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Switching rule for the exponential stability and

stabilization of switched linear systems with

interval time-varying delays
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Abstract—This paper is concerned with exponential stability and

stabilization of switched linear systems with interval time-varying

delays. The time delay is any continuous function belonging to a

given interval, in which the lower bound of delay is not restricted

to zero. By constructing a suitable augmented Lyapunov-Krasovskii

functional combined with Leibniz-Newton’s formula, a switching

rule for the exponential stability and stabilization of switched linear

systems with interval time-varying delays and new delay-dependent

sufficient conditions for the exponential stability and stabilization

of the systems are first established in terms of LMIs. Numerical

examples are included to illustrate the effectiveness of the results.
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I. INTRODUCTION

Stability analysis of linear systems with time-varying delays

ẋ(t) = Ax(t) + Dx(t − h(t)) is fundamental to many

practical problems and has received considarable attention [1-

5]. Most of the known results on this problem are derived

assuming only that the time-varing delay h(t) is a continuously

differentialbe function, satisfying some boundedness condition

on its derivative: ḣ(t) ≤ δ < 1. In delay–dependent stability

criteria, the main concerns is to enlarge the feasible region

of stability criteria in given time-delay interval. Interval time-

varying delay means that a time delay varies in an interval

in which the lower bound is not restricted to be zero. By

constracting a suitable argumented Lyapunov functionalsand

utilizing free weigtht matrices, some less conservative con-

ditions for asymptotic stability are derived in [6-16] for

systems with time delay varying in an interval. However, the

shortcoming of the method used in these works is that the

delay function is assumed to be differential and its derivative is

still bounded: ḣ(t) ≤ δ. This paper gives the improved results

for the exponential stability and stabilization of switched linear

systems with interval time-varying delay. The time delay is

assumed to be a time-varying continuous function belonging

to a given interval, but not necessary to be differentiable.

Specifically, our goal is to develop a constructive way to design

switching rule to the exponential stability and stabilization of

switched linear systems with interval time-varying delay. By

constructing argumented Lyapunov functionals combined with

LMI technique, we propose new criteria for the exponential

stability and stabilization of the switched linear system. The
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delay-dependent stability conditions are formulated in terms of

LMIs, being thus solvable by utilizing Matlab’s LMI Control

Toolbox available in the literature to date.

The paper is organized as follows: Section 2 presents defini-

tions and some well-known technical propositions needed for

the proof of the main results. Delay-dependent exponential

stability and stabilization conditions of the switched linear

system with numerical examples showing the effectiveness of

proposed method are presented in Section 3.

II. PRELIMINARIES

The following notations will be used in this paper. R+

denotes the set of all real non-negative numbers; Rn denotes

the n−dimensional space with the scalar product 〈., .〉 and

the vector norm ‖ . ‖; Mn×r denotes the space of all

matrices of (n × r)−dimensions; AT denotes the transpose

of matrix A; A is symmetric if A = AT ; I denotes the

identity matrix; λ(A) denotes the set of all eigenvalues of A;

λmin/max(A) = min/max{Reλ; λ ∈ λ(A)}; xt := {x(t + s) :
s ∈ [−h, 0]}, ‖xt‖ = sups∈[−h,0] ‖ x(t + s) ‖; C([0, t], Rn)
denotes the set of all Rn−valued continuous functions on

[0, t]; Matrix A is called semi-positive definite (A ≥ 0) if

〈Ax, x〉 ≥ 0, for all x ∈ Rn; A is positive definite (A > 0)
if 〈Ax, x〉 > 0 for all x 6= 0; A > B means A − B > 0. ∗
denotes the symmetric term in a matrix.

Consider a linear system with interval time-varying delay

of the form

ẋ(t) = Aγx(t) + Dγx(t − h(t)), t ∈ R+,

x(t) = φ(t), t ∈ [−h2, 0],
(1)

where x(t) ∈ Rn is the state; γ(.) : Rn → N :=
{1, 2, . . . , N} is the switching rule, which is a function

depending on the state at each time and will be designed.

A switching function is a rule which determines a switching

sequence for a given switching system. Moreover, γ(x(t)) = i
implies that the system realization is chosen as the ith system,

i = 1, 2, ..., N. It is seen that the system (1) can be viewed as

an autonomous switched system in which the effective subsys-

tem changes when the state x(t) hits predefined boundaries.

Ai, Di ∈ Mn×n, i = 1, 2, ..., N are given constant matrices,

and φ(t) ∈ C([−h2, 0], Rn) is the initial function with the

norm ‖ φ ‖= sups∈[−h2,0] ‖ φ(s) ‖; The time-varying delay

function h(t) satisfies

0 ≤ h1 ≤ h(t) ≤ h2, t ∈ R+.
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The stability problem for switched system (1) is to construct

a switching rule that makes the system exponentially stable.

Remark 2.1. It is worth noting that the time delay is a

time-varying function belonging to a given interval, in which

the lower bound of delay is not restricted to zero.

Definition 2.1. Given α > 0. The switched linear system (1)
is α−exponentially stable if there exists a switching rule γ(.)
such that every solution x(t, φ) of the system satisfies the

following condition

∃N > 0 : ‖ x(t, φ) ‖≤ Ne−αt ‖ φ ‖, ∀t ∈ R+.

We end this section with the following technical well-known

propositions, which will be used in the proof of the main

results.

Definition 2.2. The system of matrices {Ji}, i = 1, 2, . . . , N,
is said to be strictly complete if for every x ∈ Rn\{0} there

is i ∈ {1, 2, . . . , N} such that xT Jix < 0.
It is easy to see that the system {Ji} is strictly complete if

and only if
N⋃

i=1

αi = Rn\{0},

where

αi = {x ∈ Rn : xT Jix < 0}, i = 1, 2, ..., N.

We end this section with the following technical well-known

propositions, which will be used in the proof of the main

results.

Proposition 2.1. [17] The system {Ji}, i = 1, 2, . . . , N,
is strictly complete if there exist δi ≥ 0, i =
1, 2, . . . , N,

∑N
i=1 δi > 0 such that

N∑

i=1

δiJi < 0.

If N = 2 then the above condition is also necessary for the

strict completeness.

Proposition 2.2. (Cauchy inequality) For any symmetric pos-

itive definite marix N ∈ Mn×n and a, b ∈ Rn we have

+aT b ≤ aT Na + bT N−1b.

Proposition 2.3. [18] For any symmetric positive definite

matrix M ∈ Mn×n, scalar γ > 0 and vector function

ω : [0, γ] → Rn such that the integrations concerned are

well defined, the following inequality holds

( ∫ γ

0

ω(s) ds

)T

M

( ∫ γ

0

ω(s) ds

)
≤ γ

( ∫ γ

0

ωT (s)Mω(s) ds

)
.

Proposition 2.4. [19] Let E,H and F be any constant

matrices of appropriate dimensions and FT F ≤ I. For any

ǫ > 0, we have

EFH + HT FT ET ≤ ǫEET + ǫ−1HT H.

Proposition 2.5. (Schur complement lemma [20]). Given con-

stant matrices X, Y, Z with appropriate dimensions satisfying

X = XT , Y = Y T > 0. Then X + ZT Y −1Z < 0 if and only

if (
X ZT

Z −Y

)
< 0 or

(
−Y Z
ZT X

)
< 0.

III. MAIN RESULTS

Let us set

Mi =





M11 M12 M13 M14 M15

∗ M22 0 M24 S2

∗ ∗ M33 M34 S3

∗ ∗ ∗ M44 M45

∗ ∗ ∗ ∗ M55




,

Ji = −S1Ai − AT
i ST

1 ,

αi = {x ∈ Rn : xT Jix < 0}, i = 1, 2, ..., N,

ᾱ1 = α1, ᾱi = αi \
i−1⋃

j=1

ᾱj , i = 2, 3, . . . , N,

λ1 = λmin(P ),

λ2 = λmax(P ) + (h2 − h1)
2λmax(U),

(2)

M11 = AT
i P + PAi + 2αP,

M12 = −S2Ai, M13 = −S3Ai,

M14 = PDi − S1Di − S4Ai, M15 = S1 − S5Ai,

M22 = −e−2αh2U, M24 = e−2αh2U − S2Di,

M33 = −e−2αh2U, M34 = e−2αh2U − S3Di,

M44 = −S4Di − 2e−2αh2U, M45 = S4 − S5Di,

M55 = S5 + ST
5 + (h2 − h1)

2U.

The main result of this paper is summarized in the following

theorem.

Theorem 3.1. Given α > 0. The zero solution of the

switched linear system (1) is α−exponentially stable if there

exist symmetric positive definite matrices P,U , and matrices

Si, i = 1, 2, ..., 5 such that satisfying the following conditions

(i) ∃δi ≥ 0, i = 1, 2, . . . , N,
∑N

i=1 δi > 0 :
∑N

i=1 δiJi < 0.
(ii) Mi < 0, i = 1, 2, ..., N.

Moreover, the solution x(t, φ) of the system satisfies

‖ x(t, φ) ‖≤
√

λ2

λ1
e−αt ‖ φ ‖, ∀t ∈ R+.

Proof: We consider the following Lyapunov-Krasovskii

functional for the system (1)

V (t, xt) = V1 + V2,

where

V1 = xT (t)Px(t),

V2 = (h2 − h1)

∫ t−h1

t−h2

∫ t

t+s

e2α(τ−t)ẋT (τ)Uẋ(τ) dτ ds.
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It easy to check that

λ1 ‖ x(t) ‖2≤ V (t, xt) ≤ λ2 ‖ xt ‖2, ∀t ≥ 0, (3)

Taking the derivative of V1 along the solution of system (1)

we have

V̇1 =2xT (t)Pẋ(t)

=xT (t)[AT
i P + AiP ]x(t) + 2xT (t)PDix(t − h(t));

V̇2 =(h2 − h1)
2ẋT (t)Uẋ(t)

− (h2 − h1)e
−2αh2

∫ t−h1

t−h2

ẋT (s)Uẋ(s) ds − 2αV2.

Using Proposition 2.2 gives

[h2 − h(t)]

∫ t−h(t)

t−h2

ẋT (s)Uẋ(s)ds ≥

[ ∫ t−h(t)

t−h2

ẋ(s)ds
]T

U
[ ∫ t−h(t)

t−h2

ẋ(s)ds
]
≥

[x(t − h(t)) − x(t − h2)]
T U [x(t − h(t)) − x(t − h2)].

Since h2 − h(t) ≤ h2 − h1, we have

[h2 − h1]

∫ t−h(t)

t−h2

ẋT (s)Uẋ(s)ds ≥

[x(t − h(t)) − x(t − h2)]
T U [x(t − h(t)) − x(t − h2)],

then

−(h2 − h1)

∫ t−h(t)

t−h2

ẋT (s)Uẋ(s)ds ≤

−[x(t − h(t)) − x(t − h2)]
T U [x(t − h(t)) − x(t − h2)].

Similarly, we have

−(h2 − h1)

∫ t−h1

t−h(t)

ẋT (s)Uẋ(s) ds ≤

−[x(t − h1) − x(t − h(t))]T U [x(t − h1) − x(t − h(t))].

Therefore, we have

V̇ (.) + 2αV (.) ≤xT (t)[AT
i P + AiP + 2αP ]x(t)

+ 2xT (t)PDix(t − h(t))

+ ẋT (t)[(h2 − h1)
2U ]ẋ(t)

− e−2αh2 [x(t − h(t)) − x(t − h2)]
T U

[x(t − h(t)) − x(t − h2)]

− e−2αh2 [x(t − h1) − x(t − h(t))]T U

[x(t − h1) − x(t − h(t))].
(4)

By using the following identity relation

ẋ(t) − Aix(t) − Dix(t − h(t)) = 0,

we have

2xT (t)S1ẋ(t) − 2xT (t)S1Aix(t)

−2xT (t)S1Dix(t − h(t)) = 0

2xT (t − h1)S2ẋ(t) − 2xT (t − h1)S2Aix(t)

−2xT (t − h1)S2Dix(t − h(t)) = 0

2xT (t − h2)S3ẋ(t) − 2xT (t − h2)S3Aix(t)

−2xT (t − h2)S3Dix(t − h(t)) = 0

2xT (t − h(t))S4ẋ(t) − 2xT (t − h(t))S4Aix(t)

−2xT (t − h(t))S4Dix(t − h(t)) = 0

2ẋT (t)S5ẋ(t) − 2ẋT (t)S5Aix(t)

−2ẋT (t)S5Dix(t − h(t)) = 0

(5)

Adding all the zero items of (5) into (4), we obtain

V̇ (.) + 2αV (.) ≤ xT (t)[AT
i P + PAi + 2αP − S1Ai

− AT
i ST

1 ]x(t)

+ 2xT (t)[−S2Ai]x(t − h1)

+ 2xT (t)[−S3Ai]x(t − h2)

+ 2xT (t)[PDi − S1Di − S4Ai]x(t − h(t))

+ 2xT (t)[S1 − S5Ai]ẋ(t)

+ xT (t − h1)[−e−2αh2U ]x(t − h1)

+ 2xT (t − h1)[e
−2αh2U − S2Di]x(t − h(t))

+ 2xT (t − h1)S2ẋ(t)

+ xT (t − h2)[−e−2αh2U ]x(t − h2)

+ xT (t − h2)[e
−2αh2U − S3Di]x(t − h(t))

+ 2xT (t − h2)S3ẋ(t)

+ xT (t − h(t))[−S4Di − 2e−2αh2U ]x(t − h(t))

+ 2xT (t − h(t))[S4 − S5Di]ẋ(t)

+ ẋT (t)[S5 + ST
5 + (h2 − h1)

2U ]ẋ(t)

= xT (t)Jix(t) + ζT (t)Miζ(t),
(6)

where

ζ(t) = [x(t), x(t − h1), x(t − h2), x(t − h(t)), ẋ(t)],

Ji = −S1Ai − AT
i ST

1 ,

Mi =





M11 M12 M13 M14 M15

∗ M22 0 M24 S2

∗ ∗ M33 M34 S3

∗ ∗ ∗ M44 M45

∗ ∗ ∗ ∗ M55




,

M11 = AT
i P + PAi + 2αP,

M12 = −S2Ai, M13 = −S3Ai,

M14 = PDi − S1Di − S4Ai, M15 = S1 − S5Ai,

M22 = −e−2αh2U, M24 = e−2αh2U − S2Di,

M33 = −e−2αh2U, M34 = e−2αh2U − S3Di,

M44 = −S4Di − 2e−2αh2U, M45 = S4 − S5Di,

M55 = S5 + ST
5 + (h2 − h1)

2U.
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Therefore, we finally obtain from (6) and the condition (ii)

that

V̇ (.) + 2αV (.) < xT (t)Jix(t), ∀i = 1, 2, ...., N, t ∈ R+.

We now apply the condition (i) and Proposition 2.1., the

system Ji is strictly complete, and the sets αi and ᾱi by (2)

are well defined such that

N⋃

i=1

αi = Rn\{0},

N⋃

i=1

ᾱi = Rn\{0}, ᾱi ∩ ᾱj = ∅, i 6= j.

Therefore, for any x(t) ∈ Rn, t ∈ R+, there exists i ∈
{1, 2, . . . , N} such that x(t) ∈ ᾱi. By choosing switching

rule as γ(x(t)) = i whenever γ(x(t)) ∈ ᾱi, from (6) we have

V̇ (.) + 2αV (.) ≤ xT (t)Jix(t) < 0, t ∈ R+,

and hence

V̇ (t, xt) ≤ −2αV (t, xt), ∀t ∈ R+. (7)

Integrating both sides of (7) from 0 to t, we obtain

V (t, xt) ≤ V (φ)e−2αt, ∀t ∈ R+.

Furthermore, taking condition (3) into account, we have

λ1 ‖ x(t, φ) ‖2≤ V (xt) ≤ V (φ)e−2αt ≤ λ2e
−2αt ‖ φ ‖2,

then

‖ x(t, φ) ‖≤
√

λ2

λ1
e−αt ‖ φ ‖, t ∈ R+,

which concludes the proof by the Lyapunov stability theorem

[21].

Based on Theorem 3.1, we have the following result for

switched linear control systems with interval time-varying :

ẋ(t) = Aγx(t) + Bγu(t), t ∈ R+,

x(t) = φ(t), t ∈ [−h2, 0],
(8)

where u(t) ∈ Rm is the control input, Ai, Bi, i = 1, 2, ..., N,
are given constant matrices with appropriate dimensions. We

consider a delayed feedback control law

u(t) = Fγx(t − h(t)), (9)

and Fγ is the controller gain to be determined. Applying the

feedback controller (9) to the system (8), the closed-loop time-

delay system is

ẋ(t) = Aγx(t) + BγFγx(t − h(t)), t ∈ R+,

x(t) = φ(t), t ∈ [−h2, 0],
(10)

The time-varying delay function h(t) satisfies

0 ≤ h1 ≤ h(t) ≤ h2, t ∈ R+.

The Stabilization problem for switched linear control systems

(8) is to construct a switching rule that makes the system

exponentially stablilizable.

Definition 3.1. The switched linear control systems (8)

is stablilizable if there is a delayed feedback control (9) such

that the switched linear systems (10) is exponentially stable.

Let us set

Mi =





M11 M12 M13 M14 M15

∗ M22 0 M24 S2

∗ ∗ M33 M34 S3

∗ ∗ ∗ M44 M45

∗ ∗ ∗ ∗ M55




,

Ji = −S1Ai − AT
i ST

1 ,

αi = {x ∈ Rn : xT Jix < 0}, i = 1, 2, ..., N,

ᾱ1 = α1, ᾱi = αi \
i−1⋃

j=1

ᾱj , i = 2, 3, . . . , N,

λ1 = λmin(P ),

λ2 = λmax(P ) + (h2 − h1)
2λmax(U),

(11)

M11 = AT
i P + PAi + 2αP,

M12 = −S2Ai, M13 = −S3Ai,

M14 = P − S1 − S4Ai, M15 = S1 − S5Ai,

M22 = −e−2αh2U, M24 = e−2αh2U − S2,

M33 = −e−2αh2U, M34 = e−2αh2U − S3,

M44 = −S4 − 2e−2αh2U, M45 = S4 − S5,

M55 = S5 + ST
5 + (h2 − h1)

2U.

Theorem 3.2. Given α > 0. The zero solution of the

switched linear control systems (8) is α−exponentially

stablilizable by the delayed feedback control (9), where

Fi = BT
i [BiB

T
i ]−1, i = 1, 2, ..., N,

if there exist symmetric positive definite matrices P,U , and

matrices Si, i = 1, 2, ..., 5 such that satisfying the following

conditions

(i) ∃δi ≥ 0, i = 1, 2, . . . , N,
∑N

i=1 δi > 0 :
∑N

i=1 δiJi < 0.
(ii) Mi < 0, i = 1, 2, ..., N.

Moreover, the solution x(t, φ) of the system satisfies

‖ x(t, φ) ‖≤
√

λ2

λ1
e−αt ‖ φ ‖, ∀t ∈ R+.

Proof: We consider the following Lyapunov-Krasovskii

functional for the system (10)

V (t, xt) = V1 + V2,

where

V1 = xT (t)Px(t),

V2 = (h2 − h1)

∫ t−h1

t−h2

∫ t

t+s

e2α(τ−t)ẋT (τ)Uẋ(τ) dτ ds.
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It easy to check that

λ1 ‖ x(t) ‖2≤ V (t, xt) ≤ λ2 ‖ xt ‖2, ∀t ≥ 0, (12)

Taking the derivative of V1 along the solution of system (10)

we have

V̇1 =2xT (t)Pẋ(t)

=xT (t)[AT
i P + AiP ]x(t) + 2xT (t)Px(t − h(t));

V̇2 =(h2 − h1)
2ẋT (t)Uẋ(t)

− (h2 − h1)e
−2αh2

∫ t−h1

t−h2

ẋT (s)Uẋ(s) ds − 2αV2.

Using Proposition 2.2 gives

[h2 − h(t)]

∫ t−h(t)

t−h2

ẋT (s)Uẋ(s)ds ≥

[ ∫ t−h(t)

t−h2

ẋ(s)ds
]T

U
[ ∫ t−h(t)

t−h2

ẋ(s)ds
]
≥

[x(t − h(t)) − x(t − h2)]
T U [x(t − h(t)) − x(t − h2)]

Since h2 − h(t) ≤ h2 − h1, we have

[h2 − h1]

∫ t−h(t)

t−h2

ẋT (s)Uẋ(s)ds ≥

[x(t − h(t)) − x(t − h2)]
T U [x(t − h(t)) − x(t − h2)],

then

−(h2 − h1)

∫ t−h(t)

t−h2

ẋT (s)Uẋ(s)ds ≤

−[x(t − h(t)) − x(t − h2)]
T U [x(t − h(t)) − x(t − h2)].

Similarly, we have

−(h2 − h1)

∫ t−h1

t−h(t)

ẋT (s)Uẋ(s) ds ≤

−[x(t − h1) − x(t − h(t))]T U [x(t − h1) − x(t − h(t))].

Therefore, we have

V̇ (.) + 2αV (.) ≤xT (t)[AT
i P + AiP + 2αP )]x(t)

+ 2xT (t)Px(t − h(t))

+ ẋT (t)[(h2 − h1)
2U ]ẋ(t)

− e−2αh2 [x(t − h(t)) − x(t − h2)]
T U

[x(t − h(t)) − x(t − h2)]

− e−2αh2 [x(t − h1) − x(t − h(t))]T U

[x(t − h1) − x(t − h(t))].
(13)

By using the following identity relation

ẋ(t) − Aix(t) − Ix(t − h(t)) = 0,

we have

2xT (t)S1ẋ(t) − 2xT (t)S1Aix(t)

−2xT (t)S1x(t − h(t)) = 0

2xT (t − h1)S2ẋ(t) − 2xT (t − h1)S2Aix(t)

−2xT (t − h1)S2x(t − h(t)) = 0

2xT (t − h2)S3ẋ(t) − 2xT (t − h2)S3Aix(t)

−2xT (t − h2)S3x(t − h(t)) = 0

2xT (t − h(t))S4ẋ(t) − 2xT (t − h(t))S4Aix(t)

−2xT (t − h(t))S4x(t − h(t)) = 0

2ẋT (t)S5ẋ(t) − 2ẋT (t)S5Aix(t)

−2ẋT (t)S5x(t − h(t)) = 0

(14)

Adding all the zero items of (14) into (13), we obtain

V̇ (.) + 2αV (.) ≤ xT (t)[AT
i P + PAi + 2αP

− S1Ai − AT
i ST

1 ]x(t)

+ 2xT (t)[−S2Ai]x(t − h1)

+ 2xT (t)[−S3Ai]x(t − h2)

+ 2xT (t)[P − S1 − S4Ai]x(t − h(t))

+ 2xT (t)[S1 − S5Ai]ẋ(t)

+ xT (t − h1)[−e−2αh2U ]x(t − h1)

+ 2xT (t − h1)[e
−2αh2U − S2]x(t − h(t))

+ 2xT (t − h1)S2ẋ(t)

+ xT (t − h2)[−e−2αh2U ]x(t − h2)

+ xT (t − h2)[e
−2αh2U − S3]x(t − h(t))

+ 2xT (t − h2)S3ẋ(t)

+ xT (t − h(t))[−S4 − 2e−2αh2U ]x(t − h(t))

+ 2xT (t − h(t))[S4 − S5]ẋ(t)

+ ẋT (t)[S5 + ST
5 + (h2 − h1)

2U ]ẋ(t)

= xT (t)Jix(t) + ζT (t)Miζ(t),
(15)

where

ζ(t) = [x(t), x(t − h1), x(t − h2), x(t − h(t)), ẋ(t)],

Ji = −S1Ai − AT
i ST

1 ,

Mi =





M11 M12 M13 M14 M15

∗ M22 0 M24 S2

∗ ∗ M33 M34 S3

∗ ∗ ∗ M44 M45

∗ ∗ ∗ ∗ M55




,

M11 = AT
i P + PAi + 2αP,

M12 = −S2Ai, M13 = −S3Ai,

M14 = P − S1 − S4Ai, M15 = S1 − S5Ai,

M22 = −e−2αh2U, M24 = e−2αh2U − S2,

M33 = −e−2αh2U, M34 = e−2αh2U − S3,

M44 = −S4 − 2e−2αh2U, M45 = S4 − S5,

M55 = S5 + ST
5 + (h2 − h1)

2U.
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Therefore, we finally obtain from (15) and the condition (ii)

that

V̇ (.) + 2αV (.) < xT (t)Jix(t), ∀i = 1, 2, ...., N, t ∈ R+.

We now apply the condition (i) and Proposition 2.1., the

system Ji is strictly complete, and the sets αi and ᾱi by (11)

are well defined such that

N⋃

i=1

αi = Rn\{0},

N⋃

i=1

ᾱi = Rn\{0}, ᾱi ∩ ᾱj = ∅, i 6= j.

Therefore, for any x(t) ∈ Rn, t ∈ R+, there exists i ∈
{1, 2, . . . , N} such that x(t) ∈ ᾱi. By choosing switching

rule as γ(x(t)) = i whenever γ(x(t)) ∈ ᾱi, from (15) we

have

V̇ (.) + 2αV (.) ≤ xT (t)Jix(t) < 0, t ∈ R+,

and hence

V̇ (t, xt) ≤ −2αV (t, xt), ∀t ∈ R+. (16)

Integrating both sides of (16) from 0 to t, we obtain

V (t, xt) ≤ V (φ)e−2αt, ∀t ∈ R+.

Furthermore, taking condition (12) into account, we have

λ1 ‖ x(t, φ) ‖2≤ V (xt) ≤ V (φ)e−2αt ≤ λ2e
−2αt ‖ φ ‖2,

then

‖ x(t, φ) ‖≤
√

λ2

λ1
e−αt ‖ φ ‖, t ∈ R+,

which concludes the proof by the Lyapunov stability theorem

[21].

To illustrate the obtained result, let us give the following

numerical examples.

Example 3.1. Consider the following the switched linear

systems with interval time-varying delay (1), where the delay

function h(t) is given by

h(t) = 0.1 + 0.5749sin2t,

and

A1 =

(
−1 0.01
0.02 −2

)
, A2 =

(
−1.1 0.02
0.01 −2

)
,

D1 =

(
−0.1 0.01
0.02 −0.3

)
, D2 =

(
−0.1 0.02
0.01 −0.2

)
.

It is worth noting that, the delay function h(t) is non-

differentiable. Therefore, the methods used is in [3, 4, 7] are

not applicable to this system. By LMI toolbox of Matlab, we

find that the conditions (i), (ii) of Theorem 3.1 are satisfied

with h1 = 0.1, h2 = 0.6749, δ1 = 0.1, δ2 = 0.1, α = 0.1 and

P =

(
0.9222 −0.0008
−0.0008 0.6540

)
, U =

(
0.5688 −0.0024
−0.0024 0.5201

)
,

S1 =

(
−0.3099 −0.0099
0.0121 −0.1821

)
, S2 =

(
−0.1219 0.0080
0.0135 −0.1703

)
,

S3 =

(
−0.1219 0.0080
0.0135 −0.1703

)
, S4 =

(
0.2300 −0.0178
−0.0235 0.3329

)
,

S5 =

(
−0.5631 0.0057
−0.0010 −0.3965

)
.

In this case, we have

(J1, J2) =

([
−0.6195 −0.0009
−0.0009 −0.7285

]
,

[
−0.6816 0.0015
0.0015 −0.7288

])
.

Moreover, the sum

δ1J1(R,Q) + δ2J2(R,Q) =

[
−0.1301 0.0001
0.0001 −0.1457

]

is negative definite; i.e. the first entry in the first row and the

first column −0.1301 < 0 is negative and the determinant of

the matrix is positive. The sets α1 and α2 are given as

α1 = {(x1, x2) : −0.6195x2
1 − 0.0018x1x2 − 0.7285x2

2 < 0},
α2 = {(x1, x2) : 0.6816x2

1 − 0.0030x1x2 + 0.7288x2
2 > 0}.

Obviously, the union of these sets is equal to R2 \ {0}. The

switching regions are defined as

α1 = {(x1, x2) : −0.6195x2
1 − 0.0018x1x2 − 0.7285x2

2 < 0},
α2 = α2 \ α1.

By Theorem 3.1 the switched linear systems (1) is

0.1−exponentially stable and the switching rule is chosen as

γ(x(t)) = i whenever x(t) ∈ ᾱi. Moreover, the solution

x(t, φ) of the system satisfies

‖ x(t, φ) ‖≤ 1.7315e−0.1t ‖ φ ‖, ∀t ∈ R+.

Example 3.2. Consider the following the switched linear

control systems with interval time-varying delay (8), where

the delay function h(t) is given by

h(t) = 0.1 + 0.7011sin23t,

and

A1 =

(
−1 0.01
0.02 −2

)
, A2 =

(
−1.1 0.02
0.01 −2

)
,

B1 =

(
−0.1 0.01
0.02 −0.3

)
, B2 =

(
−0.1 0.02
0.01 −0.2

)
.

It is worth noting that, the delay function h(t) is non-

differentiable. Therefore, the methods used is in [3, 4, 7] are

not applicable to this system. By LMI toolbox of Matlab, we

find that the conditions (i), (ii) of Theorem 3.2 are satisfied

with h1 = 0.1, h2 = 0.8011, δ1 = 0.1, δ2 = 0.1, α = 0.1 and

P =

(
0.2151 0.0012
0.0012 0.1404

)
, U =

(
0.2376 0.0013
0.0013 0.1563

)
,

S1 =

(
−0.0507 −0.0001
−0.0002 −0.0412

)
, S2 =

(
0.1147 0.0011
0.0011 0.0458

)
,

S3 =

(
0.1147 0.0011
0.0011 0.0458

)
, S4 =

(
−0.2286 −0.0021
−0.0021 −0.0943

)
,
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S5 =

(
−0.2042 −0.0018
−0.0018 −0.0893

)
.

In this case, we have

(J1, J2) =

([
−0.1013 0.0009
0.0009 −0.1650

]
,

[
−0.1115 0.0010
0.0010 −0.1650

])
.

Moreover, the sum

δ1J1(R,Q) + δ2J2(R,Q) =

[
−0.0213 0.0002
0.0002 −0.0330

]

is negative definite; i.e. the first entry in the first row and the

first column −0.0213 < 0 is negative and the determinant of

the matrix is positive. The sets α1 and α2 are given as

α1 = {(x1, x2) : −0.1013x2
1 + 0.0018x1x2 − 0.1650x2

2 < 0},
α2 = {(x1, x2) : 0.1115x2

1 − 0.0020x1x2 + 0.1650x2
2 > 0}.

Obviously, the union of these sets is equal to R2 \ {0}. The

switching regions are defined as

α1 = {(x1, x2) : −0.1013x2
1 + 0.0018x1x2 − 0.1650x2

2 < 0},
α2 = α2 \ α1.

By Theorem 3.2 the switched linear systems (8) is

0.1−exponentially stabilizable and the switching rule is cho-

sen as γ(x(t)) = i whenever x(t) ∈ ᾱi, whenever x(t) ∈ Ω̄i,
the delayed feedback control is:

u1(t) =

[
−10.0671x1

1(k − h(t)) − 0.3356x2
1(k − h(t))

−0.6711x1
1(k − h(t)) − 3.3557x2

1(k − h(t))

]
,

u2(t) =

[
−10.1010x1

2(k − h(t)) − 1.0101x2
2(k − h(t))

−0.5051x1
2(k − h(t)) − 5.0505x2

2(k − h(t))

]
.

Moreover, the solution x(t, φ) of the system satisfies

‖ x(t, φ) ‖≤ 1.8726e−0.1t ‖ φ ‖, ∀t ∈ R+.

IV. CONCLUSION

This paper has proposed a switching design for the expo-

nential stability and stabilization of switched linear systems

with interval time-varying delays. Based on the improved

Lyapunov-Krasovskii functionals, a switching rule for the ex-

ponential stability and stabilization for the system is designed

via linear matrix inequalities.
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