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Abstract—A numerical study is made of laminar, unsteady flow 

behind a rotationally oscillating circular cylinder using a recently 
developed higher order compact (HOC) scheme. The stream function 
vorticity formulation of Navier-Stokes (N-S) equations in cylindrical 
polar coordinates are considered as the governing equations. The 
temporal behaviour of vortex formation and relevant streamline 
patterns of the flow are scrutinized over broad ranges of two 
externally specified parameters namely dimensionless forced 
oscillating frequency Sf and dimensionless peak rotation rate αm for 
the Reynolds’s number Re = 200. Excellent agreements are found 
both qualitatively and quantitatively with the existing experimental 
and standard numerical results. 
 

Keywords—HOC, Navier-Stokes, non-uniform polar grids, 
rotationally oscillating cylinder. 

I. INTRODUCTION 
URING last one decade Higher Order Compact (HOC)     
finite difference schemes have established themselves as 

potential numerical schemes in the field of Computational 
fluid Dynamics to study different aspects of fluid dynamics. 
Kalita et al. [1] first developed this type of HOC scheme on 
rectangular non-uniform grids for the steady 2D convection-
diffusion equation with variable coefficients without any 
transformation. Later on, Ray and Kalita [2], [3] have 
extended the scheme for non-uniform polar grids which can 
be easily extended for curvilinear coordinates. The accuracy 
and reliability of this HOC scheme has already been 
ascertained in the case of flow past an impulsively started 
circular cylinder and its rotating counterparts [2]-[4]. Till now 
present scheme has not been tested for the complex flow 
problems where periodic rotary oscillation condition is used 
on the cylinder wall. 

A literature survey reveals that though much of the earlier 
studies have been made in the case of a rotationally oscillating 
circular cylinder, both numerically and experimentally, but 
still there are many aspects to be clarified in this regard. The 
distinct feature of this rotatory oscillatory motion is that 
around the long axis, the moving surfaces perform an alternate 
periodic motion, which consists of an alternate acceleration 
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and deceleration between the fixed angular amplitude. 
In this present work, we extend the applicability of our 

newly developed scheme in reference [2] to capture the very 
complex flow phenomena of unsteady flow past a rotationally 
oscillating circular cylinder for the Reynolds numbers Re = 
200 with different forced oscillating frequencies (Sf) and peak 
rotation rates (αm). We compute the flow for very long 
duration of time to investigate the influence of Sf and αm on 
vortex shedding phenomenon as well as lift and drag 
coefficients, Power spectra, etc. We compare the computed 
results, both qualitatively and quantitatively, with the 
experimental flow visualizations and numerical results that are 
available in the literature. In all the cases, our numerical 
results are in excellent agreement with the existing results. 

The paper is arranged in the following way. In section II, 
we discuss about the mathematical formulation and 
discretization procedure, section III deals with our numerical 
results and comparisons with existing experimental and 
numerical results. Finally, in section IV, we summarize our 
observations in the conclusions. 

II. MATHEMATICAL FORMULATION AND DISCRETIZATION 
PROCEDURE 

A. Governing Equations and Boundary Conditions 
The flow is governed by the unsteady incompressible N-S 

equations. In non-dimensional form, the ψ-ω formulation of 
the 2D N-S equations in cylindrical polar coordinates (r, θ) are 
given by 
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Here ψ is the stream function, ω the vorticity, u, v 

respectively are the radial and tangential velocity components, 

t is the time and Re UD
ν

= is the Reynolds’s number with U 

being the characteristic velocity, D is the characteristic length 
(like the diameter of the a cylinder) and ʋ  the kinematic 
viscosity. The velocities u and v in terms of ψ are given by 
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and the vorticity ω is given by 1 [ ( ) ]uvr
r r

ω
θ

∂ ∂
= −

∂ ∂
      (3) 

To compute the flow, we have used our recently developed 
transformation-free HOC scheme [2] for the unsteady, 
incompressible N-S equations on non-uniform polar grids. 
This scheme, whose temporal discretization is analogous to 
Crank-Nicolson type, is second order accurate in time and at 
least third order accurate in space. To apply this scheme, we 
first construct a non-uniform finite-difference 181 × 181 grid 
in the annular region Ω = [Ro, R∞] × [0, 2π]. The grid points 
are clustered around the surface of the cylinder to capture the 
boundary-layer effect. Continuity conditions at θ = 0 and θ = 
2π are taken as the boundary conditions along those two lines. 
At the ( , )thi j node, the forward and backward step lengths in 
the r-direction are given by 1 1( ), ( )f i i b i ir r r r r r+ −= − = −  
respectively. Similarly in the θ-direction, 1( )f j jθ θ θ+= −  

1( )b j jθ θ θ −= − . Thus the HOC finite difference 

approximation for (1) at the ( , )thi j   node of the 
computational domain are given by 
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And 
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respectively, where the coefficients are given by 
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In order to solve the algebraic system of equations resulting 
from above discretisation, we have used the hybrid 
biconjugate gradient stabilised method BiCGStab without 
preconditioning. 

The details of the discretization leading to equations (4) and 
(5) as well as those of the finite difference operators can be 
found in [2]. 

III. NUMERICAL RESULTS AND DISCUSSION 
The outcomes of our scheme are found to be satisfactory 

for the two dimensional computations using a non-uniform 
polar grid of size (181 × 181) with clustering near the surface 
of the cylinder, along the radial direction. Such a grid can be 
generated with the help of the following stretching function 
 

max
exp( )i

ir
i
λπ

=  

where λ determining the outer radius of the computational 
domain. The far field boundary is considered at a distance 15 
times the radius of the cylinder and time step is fixed at 0.001. 
The rotation of the cylinder enters the boundary conditions in 
terms of non-dimensional speed α which can be expressed as 
α =  αm sin 2πSet. Here Se denotes dimensionless frequency 
ratio Sf /So and αm is the dimensionless peak rotation rate. Sf is 
the forced oscillating frequency of the cylinder and So is the 
frequency of the vortex shedding for flow past a stationary 
cylinder. For a fixed Reynolds’s number Re, αm and Sf are 
employed as the main parameters. Typical values of Sf / So = 
0.2 and 1.0 for αm = 0.5 and 2.0 are taken, as numerical results 
are available in the literature for these values. 

A. Flow Behavior at 0.5mα =  
Fig. 1 depicts instantaneous streamlines plotted in a fixed 

frame for Sf /SO = 0.2 and Re = 200 for a fully developed flow 
at four instants over one complete period of oscillation (Tf). 
This figure shows the almost periodic nature of the flow. This 
can be confirmed by the lift and drag coefficients. Fig 2(a) 
plots the lift and drag coefficients. But, from this figure one 
can see the existence of more than one frequency. This can be 
further confirmed by studying the power spectrum analysis of 

the corresponding lift coefficient in Fig. 2(b). Such a 
representation helps us to understand a physical process more 
closely. Fourier transform equations are used to relate the 
corresponding peaks of lift coefficients with frequency. Power 
spectral density analysis of lift coefficient confirms two 
shedding frequency peaks, out of them one is dominant and 
other one is weaker. These two frequency peaks can be 
explained as follows: the dominant peak corresponds to the 
forced oscillation frequency of the cylinder Sf and weaker one 
corresponds to the vortex shedding frequency denoted by Sv 

[5]. Our computed results are matching well with the 
corresponding results of Cheng et al. [5]. 

To study the effect of Sf, when increased, Fig. 3 clearly 
depicts the near wake topology when the cylinder is 
rotationally oscillating at a frequency Sf equal to the natural 
vortex shedding frequency So (i.e. Sf /SO   = 1.0) for Re = 200. 
The instantaneous streamlines contours are plotted for the 
fully developed flow at four equal instants of time during one 
complete period of oscillation. This figure shows the periodic 
nature of the flow. 

This can be further confirmed by the lift and drag 
coefficients plotted in Fig. 4(a). Unlike Fig. 2(a), this figure 
shows only one frequency. The corresponding power spectra 
of the lift coefficient, plotted in Fig. 4(b) confirm one single 
peak which is basically the forced oscillating frequency peak 
Sf as described by Cheng et al. [5]. Our computed results are 
in good agreements with those of Cheng et al. [5].  

B. Flow Behavior at 2.0mα =  
Now we study the flow behaviour when αm is as high as 2.0 

with Sf /SO = 0.2 and 1.0, same as the previous values at αm = 
0.5. Fig. 5 depicts instantaneous streamlines plotted for Re = 
200 at Sf /SO = 0.2 at four equal intervals of time for a 
complete period. From this figure one can see the repetitive 
nature of flow field in the near wake which is mirror 
resemblance of the respective streamlines. Fig. 6(a) plots the 
lift and drag coefficients. One can observe that there is an 
increase in the amplitude of fluctuation of both the lift and 
drag coefficients as compared to the previous case (i.e., Sf /SO 
= 0.2 and αm = 0.5). Corresponding power spectra is shown in 
Fig. 6(b). The figure shows one dominant peak for Sf along 
with a very small second peak for SV. The same observations 
are recorded by Cheng et al. [5]. 

To show the further efficacy of our scheme, instantaneous 
vorticity contours are plotted for Sf /SO = 1.0 in Fig. 7 at four 
equal intervals of time in one complete oscillation cycle. 
Typical values of these parameters are considered in order to 
validate our numerical results with the observations reported 
by Lu and Sato [6]. 
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Fig. 1 Streamlines for Re = 200, Sf /SO   = 0.2 and αm = 0.5,  

             at t = (a) Tf /4, (b) Tf /2, (c) 3Tf /4, (d) Tf 
 

Our results are in excellent agreement with those of Lu and 
Sato [6]. These contour plots depict that opposite sign vortices 
are shed from both sides of the cylinder in one complete 
oscillation cycle where positively and negatively oriented 
vortices are shown by solid and dotted lines respectively. 
 

 
Fig. 2 (a) Lift and Drag coefficients for Re = 200, Sf /SO = 0.2 and αm 

= 0. 5 
 

 
Fig. 2 (b) Power Spectra for Re = 200, Sf /SO = 0.2  and 

αm = 0. 5 
 

One can clearly find that the flow is periodic in nature. 
Sinusoidal variation of lift and drag coefficient curves at a 
fixed amplitude in the superimposed lift and drag coefficient 
records in Fig. 8(a) discloses that vortex shedding from both 
sides of the cylinder is almost of same size and strength. The 
corresponding power spectra in Fig. 8(b) shows one single 
peak, which is justifying the Fig. 8(a). 
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Fig. 3 Streamlines for Re = 200, Sf /SO   = 1.0 and αm = 0.5,  

             at t = (a) Tf /4, (b) Tf /2, (c) 3Tf /4, (d) Tf 

IV. CONCLUSION 
In this paper, we carry out a numerical investigation of the 

unsteady flow past rotationally oscillating circular cylinder for 
Reynolds numbers Re = 200 with Sf/SO = 0.2, 1.0 and αm = 
0.5, 2.0, using a recently developed unsteady HOC scheme on 
non-uniform polar grid. We present detailed discussions of the 
effect of the parameters αm and Sf on flow patterns. We 
observe that for each (αm, Sf) combination, a periodic nature 
of the flow is seen. The power spectra of the flow shows 
double  

 
Fig. 4(a) Lift and Drag coefficients for Re = 200, Sf /SO = 1.0 and αm 

= 0. 5 

 
Fig. 4(b) Power Spectra for Re = 200, Sf /SO = 1.0 and αm = 0. 5 

 
peak for Sf /SO = 0.2 for both the values of αm considered here, 
but size of the weaker peak is very small for αm = 2.0. On the 
other hand, power spectra for Sf /SO = 1.0 shows only one peak 
for both the values of αm considered here. Also, we have 
observed that there is an increase in the amplitude of 
fluctuation of both the lift and drag coefficients for Sf /SO =0.2 
and αm = 2.0 as compared to the case for Sf /SO = 0.2 and αm = 
0.5. Our computed results show an excellent agreement with 
those of the computed results of Cheng et al. [5] and Lu and 
Sato [6]. Our study confirms that the HOC scheme employed 
by us is a highly efficient and robust one as could be seen 
from the accurate computation of the complex flow being 
considered here. 
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Fig. 5 Streamlines for Re = 200, Sf /SO   = 0.2 and αm = 2.0, 

at t = (a) Tf /4, (b) Tf /2, (c) 3Tf /4, (d) Tf 
 
. 

 
Fig. 6 (a) Lift and Drag coefficients for Re = 200, Sf /SO = 0.2 

and αm = 2.0 
 

 
Fig. 6 (b) Power Spectra for Re = 200, Sf /SO = 0.2 and 

αm = 2.0 
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Fig. 7 Vorticity contours for Re = 200, Sf /SO   = 1.0 and 

   αm = 2.0,  at t = (a) Tf /4, (b) Tf /2, (c) 3Tf /4, (d) Tf 
 

 
Fig. 8 (a) Lift and Drag coefficients for Re = 200, Sf /SO = 1.0 and αm 

= 2.0 

 
Fig. 8 (b) Power Spectra for Re = 200, Sf /SO = 1.0 and αm = 2.0 
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