.531 

Sitiawan 82.401 
(0.131) 

0.002 
(0.001) 

1.16 
(0.045) 

-0.175 
(0.029) 

620.457 

Subang 82.045 

(0.139) 

0.009 

(0.001) 

1.32 

(0.049) 

-0.199 

(0.019) 

658.551 

Kudat 84.641 

(0.225) 

-0.012 

(0.003) 

1.17 

(0.079) 

-0.074 

(0.044) 

207.666 

SAAS 85.405 
(0.697) 

-0.023 
(0.016) 

2.19 
(0.155) 

-0.305 
(0.049) 

164.323 

Tawau 82.453 

(0.117) 

-0.001 

(0.001) 

0.96 

(0.040) 

-0.161 

(0.028) 

440.538 

 

Since the MK trend test shows non-stationarity in the data 

sets for Bayan Lepas, KLIA, Kota Bharu, Kuantan, Kuching, 

Malacca, Sitiawan, Subang, Kudat, SAAS and Tawau, it is 

plausible to investigate if the monthly extremes change 

linearly across the observation period of the stations. 

Parameter 1β  in Model 2 corresponds to the monthly rate of 

change in monthly maximum temperature.  

The result for Likelihood Ratio test is shown in Table V. As 

we compare the results of Model 1 versus Model 2, it can be 

seen that Model 2 is preferred for those stations except SAAS 

station. 
 

TABLE V 
LIKELIHOOD RATIO TEST 

Station Test Statistics p -value 

B-Lepas 92.178 0.000 

KLIA 11.999 0.001 
K-Bharu 15.458 0.001 

Kuantan 24.970 0.000 

Kuching 7.810 0.005 
Malacca 53.245 0.000 

Sitiawan 9.875 0.002 

Subang 164.926 0.000 
Kudat 13.839 0.000 

SAAS 3.346 0.067 

Tawau 4.7018 0.030 

D. Model Diagnostics 

Figs. 2 and 3 show the model diagnostics for four stations. 

Inspection of the probability and quantile plots in Fig. 2 shows 

points that are scattered along the linear line; thus there is no 

doubt on the validity of the fitted model. The negative 

estimates of the ξ cause the return level curve to asymptote to 

a finite level. The estimated curve for the return level plot is 

close to being linear since the values of ξ is close to zero. 

The residual probability and residual quantile plots 

(Gumbel scale) are obtained for Model 2 as shown in Fig. 3. 

Based on all plots, we conclude that all models are well- fitted. 

 

 

 

 

 

 

 

 

 

Fig. 2 Model Diagnostics for Model 1 
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Fig. 3 Model Diagnostics for Model 2 

E. Return Level Estimate 

Estimated return levels and 95% confidence interval (inside 

bracket) for every station are shown in Table VI for several 

return periods. The values of the 95% confidence interval 

estimated from profile likelihood. For the stations which 

favour the non-stationary models, the trends are removed and 

the return levels obtained are then transformed according to 

the model. 

The estimation of the T -month return levels for T = 120, 

600 and 900 return periods are estimated as shown in Table 

VI. From this table, it is revealed that temperature for all 

stations are increasing over the 900-months except Kudat and 

Tawau. Based on the 95% confidence intervals, we can expect 

a maximum temperature event will reappear for Butterworth, 

KLIA, Mersing and SAS stations within the next 120 months. 

It is almost certain the monthly maximum will not exceed the 

current maximum within 900 months for Bintulu, Kudat, 

Senai and Sibu stations. As for the remaining stations, we 

expect that the maximum temperature will reappear within 

600 months except Kuantan and Miri which will reappear 

within 900 months.  
 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

TABLE VI 

RETURN LEVEL ESTIMATES 

Station Return Period, T (Months) 

120 600 900 

B-Lepas 

 
Bintulu 

86.49 

(86.221,86.914) 
87.46 

(87.066,88.016) 

89.451 

(89.073,90.090) 
88.62 

(88.097,89.478) 

91.066 

(90.661,91.761) 
88.88 

(88.325,89.826) 

Butterwoth 87.13 
(86.970,87.432) 

87.31 
(87.165,87.668) 

87.34 
(87.194,87.706) 

KLIA 

 
K-Bharu 

 

K-Kinabalu 

87.38 

(86.900,88.447) 
87.05 

(86.720,87.582) 

87.47 
(87.226,87.856) 

95.54 

(94.859,97.154) 
89.21 

(88.768,89.983) 

88.11 
(87.804,88.642) 

100.44 

(99.708,102.196 
90.25 

(89.783,91.088) 

88.24 
(87.916,88.808) 

Kuantan 

 
Kuching 

 

Kudat 
 

Labuan 

88.21 

(87.745,88.841) 
86.78 

(86.435,87.279) 

87.91 
(87.208,89.309) 

87.93 

(87.657,88.345) 

92.07 

(91.500,92.981) 
88.68 

(88.234,89.383) 

83.40 
(82.402,85.564) 

88.51 

(88.178,89.113) 

93.89 

(93.294,94.880) 
89.472 

(89.005,90.234) 

80.09 
(79.012,82.472) 

88.63 

(88.278,89.278) 
Langkawi 88.91 

(88.548,89.461) 

89.50 

(89.140,90.181) 

89.61 

(89.254,90.319) 
Malacca 

 

Mersing 

86.81 
(86.414,87.403) 

85.58 
(84.923,87.046) 

89.58 
(88.993,90.525) 

86.31 
(85.320,88.636) 

90.97 
(90.328,92.008) 

86.47 
(85.392,89.024) 

Miri 86.62 

(86.401,86.966) 

87.19 

(86.940,87.667) 

87.30 

(87.043,87.811) 
SAAS 90.37 

(89.794,91.579) 

91.31 

(90.617,92.728) 

91.50 

(90.775,92.966) 

Sandakan 88.23 
(87.804,88.893) 

89.28 
(88.660,90.327) 

89.51 
(88.841,90.668) 

SAS 87.42 

(86.738,88.947) 

88.20 

(87.221,90.554) 

88.37 

(87.309,90.936) 
Senai 85.94 

(85.697,86.277) 

86.45 

(86.219,86.839) 

86.54 

(86.316,86.947) 

Sibu 
 

Sitiawan 

 
Subang 

 

Tawau 

88.12 
(87.588,88.935) 

86.39 

(86.077,86.875) 
87.18 

(86.931,87.570) 

85.47 
(85.173,85.914) 

89.51 
(88.738,90.836) 

88.07 

(87.629,88.801) 
92.20 

(91.899,92.746) 

85.62 
(85.213,86.295) 

89.82 
(88.990,91.300) 

88.82 

(88.348,89.619) 
95.05 

(94.729,95.629) 

85.46 
(85.018,86.192) 

IV. SUMMARY AND CONCLUSION 

In this study, we have modelled the average daily maximum 

temperatures recorded at twenty-two meteorological stations 

in Malaysia. The modelling of maximum temperature was 

applied to the monthly block maxima. The Mann-Kendall 

(MK) test shows the existence of trend for some stations. We 

thus model the annual maximum temperatures by applying 

stationary and non-stationary GEV distribution to the different 

stations. The parameters are estimated using the LMOM and 

MLE methods.  

The non-stationary model is recommended to describe 

extreme temperature series for Bayan Lepas, KLIA, Kota 

Bharu, Kuantan, Kuching, Malacca, Sitiawan, Subang, Kudat 

and Tawau stations. The return level is obtained to predict the 

temperature for the long run in the future. In general, the 

return level is increasing for the next 900-months and the 

maximum temperature will start to reappear in the different T-

month for different stations. 

Based on the study, we have shown how extreme value 
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theory serves as a useful analysis tool in describing extreme 

events. In this paper, we only considered two models and the 

standard likelihood ratio test was used to compare the models. 

Further analysis will be carried out to find the best-fitting 

model which may be based on other model selection methods. 

We hope our study of extreme temperatures using the GEV 

distribution can be very useful in understanding extreme 

temperature events in Malaysia. 
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