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Abstract— In this paper, novel statistical sampling based 

equalization techniques and CNN based detection are proposed to 

increase the spectral efficiency of multiuser communication systems 

over fading channels. Multiuser communication combined with 

selective fading can result in interferences which severely deteriorate 

the quality of service in wireless data transmission (e.g. CDMA in 

mobile communication). The paper introduces new equalization 

methods to combat interferences by minimizing the Bit Error Rate 

(BER) as a function of the equalizer coefficients. This provides 

higher performance than the traditional Minimum Mean Square Error 

equalization. Since the calculation of BER as a function of the 

equalizer coefficients is of exponential complexity, statistical 

sampling methods are proposed to approximate the gradient which 

yields fast equalization and superior performance to the traditional 

algorithms. Efficient estimation of the gradient is achieved by using 

stratified sampling and the Li-Silvester bounds. A simple mechanism 

is derived to identify the dominant samples in real-time, for the sake 

of efficient estimation. The equalizer weights are adapted recursively 

by minimizing the estimated BER. The near-optimal performance of 

the new algorithms is also demonstrated by extensive simulations. 

The paper has also developed a (Cellular Neural Network) 

CNN based approach to detection. In this case fast quadratic 

optimization has been carried out by t, whereas the task of 

equalizer is to ensure the required template structure 

(sparseness) for the CNN. The performance of the method has 

also been analyzed by simulations. 

Keywords— Cellular Neural Network, channel equalization, 

communication over fading channels, multiuser communication, 

spectral efficiency, statistical sampling.

I. INTRODUCTION

ne of the major challenges of multiuser wireless 

communication is the effect of interferences which can 

cause severe degradation in performance and decrease the 

spectral efficiency. Therefore, techniques which can provide 

low BER communication over fading channels have received 
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a great deal of interest (see [1],[2]). The two major sources of 

interferences are described as follows: 

1) if non-orthogonal codes are assigned to the users it yields 

MultiUser Interference (MUI) [3]-[6]; 

2) multipath propagation can result in selective fading which 

entails the occurrence of InterSymbol Interference (ISI) 

[7]-[9]. 

Due to the interferences and to the resulting channel 

memory, the optimal decision comes down to the 

minimization of a quadratic objective function (see [10]) 

yielding exponential complexity, which prevents real-time 

detection. In order to reduce the detection complexity, a 

threshold detector followed by an adaptive channel equalizer 

is used. Traditionally the equalizer coefficients have been 

optimized subject to minimizing either the peak distortion 

(Zero Forcing (ZF) equalization), or the mean square error 

(Minimum Mean Square Error (MMSE) equalization) [11]-

[13]. However, in the case of low-degree equalization (i.e. the 

equalizer has only a small number of free coefficients) these 

methods provide poor performance over channels affected 

with severe interferences [14],[15]. 

Thus, in this paper novel equalizer algorithms are 

introduced to reduce the BER in the presence of severe 

interferences. The new methods directly minimize BER in a 

computationally efficient manner and as a result, they yield 

superior performance in comparison to ZF or MMSE. To 

circumvent the exponential complexity of calculating the 

gradient of BER (which would prevent the standard gradient 

descent optimization), statistical sampling methods are used 

for BER estimation in each step of the algorithm. The 

proposed sampling methods rely on stratified sampling or on 

the Li-Silvester bounds which have already been known in the 

field of reliability analysis [17],[18]. 

II. THE MODEL

Multiuser communication can be modeled as follows: 

the number of users is denoted by K;

N denotes the block-length; 

the overall number of transmitted bits is denoted by 

M K N ;

the transmitted information vector is a binary vector 

1,1
M

y , where 1,1
i

ky  represents the kth

information bit transmitted by user i (for the sake of the 

simplicity in the forthcoming discussion 
i

ky  is simply 
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denoted by ky );

each user is allocated a codeword of dimension D,

selected from the codeset 

; 1,..., : 1,1
D

i iC i Kc c  which is assumed to be 

the set of Gold codes [19]; 

there is a signature signal ( )is t  associated with each user, 

the signal pattern of which is based on the assigned 

codeword ic ;

the channel matrix is denoted by R  and in the case of 

synchronous communication without multipath 

propagation it is described with the elements 

( ) ( )

1

1
: ;  , 1,...,

D
i j

ij m m

m

R c c i j K
D

;

in the case of asynchronous transmission corrupted by 

selective fading, the channel matrix becomes of type 

MxM and its elements can be calculated from the 

signature signal and from the channel impulse function, 

respectively (for further details see[20]); 

the communication is also corrupted by additive white 

Gaussian noise with average spectral energy 0N ;

the detected vector is denoted by ŷ , where the kth

detected bit is ˆ
ky .

Based on the notations above, the communication model 

can be depicted by the following figure: 

The received vector x can be expressed as x Ry + ,

where  is multidimensional Gaussian random variable with 

zero mean and 0N R  covariance matrix ( 0~ N , N0 R ).

Performing the Bayesian decision on the received vector, 

multiuser detection amounts to the global minimization of the 

following quadratic form [10]-[12],[16]:

opt

-1;1

arg min 2
M

T T

y

y y Ry - x y (1) 

Unfortunately, quadratic optimization over a discrete set in 

general cannot be carried out in polynomial complexity. 

Therefore, in the presence of interferences (which result in a 

non-diagonal channel matrix) the optimal detection is 

computationally out of reach.  

In order to provide low-complexity detection, an equalizer 

is used to combat interferences followed by a threshold 

detector, as indicated by the Fig. 2., and the equalizer is a FIR 

filter depicted by Fig. 3. The equalizer carries out a linear 

transformation on the received sequence kx  yielding an 

output sequence 
1

J

k j k j

j

y w x . This linear transformation 

can be rewritten into the form of y Wx . Matrix W is fully 

determined by the coefficient vector w of the equalizer. Thus 

in the forthcoming discussion we refer to the equalizer either 

with matrix W or with vector w.

The equalized signal (arriving at the input of the threshold 

detector) is given as 

y WRy + W Gy , (2) 

where W is the equalizer matrix and  is the transformed 

Gaussian noise with parameters 0~ N , TN0 W RW .

III. CHANNEL EQUALIZATION BY TRADITIONAL ALGORITHMS

The main concern of equalization is to optimize the free 

parameters of the equalizer subject to a goal function 

opt : min J
w

w w . In the case of the traditional MMSE 

equalization [13] the goal function is 
2

0

:
J

k j k j

j

J E y w xw , while the ZF equalization 

minimizes the peak distortion [12] defined as 

0

:
J

j lj

l j

J w Rw . Unfortunately, these two goal functions 

are not directly related to BER, thus the performance is rather 

poor in the presence of deep interference [14]. 

IV. DIRECT BER MINIMIZATION

In order to achieve higher performance, our aim is to 

optimize the free parameters of the equalizer by minimizing 

BER. 

Taking into account the Gaussian nature of the noise, the bit 

error probability denoted by 
k

bP  can be expressed in close 

form as follows: 

Fig. 1 the communication model 

Fig. 3 the equalizer structure 

Fig. 2 channel equalization and threshold detector 
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, ,

1,1

ˆ

1
,

2 M

k

k kb

k j j k j j

j j k j j k

M
k k

P P y y

g g z g g z

z

where .  denotes the standard Gaussian distribution 

function and 

1

;   1,...,

M

i ij j

j

g R w i M .

The bit error probability can be rewritten into 

1

1,1 0
1

1

1,1
1

1

2

1
,

2

M

k

M

k

T
k

b M T

z

M

z

P
N

,

z

z

z g

w g

w z

 (3) 

where 

0

:
T

T
,

N

z g

w z

w g

.

The direct optimization of the equalizer amounts to 

searching for the optimal weights, as follows:  

opt : min
k

bP
w

w w  (4) 

Since
k

bP  is a differentiable function of iw , 1,...,i J , this 

minimization can be achieved by gradient search: 

1

1,1
1

1 grad

1
, ,

2 M

k

k

b

M

z

n n P n

n n

w

z

w w w

= w h z w

 (5) 

where 

0

3
2

0
0

1

2,

2 .

T

T
T

T T

N

N N

z g

h z w

w g

w g

Rzw g z gg

 (6) 

However, due to the exponential number of terms in the 

summation of the gradient, each step of algorithm (5) is of 

exponential complexity, which makes its implementation 

impossible. Thus, the challenge of combating interferences by 

equalization rests with the question of how to get rid of the 

large summation in the expression of the gradient. To achieve 

this end, statistical sampling techniques are introduced to 

estimate BER. 

A. Minimizing BER by using statistical sampling 

techniques 

In this section we develop novel equalization algorithms by 

which BER minimization becomes tractable in real-time. The 

underlying idea is to view the expression 

1

1;1
-1

1
, ,

2 M

k

M

z

E
y

z

h z w h y w  (7) 

as an expected value taken over random variable y which is 

subject to uniform distribution 11 2Mp y z  (the 

realizations of random vector y are denoted by vectors 

1,1
M

z ). As was mentioned before, the calculation of this 

expected value involves a summation of exponential number 

of terms. In order to circumvent this complexity, statistical 

estimate is used to replace the expected value in (5). The 

estimate of the gradient of BER generally denoted by 

1 1 1
, ..., ,nL nL n L

nf z z z w  and is obtained over a sample 

sequence 1 1 1
, ...,nL nL n L

z z z . The choice of the sample 

sequence can either be stochastic or deterministic. By using 

this estimate algorithm instead of the true gradient in (5), one 

can obtain a General Sampling Based Equalization algorithm 

(GSBE) for minimizing BER. The GSBE algorithm can be 

given as follows: 

The possible choices of selecting 

1 1 1
, ..., ,nL nL n L

nf z z z w  to provide efficient estimates 

of the gradient are given in the next sections. 

It must also be noted that BER can also be expressed as an 

expected value BER E ,
y

y w , which is deduced from 

formula (3). It is important, because sometimes it is easier to 

approximate the expected value of ,y w  from the samples 

1 1 1
, ...,nL nL n L

z z z , than the expected value of the gradient 

,h y w . In the former case, the function 

1 1 1
, ..., ,nL nL n L

F nz z z w  will be used as an estimate of 

BER and we calculate the gradient of 

1 1 1
, ..., ,nL nL n L

F nz z z w  to estimate E
y

h y,w . As 

a result, Step II of the GSBE is modified as 

1 1

1 1

,..., ,

                   grad ,..., , .

nL n L

nL n L

n

F n
w

f z z w

z z w

 (8) 

TABLE I

GSBE ALGORITHM

Step 0 
Set iteration number n=0 and initialize w(0) with an 

arbitrary vector; perform the following iteration; 

I
select samples 1 1 1, ...,nL nL n Lz z z  of size L

according to a sampling rule (specified later);

II

adjust the equalizer coefficients: 

1 11 ,..., ,nL n Ln n nw w f z z w

;

n
th
 s

te
p
 o

f 
th

e 
al

g
o
ri

th
m

II

I

check the stopping criterion 1n nw w

with a given  and if the criterion has been fulfilled 

then the algorithm stops, otherwise increment 

iteration number n and go back to Step I. 
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It is important to note that f  refers to the gradient of the 

estimation of BER, while f denotes the direct estimation of the 

gradient itself. In this paper both approaches are dealt with. 

B. BER minimization by Monte Carlo methods 

The most straightforward choice is to set 

1 1

1 1 1

1
, ..., , : ,

n L

nL nL in L

i nL

n
L

f z z z w h z w  according 

to the Monte Carlo (MC) sampling. This yields the following 

equalization algorithm: 

Unfortunately, MC method does not provide an accurate 

estimate of the true gradient in the case of a small sample size. 

Therefore, the performance can further be improved by 

introducing stratified sampling. 

C. BER minimization by stratified sampling 

In this case a partition is given over the state space 1,1
M

denoted by , ; 1,...,i iY P i V , with the properties 

1

1,1
V

M

i

i

Y , i jY Y , ,i j i j  and 
i

i

Y

P p
y

y .

The gradient of the BER can be expressed as 

1

,
V

i i

i

E P
y

h y w m , (9) 

where : ( , )i iE Y
y

m h y w y .

Let us assume that from each set iY  we are allowed to take 

iL  number of samples. In this way, we have a sample 

allocation scheme 
1,..., VL L  for which 

1

V

i

i

L L . (This last 

equation results from the fact that the overall number of 

samples is restricted to be not larger than a previously fixed 

L). Stratified sampling (StS) is then defined as estimating the 

gradient of BER as follows: 

1 1

1 1

( )

1

,..., , :

1
                 : , ( ) ,

i

i

nL n L

n LV
i

i k

i k nLi

n

P n
L

f z z w

h z w

 (10) 

where ( ) ( )

( 1) 1
,...,

i i

i i

nL n L i
Yz z .

One can see that in StS, the conditioned expected value of a 

specific class is estimated based on a given number of samples 

taken from this class. 

It can be proven (see [17]) that the optimal sample 

allocation scheme is 

,opt

1

i i

i V

j j

j

P
L L

P

 (11) 

where 
j
 denotes the conditional variance of class j. With 

this sample allocation scheme the mean square error is much 

smaller than the one achieved by the simple MC method.  

The problem of StS lies in the fact that the conditional 

variances must be known to determine the optimal sample 

allocation scheme. In the lack of this knowledge, a portion of 

the overall sample size must be used to estimate the 

conditional variances before estimating the conditional means. 

TABLE II

MONTE CARLO SAMPLING EQUALIZATION

Step 0 
Set iteration number n=0 and initialize w(0) with an 

arbitrary vector; perform the following iteration; 

I
generate L sample vectors 1 1 1, ...,nL nL n Lz z z

subject to uniform distribution; 

II set 

1 1

1 1

1
,..., , : ,

n L

nL in L

i nL

n
L

f z z w h z w

;

III 

adjust the equalizer coefficients: 

1 11 ,..., ,nL n Ln n nw w f z z w

;

n
th
 s

te
p
 o

f 
th

e 
al

g
o

ri
th

m

IV

check the stopping criterion 1n nw w

with a given  and if the criterion has been fulfilled 

then the algorithm stops, otherwise increment 

iteration number n and go back to Step I. 

TABLE III

STRATIFIED SAMPLING EQUALIZATION

Step 0 

Set iteration number n=0 and initialize w(0) with an 

arbitrary vector; 

pre postL V L L , ,pre pre:iL L ;

perform the following iteration; 

I

generate 
( )

pre,   1,....,
i

k
k Lz  samples for pre-

estimation 1,...,i V ;

II

calculate the empirical variances as 

pre pre

2

1 1pre pre

1 1
: , , ;

L L
i i

i k l

k l

n n
L L

z w z w

III 

set ,post post

1

: i i
i V

j j

j

P
L L

P

;

IV

generate 
( )

,post,   1,....,
i

ik
k Lz  samples for post-

processing 1,...,i V ;

V
generate L sample vectors 1 1 1, ...,nL nL n Lz z z

subject to uniform distribution; 

VI

perform the estimation of the expected value according 

to the StS principle: 

1 1
( )

1 1
1

1
,..., , : , ( ) ;

i

i

n LV
i

nL i kn L
i k nLi

n P n
L

f z z w h z w

VII

adjust the equalizer coefficients: 

1 11 ,..., ,nL n Ln n nw w f z z w

;

n
th
 s

te
p

 o
f 

th
e 

al
g

o
ri

th
m

VIII

check the stopping criterion: 1n nw w

with a given  and if the criterion has been fulfilled 

then the algorithm stops, otherwise increment iteration 

number n and go back to Step I. 
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This increment in complexity still pays off by having a more 

accurate estimation on the BER than by using the MC method. 

As a result BER estimation by StS is done according to the 

following two-phase algorithm: 

the first phase is the so-called deviation estimation 

(estimating the stratum deviation values in order to 

calculate the sample allocation scheme iL , 1,...,i V ),

while the second phase is dedicated to the expected value 

estimation.  

It is noteworthy that the number of classes V must be 

determined in advance. The algorithm is described in Table 

III. 

D. BER minimization by Li-Silvester bounds 

In order to develop a deterministic estimation of the BER, 

one can select the first L most dominant samples over which 

the function ,w z  has the first L largest values arranged in 

a descending order: 

1 1: ,..., : , ... ,L LZ z z z w z w . (12) 

In this way, BER can be upper and lower bounded as 

follows: 
1

1 1 1

1 1 2
, ,

2 2 2

M

M M M
Z Z

L
BER

z z

z w z w

due to the fact of 0 , 1z w
.

The corresponding equalization algorithm is constructed as 

follows: 

One must note two issues in the recursion above: (i) we use 

the samples to approximate the BER itself instead of its 

gradient (for the reason of numerical convenience); and (ii) 

the BER is estimated by the most dominant samples (unlike in 

the MC method). In this way a much more accurate estimation 

of the true BER can be obtained. In order to perform this 

algorithm, one needs to select the most dominant samples in 

each step of the gradient descent algorithm. First we choose 

the most dominant sample defined as follows: 

1

1;1 1;10
1 1

arg max arg max .
M M

k k

T
T

T

z z
Nz z

z g

z z g

w g

 (13) 

Then the rest of the dominant samples can be selected by 

the calculating the absolute values of ig , 1,..., 1;i M i k

and arranging them into a monotone decreasing sequence: 

1 2 1
... ...

j Mi i i ig g g g , (14) 

where the indices 1 1,..., Mi i  refer to the ordered sequence.  

Based on this sequence, the dominant samples 

: 1,...,
l

l Lz  can be calculated as follows: 

1 sgn
l

i j

jj

ul

ii
z g , (15) 

where

1 2 1
0 if ind min , ,...,

1 otherwise

M l M l M

j

l i i i
j

i

j M l g C g g
u

Having calculated the first L dominant samples by the 

procedure indicated above, BER can be estimated as follows: 

1,

1
1 0

1
,

2

M
l

k i iL
i i k

M T

g g z

F
N

z w

w g

. (16) 

However, the dominant samples of BER may not 

necessarily coincide with dominant samples of the gradient. In 

the case of 

1,

M

ii ij

j j i

R R  (light interference), the 

dominant samples of BER are the same as the ones which 

maximize the norm of its gradient. In this way selecting the 

dominant samples of BER, we obtain the dominant samples of 

the gradient as well. To show this, let us analyze the first 

dominant sample of the gradient: 

1

1;1
1

arg max ,
M

kz
z

z h z w , (17) 

where  

0

3
2

0
0

0

3
2

0
0

1

2, 2

1

2 2 .

T
T T

T
T

T
T T

T
T

N

N N

N

N N

z g

h z w Rzw g z gg

w g

w g

z g

w g Rz z g g

w g

w g

Deriving this expression, we took advantage of the fact that 

when if ii ij

j i

R R  then the approximation MRz

holds. This yields that the calculation of the dominant samples 

are given by minimizing the expression T
z g . However, this 

TABLE IV

EQUALIZATION BY THE DOMINANT SAMPLES

Step 0 

Set iteration number n=0 and initialize w(0) with an 

arbitrary vector; 

perform the following iteration; 

I
select the first L dominant samples for which (12) 

holds; 

II

set 

1 1

1 1 1

1
,..., , : ,

2

n L

nL in L M
i nL

F nz z w z w

;

III 

adjust the equalizer coefficients: 

1 11 ,..., ,nL n Ln n nw w f z z w

,

where , grad F
w

f z w z,w ;

n
th
 s

te
p

 o
f 

th
e 

al
g

o
ri

th
m

IV

check the stopping criterion 1n nw w

with a given  and if the criterion has been fulfilled 

then the algorithm stops, otherwise increment 

iteration number n and go back to Step I. 
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is equivalent with calculating the first L dominant samples of 

BER, according to the formula (15). 

V. NOVEL CNN BASED DETECTION COMBINED WITH 

EQUALIZATION 

As expression (1) indicated, in the presence of interference 

optimal detection boils down to quadratic minimization.  

Therefore, Cellular Neural Networks (CNNs) can also be 

applied as detectors in communication systems since their 

dynamics are governed by a set of nonlinear differential 

equations defined in [22],Hiba! A hivatkozási forrás nem 

található. which optimizes a quadratic energy function.  

The CNN dynamics are expressed by the following 

differential equations: 

, ,

, ,

, ; ,

, ; , ,

r

r

ij ij kl

C k l S i j

kl ij

C k l S i j

x x A i j k l y

B i j k l u z

 (18) 

where ijx R , kly R , klu R , and ijz R  are called 

state, output, input, and threshold of cell ,C i j , respectively. 

, ; ,A i j k l  and , ; ,B i j k l  are called the feedback and the 

input synaptic operator, and the output equation is 

1 11 1
2 2ij ij ij ijy f x x x  (19) 

called standard nonlinearity. 

The behavior of the corresponding solution is determined 

by a template matrix 

,..., 1,0,1,....,
,..., 1,0,1,....,

r r

r r

k T Tkl
l T T

aA  (20) 

which expresses the local connection pattern among the 

processing elements. We use CNN as a pure feedback system 

with zero input and zero bias. The corresponding Lyapunov 

function is given as 2T TL y y Vy r y , which prompts the 

use of CNN as a quadratic optimizer. Here matrix V is a 

sparse matrix determined by the template matrix A. As a 

result, one can theoretically perform optimal detection by 

assigning :V R  and r x .

The only problem which arises is due to the local 

connection pattern of CNN which only supports the 

minimization of quadratic forms generated by sparse matrices. 

On the other hand, the quadratic form emerging from the 

detection problem may not necessarily be generated by a 

sparse matrix (Template Oriented Matrix, TOM). 

In order to circumvent the problem, novel equalization 

algorithms are introduced to modify the channel impulse 

response in order to enforce the sparse matrix structure. In this 

approach channel equalization is put to the task of providing 

optimal characteristics for CNN based detection as opposed to 

minimizing the main square error for the traditional threshold 

detection. This new equalizer algorithm is developed under 

the assumption that the effect of additive Gaussian noise is 

negligible in comparison with the effect of ISI or MAI. The 

overall channel impulse response is denoted by kq and given 

as 
0

:
J

n j n jj
q w h , where jw ; 0,1,...,j J  are the free 

coefficients of the equalizer subject to optimization. In the 

noise-less approximation the quadratic form to be minimized 

for optimal detection is also given by (1) however in this case 
T

W Q Q  and b Hx . Since W must fulfill the 1DCM 

condition, we want to manipulate matrix Q by optimizing the 

equalizer coefficients according to the goal function 
2

opt

, 2 0

: min

J

j n j

n n j

w h
w

w  (21) 

In this way, those elements of W which are supposed to be 

zero in order to satisfy the 1DCM condition will at least be 

minimal. The corresponding recursive algorithm for the 

weights of the equalizer (based on the gradient) is given as 

follows: 

, 2 0

1

J

l l j n j n l

n n j

w k w k w k h h  (22) 

where  is learning parameter used to optimize the 

convergence speed of the algorithm. This algorithm can be 

extended to the case of unknown channel by using a 

corresponding stochastic identification scheme. 

VI. NUMERICAL RESULTS

We have analyzed the performance of both the statistical 

sampling based equalizer and the CNN detector.  

The new equalization algorithms have been tested in the 

case of user numbers M=7 and M=4 with block length 2. The 

channel was a typical urban model (for specific details see [7]) 

and the codes have been generated as Gold codes. 

We used the theoretical BPSK BER-SNR curve defined by 
2

2
BPSK

1

2

SNR x

BER e dx , as the reference curve (see 

[20]) to analyze the performance.  

A. Performance analysis of statistical sampling based 

channel equalization 

The performance is of the different methods are measured 

by plotting the Bit Error Rate against the Signal to Noise Ratio 

Fig. 4 Impulse response of the urban model 
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(the BER-SNR curve) shown by the Fig. 5. 

The sample size for each method was selected to be L=20.

In the case of StS, the partition is given as follows: 

1: : d ,iY iz z z 1,...,i V , (23) 

where 1 : max T

z

z z g  and d .  is the Hamming distance. 

As one can see, LS equalization performs better than StS 

and MC. Furthermore, the performance of LS method may be 

close to the theoretical optimum which implies that they can 

indeed increase the spectral efficiency of wireless systems. 

The next figure depicts the BER-SNR curves for using an 

equalizer with degree J=8 (the user number is 7 and the block-

length is 2). 

Here one can also see that MMSE equalizer performs worse 

than the minimum BER equalizer. 

B. Performance analysis of CNN based detection 

In the next figure the BER-SNR curves are shown for CNN 

detector. One can see that CNN based detection both by 

truncation and by equalization yield superior performance to 

the original threshold detection. Furthermore, in the case of 

high SNR (under light noise assumption) the performance of 

CNN and equalizer indeed yields much better performance 

than any other method. 

C. Complexity analysis of statistical sampling based 

channel equalization 

The proposed methods yield real-time equalization 

algorithms, as the gradient is only estimated by a relatively 

small number of samples (no exponential summation is 

needed). In the next bar chart the complexities of the proposed 

equalizer algorithms are compared. The complexity of a 

method is expressed as the number of iteration required to 

fulfill the stopping criterion multiplied by the terms in the 

summation needed to estimate the gradient. The complexities 

of the algorithms with respect to SNR are indicated by Fig. 8. 

One can see that the LS based equalization has the smallest 

complexity. 

On Fig. 9, the “dominancy” of the samples are described by 

plotting the value of each term in the summation of BER. The 

curve plotted with small circles was obtained by calculating 

the BER with the initial equalizer vector w(0). The other 

curve plotted with small squares was obtained by calculating 

the BER with the optimal equalizer vector wopt.

(a)

(b)
Fig. 7 The simulation of the different CNN detection techniques 

with (a) urban and (b) rural channel 

Fig. 8 The convergence of different equalizer algorithms 

Fig. 6 Equalization performances with low degree equalizers 

Fig. 5 The performance of different equalizer algorithms 
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One can see, that the samples used to estimate the BER are 

really dominant at the beginning of the algorithm. Near the 

end of the algorithm (approaching wopt) the samples are more 

equally distributed. Therefore, a large computational gain can 

be obtained by the LS method at the beginning of the 

algorithm. Nearing to the steady state, the LS method can be 

replaced by the simple MC method (as the samples are more 

or less equal), therefore selecting the dominant samples will 

not considerably speed up the algorithm any longer. 

Combining the LS sampling with the MC methods (starting 

with LS sampling and when the weight vector is close to 

stabilization switching to MC) may further decrease the 

complexity, because the dominant samples need not be 

evaluated in each step at the end of the algorithm. 

VII. CONCLUSIONS

In this paper novel equalization algorithms have been 

proposed based on different sampling methods. The new 

methods are capable of direct BER minimization, thus they 

can achieve better performance than traditional equalization 

strategies.

The best approach is the one which adopts the LS sampling 

in each cycle of adaptation of the equalization algorithm. The 

complexity of the new algorithms is low and they yield fast 

equalization. As a result, they can contribute to improving the 

spectral efficiency of multiuser mobile systems. 
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Fig. 9 Distribution of the terms in the summation belonging to BER


