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Abstract—The treatment of the industrial wastewater can be 
particularly difficult in the presence of toxic compounds. Excessive 
concentration of Chromium in soluble form is toxic to a wide variety 
of living organisms. Biological removal of heavy metals using natural 
and genetically engineered microorganisms has aroused great interest 
because of its lower impact on the environment. Ralston 
metallidurans, formerly known as Alcaligenes eutrophus is a L-
Proteobacterium colonizing industrial wastewater with a high content 
of heavy metals. Tris-buffered mineral salt medium was used for 
growing Alcaligenes eutrophus AE104 (pEBZ141). The cells were 
cultivated for 18 h at 30 oC in Tris-buffered mineral salt medium 
containing 3 mM disodium sulphate and 46 mM sodium gluconate as 
the carbon source. The cells were harvested by centrifugation, 
washed, and suspended in 10 mM Tris HCl, pH 7.0, containing 46 
mM sodium gluconate, and 5 mM Chromium. Interaction among 
induction of chr resistance determinant, and chromate reduction have 
been demonstrated. Results of this study show that the above bacteria 
can be very useful for bioremediation of chromium from industrial 
wastewater.  
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I. INTRODUCTION 
OST heavy metals are well-known toxic and 
carcinogenic agents and when discharged into the 

wastewater represent a serious threat to the human population 
and the flora and fauna of the receiving water bodies. Living 
organisms require trace amounts of some heavy metals, 
including cobalt, copper, iron, manganese, molybdenum, 
vanadium, strontium and zinc. Excessive levels of essential 
metals, however, can be detrimental to the organism. Non-
essential heavy metals of particular concern to surface water 
systems are cadmium, chromium, mercury, lead, arsenic and 
antimony. Heavy metals which are relatively abundant in the 
Earth’s crust and frequently used in industrial processes or 
agriculture are toxic to humans. These can make significant 
alterations to the biochemical cycles of living things [1]. Most 
of the point sources of heavy metal pollutants are industrial 
wastewater from mining, metal processing, tanneries, 
pharmaceuticals, pesticides, organic chemicals, rubber and 
plastics, lumber and wood products, etc. [1]-[5]. 
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The heavy metals are transported by runoff water and 
contaminate water sources downstream from the industrial 
site. All living things including microorganisms, plants and 
animals depend on water for life. Heavy metals can bind to the 
surface of microorganisms and may even penetrate to the 
inside of the cell.  

The treatment of the industrial wastewater can be 
particularly difficult in the presence of toxic compounds. 
Chromium is largely present in the industrial wastewater 
coming from tanning industry, electroplating industry, metal 
fabrication and finishing industry, textile dyeing industry, steel 
industry and wood preservation [6]-[8]. Both Hexavalent 
Chromium Cr(VI) and Trivalent Chromium Cr(III) exist in 
wastewater, but Cr(III) is 500 times less toxic and less soluble 
than Cr(VI) [9]-[12]. Excessive concentration of Chromium in 
soluble form is toxic to a wide variety of living organisms, 
from bacteria to humans. Chromium is a known mutagen, with 
Cr(VI) causing mitotic inhibition, reduction of cell growth and 
cell death. Chromium is considered by IARC as a powerful 
carcinogenic agent that modifies the DNA transcription 
process causing important chromosomic aberrations. In 
humans, it causes irritation and corrosion of skin and 
respiratory tract and is suspected to be responsible for lung 
carcinoma. Chromate is also hazardous to flora and fauna in 
natural aquatic ecosystem [13]-[18]. 

Due to severe toxicity of Cr(VI), the Agency for Toxic 
Substances and Diseases Registry (ATSDR) classifies Cr(VI) 
as the top eighteenth hazardous substance and the Minimal 
National Standards (MINAS) upper limit of Chromium in 
industrial wastewater is 0.1 mg/L. The USEPA has set the 
maximum contaminant level for Cr(VI) in domestic water 
supplies to be 0.05 mg/L [19]. Hexavalent Chromium toxicity 
to wastewater treatment system is significantly influenced by 
abiotic variables such as salinity, pH and temperature of water 
and is not removed from the wastewater by conventional 
treatment systems and strongly reduces microbial activity of 
the wastewater bodies [20]-[22]. 

Several physico-chemical methods have been widely used 
for Cr(VI) removal from industrial wastewater, such as ion-
exchange, activated charcoal, chemical precipitation, chemical 
reduction, reverse osmosis, electrodialysis, ultrafiltration and 
adsorption etc. [23]-[26]. The conventional methods used for 
the treatment of heavy metals from industrial wastewater 
present some limitations. There are still some common 
problems associated with these methods such as incomplete 
metal removal, high reagent and energy requirement, cost-
expensiveness and can themselves produce other waste 
products that require careful disposal, which in turn have 
limited their industrial applications [27]-[29]. 
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Fig. 5 pH for different Chromium concentration for Alcaligenes 

eutrophus AE104 (pEBZ141) 

 
Fig. 6 pH for different Chromium concentration for Alcaligenes 

eutrophus AE104 (pEBZ141) 

 
Fig. 7 pH for different Chromium concentration for Alcaligenes 

eutrophus AE104 (pEBZ141) 

 
Fig. 8 pH different Chromium concentration for Alcaligenes 

eutrophus AE104 (pEBZ141) 

 
Fig. 9 pH for different Chromium concentration for Alcaligenes 

eutrophus AE104 (pEBZ141) 

 
Fig. 10 % removal for different Chromium concentration for 

Alcaligenes eutrophus AE104 

 
Fig. 11 % removal for different Chromium concentration for 

Alcaligenes eutrophus AE104 (pEBZ141) 

 
Fig. 12 % removal for different Chromium concentration for 

Alcaligenes eutrophus AE104 (pEBZ141) 

 
Fig. 13 % removal for different Chromium concentration for 

Alcaligenes eutrophus AE104 (pEBZ141) 

 
Fig. 14 % Chromium removal for different Chromium 

concentration for Alcaligenes eutrophus AE104 (pEBZ141) 
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Fig. 15 % Chromium removal for different Chromium 

concentration for Alcaligenes eutrophus AE104 (pEBZ141) 
 

--------------------------------------------------------------------------- 
Configuration: 1 (0.1A)  Counts: 83270 
Cell Type: Magnetic  S.N.F.: 1.00 
Sample Type: Regular   S.D.U.: 3760 
Acq. Range: 0 -  300  Solids: 2.67e-005 % 
Acq. Mode: S.Size(2) Conc.: 1.20e+006 #/ml 
Acq. Time: 75  Sp.Area:7.21e+004cm²/ml 

--------------------------------------------------------------------------- 

 
Fig. 16 Particle size analysis of the treated industrial wastewater 

sample of Chromium concentration of 50 mg/L after 72 h incubation 
time by Alcaligenes eutrophus AE104 

 
--------------------------------------------------------------------------- 

Configuration: 1 (0.1A)  Counts: 63327 
Cell Type: Magnetic S.N.F.: 1.00 
Sample Type: Regular  S.D.U.: 96 
Acq. Range: 0 -  300  Solids: 4.26e-006 % 
Acq. Mode: S.Size(2) Conc.:  1.75e+004 #/ml 
Acq. Time: 1474  Sp.Area:1.64e+004cm²/ml 

--------------------------------------------------------------------------- 
 
 

 
Fig. 17 Particle size analysis of the treated industrial wastewater 

sample of Chromium concentration of 50 mg/L after 72 h incubation 
time by Alcaligenes eutrophus AE104 (pEBZ141) 

A. Cell growth  
Bacterial growth was measured by measuring optical 

density at 540 nm using UV-Visible spectrophotometer 
(Perkin Elmer model Lambda 35). Optical densities have been 
measured at every two hours interval time till one day. The 
maximum growth was observed during first 8-20 h 
acclimatization time.  Recombinant cells showed higher 
growth rate in Nutrient Broth medium than in Nutrient Agar. 
The plasmid free strain Alcaligenes eutrophus AE104 had 
taken 24 h of cultivation time to reach stationary phase where 
as recombinant bacterium Alcaligenes eutrophus AE104 
(pEBZ141) came to stationary phase in 18 h.  

 
B. Calibration curves  

The calibration curves have been plotted by measuring 
absorbance by spectrophotometer for different Chromium 
concentrations from 0 to 100 mg/L using diphenylcarbazide 
method. The Potassium Dichromate stock solution has been 
prepared by dissolving 141.4 mg of Potassium Dichromate in 
1 L of distilled water. The 10 ml of Potassium Dichromate 
stock solution has been diluted 10 times to prepare 100 mL of 
Potassium Dichromate standard solution. 1 mL of the above 
standard solution is equivalent to 5 µg Chromium.  

The colour development is produced by transferring 95 ml 
of the extract into 100 ml volumetric flask and adding 2 mL of 
diphenylcarbazide. Sulphuric acid is added to get the pH value 
of 2.0 and distilled water is added to make up the volume upto 
100 mL. The extract was allowed to stand for 10 min. for the 
development of full colour. The absorbance is measured at 
540 nm using UV-Visible spectrophotometer. The calibration 
curves have been plotted by making different dilutions of 
Chromium. The absorbance of standard solutions of 
Chromium was nearly as reported in the literature. The liner 
equations and the R2 values have been taken to calculate the 
concentration of the unknown Chromium in the treated 
wastewater.         
 
C. Scanning electron microscopic image of bacteria      

To get the Scanning Electron Microscopic images of the 
bacteria, washing is done to remove any foreign contaminant. 
Fixing is done with 2.5% glutaraldehyde in 0.1M phosphate 
buffer pH 7.2-7.4 for 24-48 hours. Washing is again done with 
0.1M phosphate buffer for 15 minutes. The bacteria were 
rinsed with distilled water for 15 minutes. Various ethanol 
concentration were used for dehydration of the bacteria, first 
in 50% ethanol 20 minutes, then in 70% ethanol 20 minutes, in 
80% ethanol 20 minutes, 90% ethanol 20 minutes, in 95% 
ethanol 20 minutes and finally in 100% ethanol for 2 hours. 
Samples were then ready for Critical Point Drying. It was 
dried in air for 15 min. These plates were analyzed by 
scanning electron microscope (SEM, U.K). 

The SEM image of the 2-5 mm granulated activated carbon 
particles has been taken. The point-to-point length has been 
shown of the CAG particle in the image. The deposition of the 
Chromium on CAG alone has been taken at Chromium 
concentration of 50 mg/L. The Chromium deposition is clearly 
visible in the SEM image. The comparison of the deposition of 
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the Chromium has been taken after treatment of Chromium 
concentration of 50 mg/L after 72 hours of incubation time. 
The deposition on recombinant strain Alcaligenes eutrophus 
AE104 (pEBZ141) was more pronounced than that of plasmid 
free strain Alcaligenes eutrophus AE104 as shown in SEM 
images of Chromium deposition. This shows the enhanced 
absorption capacity of recombinant bacterium Alcaligenes 
eutrophus AE104 (pEBZ141) than that of plasmid free strain 
Alcaligenes eutrophus AE104. 

 
D. Chromium  concentration  

The optical density of the wastewater after treatment with 
plasmid free strain grown on GAC for different Chromium 
concentrations of 10, 50 and 100 mg/l have been taken than 
those of recombinant strain for different Chromium 
concentration of 10-100 mg/L. The optical densities of the 
treated wastewater have been plotted at different incubation 
times of 0, 6, 12, 24, 48 and 72 hours. The optical density data 
has been found as expected. The concentration of Chromium 
in the treated wastewater was more when the initial 
concentration of the Chromium was more. The best results are 
obtained when the initial Chromium concentration was 10-20 
mg/L.  

The pH value of the treated wastewater has been found to 
be slightly more than the neutral range for the recombinant 
strain but more or less in the neutral range for the plasmid free 
strain as shown in fig. 4-9. The pH value increased with the 
increase in the incubation time from 0-72 hours but decreased 
with the increase in the Chromium concentration from 10-100 
mg/L for the same incubation period of 0-72 hours as 
expected. 

Based on the calibration curves for different Chromium 
concentration and the data from optical density measurement, 
Chromium concentrations in the treated wastewater have been 
calculated. The % removal of Chromium from the above 
graphs has been shown from fig. 10-15. It has been found that 
the % removal capacity of the plasmid free strain varied from 
60.2 to 41.8 for Chromium concentrations of 10 and 100 mg/l 
respectively, while those of recombinant strain the % removal 
capacity varied from 93.8 to 48.7 for Chromium 
concentrations of 10 and 100 mg/L respectively. This showed 
that the Chromium sensor plasmid pEBZ141 has transformed 
the biofilm mechanism to enhance the Chromium uptake 
capacity. 

The particle size analysis of the artificial industrial 
wastewater has been taken. The big particle sizes of the 1-10 
µm showed the presence of big molecules of Chromium in the 
artificial wastewater. There is considerable reduction in the 
particle size of the treated wastewater of initial Chromium 
concentration of 50 mg/L after 72 h of incubation time for 
both the plasmid free and recombinant strain.     

 
IV. CONCLUSION 

Alcaligenes eutrophus AE104 (pEBZ141) may be readily 
used for the treatment of Chromium from industrial 
wastewater. The Chromate resisting process is highly specific. 
The results of percent Chromium removal as a function of 

incubation time for various Chromium concentrations have 
been plotted. Results show that the biosorption of Chromium 
increases with various Chromium doses with incubation time 
from 0 to 72 hours. The removal of Chromium ranges from 
48% to 93% for the recombinant strain than those of 41% to 
60% for the plasmid-free strain after the incubation period of 
72 hours for various Chromium concentrations. It can be 
concluded that the rate of Chromium binding with the biomass 
increases gradually and remains almost constant after an 
optimum period. The obtained results are in good agreement 
with the previous results. As a result, it can be concluded that 
this strain can be used successfully in the removal and 
recovery of Chromium from the wastewater containing higher 
levels of Chromium ions. Further studies are needed to 
increase the biosorption capacities of biomass and to develop 
appropriate technologies applicable in the treatment of 
industrial wastewater.  
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