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The Approximate Solution of Linear Fuzzy
Fredholm Integral Equations of the Second Kind
by Using Iterative Interpolation

N. Parandin, and M. A. Fariborzi Araghi

Abstract—in this paper, we propose a numerical method
for the approximate solution of fuzzy Fredholm functional
integral equations of the second kind by using an iterative
interpolation. For this purpose, we convert the linear fuzzy
Fredholm integral equations to a crisp linear system of integral
equations. The proposed method is illustrated by some fuzzy
integral equations in numerical examples.

Keywords—Fuzzy function integral equations, Iterative method,
Linear systems, Parametric form of fuzzy number.

[. INTRODUCTION

HE concept of integration of fuzzy functions was

introduced by Dubois and Prade [3] for the first time and
alternative approaches were later suggested by Goetschel and
Voxman [6], Kaleva [7], Matloka [12], Nanda [13] and others.
One of the first applications of fuzzy integration was given by
Wu and Ma [16], who investigated the fuzzy Fredholm
integral equations of the second type. In recent years some
methods were introduced to solve fuzzy Fredholm integral

equations. In this paper, we propose fuzzy iterative
interpolation for solving the following fuzzy integral
equation.

Fy=Fny+rl ks,0F(s)yds, a<x<b (D

Where k(s,¢) is an arbitrary crisp kernel function over the

square g<g /<h, A>0 and ]N‘ is a fuzzy function. In

section 2, we briefly present the necessary preliminaries. In
section 3, we propose the numerical method for solving the
fuzzy Fredholm integral equations of the second kind based
on the interpolation scheme. Some numerical examples are
given in section 4.

II. PRELIMINARIES

A. Definition 2.1
For a given set of support points (x,, 1), i=0,,.,n, We

define the iterative interpolation scheme as follow,
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p.(x)=f,

_=x)p, () -G -x)p, ()
ngi\...zk(x) -
X, —x,
Where D.. . is the Lagrange polynomial with less or

equal

degree of k (0<k <m). The p , is equal with £ in

ol -..d

X, 3 X, ey X0 where £ is the exact solution.

B. Definition 2.2 [8]
A fuzzy number is amap 3 = R — J =[0,1]Which satisfies
i) U is upper semi continues,
il) y(x) =0 outside some interval [¢,d]c R,
ili) There exist real numbers a and b such that
c<a<b<d where,
(1) u(x) is monotonic increasing on [ ¢, a |
2) u( x) is monotonic deccreasing on [b, d ]
3) u(x)=1, a<x<b.

The set of all such fuzzy numbers is represented by E'

C. Definition 2.3 [1]

An arbitrary fuzzy number in parametric form is presented
by an ordered pair of functions (y(r),u(r)), 0<r<1,
which satisfy the following requirements:

1. u(r) is a bounded left continuous non-decreasing
function over [0,1],

2. ;(F) is a bounded left continuous non-increasing
function over [0,1],

3.u(r) <u(r), 0<r<l.

A crisp number g is simply  represented by
u(r)=u(r)=a,0<r<1.For arbitrary
w=(u(rLu(r)s v=(u(r),v(r) ad keR, we

define addition and multiplation by k as
e u =vifandonlyif 4 (;) = v(r)and u(r)=v(r)

Cutvo= (u(r)+v(ru(r)+ v(r),

>
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o (ku,ku), k>0,
ku=<"_
(ku, ku), k<O.
D. Definition 2.4.
The n x n linear system
ax,+ ayx,+ -+ ax= Yy,
axt ax,+ -+ ax= Yy, (2)
ax+ a,x,+ -+ ax= Yy,

Where, the given matrix of coefficients Az(%), 1<j<n
and 1<i<p isareal n x n matrix, the right- hand-side
y, € E', 1<i<n, with the unknown X, €E, 1<j<nis
called a fuzzy linear system (FLS).

E. Definition 2.5.
A fuzzy number vector (x,,x,,...,x,)" given by
X, =, (r)x (M) 1< j<ns 0<r<l,
is called a solution of the fuzzy linear system (2) if

n — n —
i ayx; = XA, =y,

=i

for1<i<n

n — n —
i ayx; = X ax; =y

If, for a particular i, a; >0, forall j we simply get:

Zj‘:] aij Ei :X~ >

i

Z/‘:la[j'xj :yi } ISlSn

In general, an arbitrary equation for either y or y, may
—1

include a linear combination of a x ’s and x,’s.

Consequently, in order to solve the system given by (2), one
must solve a crisp 2nx2n linear system where the right-
hand side column is the vector

(.Xl5225“'52115_y17_y25"-5_yn)t~We get the 2nx2n

following linear system,

function

SpX S, X, S (X ) s, (X)) =Y,

3)

Snlil +- .+Snn'£n +Sn,n+1 (_x 1)+. : .+Sn72n (_x ") :Zn >

n+ln=-

RS S S U +Sn+l,n+l(_x D+ +S 2 (=xn)==y,

SouiXytr Sy, X, +S2n,n+l(_x )t +850n (=xn)=-y,.

Where, S,.j are determined as follows:

aij ZO:>SU :aij, Si+n,j+n :aija

al.j<03s. =—a

i,j+n ij’s

inj — 4

and any § i which is not determined by (4) is zero. By using

matrix notation we get,

SX =7, )

Where, §=(s,)>0,1<i<2n, 1<;<2pn and

[ x ] ]
X, 2,
X = , Y=
_.;‘ _;1
L= %] =V,

The structure of S implies that s, 2 0.1<i<2n,

1< j<2n and that

B C
C B/

F. Definition 2.6. [2, 10, 11]

For arbitrary fuzzy number 3 = (%;) and y= (y,;) , the
function which is shown as follow is the distance between
Uand V for le.

D (u,v)= [ [ ) =) dr+ { fu(r) —v(r)pdr]p)

[II. THE MIAN IDEA

In this section, we first replace Eq.(1) by the following
equations

F(t;r) = f(t;7)+ A [ k(s,t)F (s;r)ds ©)

F(t;r) = f(t;r)+ A [ k(s,0)F (s;r)ds @)
Where ,

k(s,0)E(s;7)
k(s, t)f(s; r)

k(S,f)ZO, (8)

W:{ k(s,0)<0

k(s,0)F(s;r)
k(s,0)F(s;r)

k(s,t)=0, (9

k(SJ)F(S;”):{ k(s,t)<0

@)
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In substituted method to calculate f(s,7)F(s;r) and
k(s,t)F (s;r), we apply the Lagrange interpolation by n +1

distinct points @ <s, <8, <...<S,<b of [g,b] as

follows,
k(S,t)F(S;I"): (10)
k(s,s YF(ssr) (s)+ 2 k(s,s )F (s ;) (s)
k(s,t)F(s;r)= (11

2 k(s,s YF (s i) () + 2 k(s,s)F(s,:r),(5)

1,(s)20

Where,
n.o8S=5
L(s)=TT—>).
k=0 §. —S
k#j J k

By integrating (10) and (11) from @ to b

[ k(s,0)F (s;r)ds =
- (12)
D k(5,8 )F (50, + Y k(s,s,)F(s;;r)h,
[ k(s,0)F (s37)ds =
(13)

D k(8,8 )F (50, + > k(s,s,)F (s, ;r)h,

Where,

b= 1(s)ds.

We get a system of linear equations by substituting Eq. (12)
in (6) and (13) in (7), for j = 0(1)n , as follows

E(s;r)=f(s;r) (14)
MY k(s s )F(s;;r)h, +1Y k(s,,s )F(s;r)h,
f(s,.;r)zf(s,;r) (15)

MY k(s s )F(s,;r)h, + LY k(s,,s )F(s,;r)h,.

The Eq. (14) and (15) gives a (2n+2)x(2n+2) crisp
system of equations that we can obtain f( s;r) and F(s:r)

by solving it. Now, by replacing these obtained values in the
iterative interpolation polynomial, we can achieve the
approximate value of the exact solution. In this case, we

consider the following definition.
o Definition 3.1.

Assume that F(z;7) and F(¢;r) in the points of 7 ,...,7

have been defined, t, and tj are two distinct points of

lyseensl as 1, <t,.

(t _t")go,l,.../'—l,fﬂwk (t) B (t _t/ );0.10..,—1‘#1,..1' (t) £ <t <t
@t -1) o
e-t)p,, ... O-C=t)p, . 0
p(t) — EO,I..‘,/—I,/H, k J Bo,l,,‘ iLitl,..k , t’ <t<t,
- (t-1) J
(l _t[)p(),l,...,j—l,/'+l,. k (t) - (t _lj )Bo.l,...i—l,m,...k (f) 1<t <t
(tj _tx) ’ ' 7’
(t -1 );D,I,,..,/fl,ﬁlw.k (t) - (t - tj )En Lk (l)
’ =, 1 <1 <,
t,-1)
l;(t) — (t — t' );OJ». -tk (t) — (t — t/ );0.1‘. Ltk (t) t<t<t
(t/ —1) ’ i J?
(t B t’ )Bo.l.,.u/fl,/ﬂ,. -k (t) B (t - t/ );0,1,. ALtk (t) 1<t <t
(t/ _tx) ’ ! 7’

IV. NUMERICAL EXAMPLES

o Example 4.1 [1]
We consider the following fuzzy Fredholm integral
equation

3 3 1, 1,

Lr)=rt+ —— —r— —t' — —t'r,
L( ry=r 26 26r 13 13 g
— 3 3 3 3

tr)y=2t—rt + —r+ —t'r——t’ - —1°,
S &) Tt T T T T3
and kernel

sT+17 -2

K(s,t)y=———, 0<s5,0<2, A=1

13

and g=0, b = 2. The exact solution in this case is given
by

F(t;r)=rt, F(t;r)=Q—-r).
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Fig. 4.1.a: the comparison between the approximate solutions
Dosi=012 with 7 =3 and the exact solution
i+

TABLEI
THE DISTANCE OF THE EXACT SOLUTION AND THE APPROXIMATE SOLUTION
FOR =3
i t  D(F(1).p,.1) DFWM.p_.A)  DFW.p_.1)
0 0
0.2100401063
1 2/3 0.2564886573
0.2719715102 0.2466989373
2 4/3 0.2373094917
0.1510140954
3 2
,
0.9 &' N
L3
Q.8 e & —
a3 L3
ol of (=3 L] -
OF -
0.8 o L] Bl
oo iz ®
0.5 OF - 4
P, &
0.4 [3 & ~
axact, oF &
0.3 o ® Bl
T &
Q.2 o -« —
(o233 ©
[l o Lo d & —
(a3 L]
cn 0'2 0'4 0'& OIB 1I 1‘2 1'4 1'5 T‘B z

Fig..4.1.b: the comparison between the approximate solutions
Diiniasi=0]1 with 7 =3 and the exact solution
ii+l,i+

o Example 4.2 [1, 4]
Consider the following fuzzy Fredholm integral equation

fBr)= sin(%)(%(r2 +r)+ %(4 -r’=r)),

S&r) =Sin(§)(1£5(r2 +V)+£(4—r3 _),

and kernel

Fig. 4.1.c: the comparison between the approximate solutions

Diiinissi=0 with = 3 and the exact solution

K(s.0) :0.1sin(s)sin(%), 0<s,r<2m, A=l

and g = 0, b =2n. The exact solution in this case is given
by

F(t:r) = (r + r)sin(%), Ftr)=(4—r - r)sin(é).

T T T T T ¥ T T
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o8- Yoo o # * E
+ o o 4+ act +*
0.4f + a o+ * o
+ @ e+ +
03 + [s] *#0 +p23 S L
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Fig. 4.2.a: the comparison between the approximate solutions
Dosi = 0,1,2 with » =3and the exact solution
1,0+

Fig. 4.2.b: the comparison between the approximate solutions
DPiiiinsi =01 with p =3and the exact solution
ii+,i+
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exact

Fig. 4.2.c: the comparison between the approximate solutions

Diitiainss i = 0 with » =3 and the exact solution
ii+1,i+2,i+
TABLE 1T
THE DISTANCE OF THE EXACT SOLUTION AND THE APPROXIMATE SOLUTION
FOR ;=3
; , DFm L) DF@F_ ) D(F(m), P (m)
0 0
2.259333089
1 2n 0.9283319588
3
1.074956182 0.8951302347
2 4n 0.9799819170
3
0.7256774309
3 21
1
09 4
08 |
o7 4
08 4
0s
04 4
03 1
02 4
01 -

Fig. 4.2.d: the comparison between the approximate solutions
D...»i=0,1,2,3 4 with n = Sand the exact solution

0.8

08

07

Fig. 4.2.e: the comparison between the approximate solutions
Do z,i =0,1,2,3 with = 5and the exact solution
ii+li+

T T T T T T
&
oaf & E
Tok o
0.8F +ok 6+ E
+ @ 13
orF + & B4 E
+ @ T
06 + @ @ g
+ B a%
0.8 axact + & 33 E
+ 8 o1
0.4F P2345+ ® X E
+ = P12 5
LE(S + a+ E
+ ® s
LES + ® a+ E
+ £ 3+
a.1F + ® F+ E
+ ® crd
. . . . . . .
0 08 1 15 2 25 3 38 4

Fig. 4.2.f: the comparison between the approximate solutions

Doiiin s i = 0,1,2With 5 = Sand the exact solution
Li4Li+2,043 2 i)
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Fig. 4.2.k the comparison between the approximate solutions

Diiitinris 4,j =0,] with »p =5 and the exact solution
iit1,i42,i43,i+
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Fig. 4.2.1 the comparison between the approximate solutions
p;,;+l,[+2,[+3,i+4,i+5 >

i = (0 with » =35 and the exact solution

TABLEII
THE DISTANCE OF THE EXACT SOLUTION AND THE APPROXIMATE SOLUTION
FOR ;=3
i + D,(F,p,.) DWF,p.,.) D.WF,p.) DF,p.) DF,pP )
0 0
4.686462605
1 2?7': 0.2727627638
0.8741343678 0.5897888721
47
2 < 0.6921217462 0.6311281170
0.7783754819 0.6573830445 0.6229692921
67
? 0.6449272953 0.6165836167
0.3081461179
8
? 0.1758373651 0.5565625488
3.235716593
2n
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[II. CONCLUSION

In this work, for solving the fuzzy Fredholm integral
equation of the second kind, we change the integral
equation into two crisp integral equations. For the
numerical solution of these equations, we apply an iterative
interpolation with different r-cuts that is between zero and
one. Each of them gives a (n+1)x(n+1)system of

equations. Consequently, a linear (25+2)x(2n+2)

system of equations is constructed. By solving this system,
we can estimate the value of function in the support points.
Then, by replacing these values in the iterative interpolation
polynomial, we can approximate the exact solution of the
integral equation. Consequently, one can use this method to
approximate the solution of a fuzzy Fredholm integral
equation of the second type easily.
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