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Abstract—XML data consists of a very flexible tree-structure 

which makes it difficult to support the storing and retrieving of XML 
data. The node numbering scheme is one of the most popular 
approaches to store XML in relational databases. Together with the 
node numbering storage scheme, structural joins can be used to 
efficiently process the hierarchical relationships in XML. However, in 
order to process a tree-structured XPath query containing several 
hierarchical relationships and conditional sentences on XML data, 
many structural joins need to be carried out, which results in a high 
query execution cost. This paper introduces mechanisms to reduce the 
XPath queries including branch nodes into a much more efficient form 
with less numbers of structural joins. A two step approach is proposed. 
The first step merges duplicate nodes in the tree-structured query and 
the second step divides the query into sub-queries, shortens the paths 
and then merges the sub-queries back together. The proposed 
approach can highly contribute to the efficient execution of XML 
queries. Experimental results show that the proposed scheme can 
reduce the query execution cost by up to an order of magnitude of the 
original execution cost. 

 
Keywords—XML, Xpath, tree-structured query, query reduction. 

I. INTRODUCTION 
INCE XML is widely used as a standard language for 
information exchange on the Web, the technologies to store 

and retrieve XML are gaining a considerable amount of interest 
in both the research and commercial sectors. In general, XML 
data consists of a very flexible tree-structure which makes it 
difficult to support such storing and retrieving of XML data. 
While databases store XML in various ways, the node 
numbering scheme is one of the most popular approaches to 
store XML in relational databases. Each XML node can be 
represented with <docid, begin_pos, end_pos, level> 
information [1,2]. The docid is the document identifier which is 
used when more than one document exists, and begin_pos and 
end_pos are the starting and ending offsets of the XML nodes 
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within a document, and level is the depth of the node starting 
from the root node. An XPath query such as 
“Paper[Title=’XML’]/Author/Name” would require the 
evaluation of the parent-child (or ancestor-descendant) 
relationships among ‘Paper’ and ‘Title’, ‘Paper’ and ‘Author’, 
and ‘Author’ and ‘Name’, etc. Structural joins [3] can calculate 
node pairs that satisfy a hierarchical relationship using the node 
numbering storage scheme. Assuming two XML node sets R 
and S, the structural join that calculates the node pairs where a 
node in R is an ancestor of a node in S is defined as:  
StructuralJoin(R, S) = { <r,s> | (r ∈ R) ∧ (s ∈ S) ∧ (r.docid = 
s.docid) ∧(r.begin < s.begin) ∧ (r.end > s.end) }  
 (For parent-child relationships, the condition r.level=s.level-1 
is  added.) 

Although the proposed structural join is very efficient, the 
XML query processor still needs to carry out multiple structural 
joins and experiences a high query execution cost. This is more 
severe when tree-structured queries containing many 
hierarchical relationships need to be processed. 

In this paper, we introduce a method to reduce a 
tree-structured XPath query to a more concise form with less 
numbers of structural joins. A two step approach is proposed. 
The first step merges duplicate nodes in the query, and the 
second step divides the query into sub-queries and recursively 
reduces the sub-queries and merge them back together. The 
proposed scheme can contribute to the query optimizer for 
obtaining a more efficient query execution plan. 

The organization of the paper is as follows. Section 2 
discusses the related research. Section 3 explains preliminary 
concepts including the basic data structure called the XIP tree 
and the linear query reduction algorithms. Section 4 provides 
the reduction algorithm for tree-structured queries and section 
5 shows the experimental results. Section 6 gives the 
conclusion.  

II. RELATED RESEARCH 
Several node numbering schemes for storing large amounts 

of XML documents in relational databases have been proposed. 
Zhang et al. [2] suggested using the offsets of the beginning and 
ending word of each node to represent the 'containment' 
relationship between nodes in an XML document. The node 
numbering scheme proposed by Li et al. [1] provides flexibility 
and efficiency when updating XML documents. Srivastava et 
al. [3] proposed efficient algorithms for structural joins that can 
be used to retrieve XML data that is organized using a node 
numbering scheme. Chien et al. [4] proposed structural join 
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algorithms for indexed XML documents. XML queries 
containing paths or branches require several consecutive 
structural joins. Join order selection methods [5] can be used to 
reduce the cost caused by several joins. Holistic twig 
joins[6][7] was proposed to process paths or branches at a time 
instead of stitching several structural joins, but the cost of 
algorithms are also expected to get higher as the number of 
nodes involved in XML queries increases.  

As for query rewriting techniques, Fernandez et al. [8] 
proposed query pruning and rewriting techniques for regular 
path expressions using graph schemas which represent partial 
knowledge about the structures of the semi-structured 
documents. Their query rewriting methods are based on state 
extents over the graph schema, while our query reduction 
focuses on the reduction of the query itself.  

III. PRELIMINARIES: LINEAR XPATH QUERY REDUCTION 
We first explain the concept and the effects of XML query 

reduction. Assume that we have stored into the database an 
XML document that has the structure shown in Fig. 1.  

 
<ProgramTable> 
<ProgramInformation> 
    <programId>P0001</programId> 
    <BasicDescription> 
        <Title>Sunrise News</Title>  
        <Synopsis>Morning News</Synopsis>  
        <Keywords> 
            <Keyword>politics</Keyword> 
            <Keyword>economy</Keyword> 
        </Keywords> 
        <Genre> <Name>News</Name> </Genre> 
        <CastList> 
            <CastMember>   
                <Role>Reporter</Role> 
                    <Name>Richard Perry</Name> 

<Role>Producer</Role> 
                    <Name>Richard Perry</Name> 
            </CastMember> 
        </CastList> 
    </BasicDescription> 
</ProgramInformation> 
<ProgramInformation> 
… 
</ProgramTable> 

Fig. 1  An example XML document 
 

A user can give the following two different forms of the 
same query for “Retrieve all names of the cast members of the 
program of which the id is ‘P1234’. 
(1) //ProgramInformation[@programId=‘P1234’]/ 

BasicDescription /CastListCast Member/Name  
(2) //ProgramInformation[@programId=‘P1234’]//  

CastMember/Name 
However, when the query processor receives these two 

different inputs from the users, the query execution plans 
created from these inputs could be totally different. Query (1) 
needs to perform 5 structural joins, while query (2) only needs 

to perform 3 structural joins. As shown in this example, the 
XML query that is specified by the user could be in any 
arbitrary form while the query processor prefers a reduced 
number of nodes in the query for efficient execution. In this 
sense, a query reduction stage is necessary when optimizing 
user given XML queries. 

A.  Equivalance Classes among XPaths and XIP trees 
In order to perform query reduction on XML queries, we 

introduce the equivalence class concept between regular path 
expression XML queries. A group of regular path expressions 
that are interchangeable among each other (i.e., expressions 
that yield the same result) is defined to form an equivalence 
class. For example, the two regular expression queries (1), (2) 
discussed above belong to the same equivalence class. To 
identify regular path expressions that belong to the same 
equivalence class, a structure called the XML instance path 
(XIP) tree is used. The XIP tree is dynamically created from the 
input XML documents and merges structurally similar paths 
together by holding only a single node in the XIP tree for those 
child nodes that appear multiple times under the same parent 
node in the original XML document. Even if two different input 
XML documents are based on the same DTD or XML Schema, 
the generated XIP tree can be different. In other words, the XIP 
tree is constructed for each XML document instance. Fig. 2 
shows the XIP tree generated from the XML document in Fig. 
1. Note that nodes like Keyword appear multiple times in Fig. 1 
but appear only once in Fig. 2. 
 

 
Fig. 2  An example XML Instance Path (XIP) Tree 

 
The size as well as the building cost of the XIP tree in many 

cases is expected to be small enough to be kept in main memory 
like the DTD or XML Schema. 

B. Linear XPath Reduction Algorithm: A Top-down 
Approach 

The basic idea of path reduction is that a chain of parent-child 
(‘/’) axes can be replaced with an ancestor -descendant axis 
(‘//’), on condition that the resulting regular path expression 
belongs to the same equivalence class as the original regular 
path expression. Given a regular path expression, possible 
expressions within the same equivalence class are too many to 
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evaluate each expression one by one in order to find the shortest 
one (i.e., 2k-1Ck paths for k-length paths). To simplify the path 
reduction process, we make use of a greedy algorithm. The 
algorithm sequentially probes each node of the given XPath 
expression from left-to-right (i.e., top-down order in XIP tree) 
and determines whether it can be removed or not. When a node 
is removed, its preceding axis is replaced with '//' accordingly. 
A node can be removed only if the resulting XPath expression 
where the node is removed still belongs to the original 
equivalence class. If an arbitrary node is removed from the 
XPath expression, the resulting one could represent a path that 
is not a member of the equivalence class of the original regular 
path expression. The Expand() function is used at this time to 
check the membership in the equivalence class. Details of the 
top-down path reduction algorithm are specified in [9]. 

C.  Linear XPath Reduction Algorithm: A Bottom-up 
Approach 

The greedy algorithm used by the top-down approach has a 
few problems. One of the problems is that the execution time of 
the algorithm could be significantly large when the path tree is 
complex, due to the fact that the Expand() function needs to be 
called every time a node in the original path expression is 
traversed in the algorithm. Another problem is that an efficient 
shortest path may not be found because the algorithm considers 
the nodes in the original path expression in a left-to-right 
manner. Eliminating nodes closer to the leaves of the XIP tree 
(i.e., nodes on the right side within a path expression) is more 
effective than eliminating the ones near the root (i.e., nodes in 
the left side), because usually if a node is closer to a leaf in the 
XIP tree, there are more instances of the node occurring in the 
XML document.  

Therefore, an improved algorithm using a bottom-up 
approach was devised. This algorithm uses not only the XIP 
tree but also a hash table which maps the node names to the 
ID’s of the nodes that have the name in the path tree. While 
inspecting the nodes in the original path expression from 
right-to-left, we also traverse the corresponding nodes in the 
XIP tree in a bottom-up manner to check if any nodes in the 
original path expression could be transformed into ‘//’, 
resulting in a shorter path expression. This requires the 
identification of anchor nodes, which are nodes that cannot be 
deleted and should be maintained in the shortened path 
expression. Details can be found in [9].  

IV. TREE-STRUCTURED XPATH QUERY REDUCTION 

A. Equivalance Classes for Tree-Structured XPath Query 
To handle the tree-structured XPath queries, we use the 

following definitions.  
Definition 1.  Complete tree 
A path expression C is a complete path expression if it is both 

an absolute path expression (i.e., starts with the '/' axis) and 
does not include any '//' axis within the path expression.  

Definition 2.  Matching complete tree 

If a complete tree T results in a path down the XIP tree where 
the arbitrary tree X (which may contain a '//' axis and contains 
branch nodes) also represents the same paths in the XIP tree, 
then T is a 'matching complete tree' of X. 

Definition 3.  Expand 
An Expand function takes an arbitrary tree as input and 

returns the set of all matching complete trees of the input path 
expression. Given an arbitrary tree X, Expand(X) = {T1. T2,… 
,Tk} where Ti (1 <= i <= k) is a matching complete tree of X. 
Every matching complete tree T of X is always an element of 
Expand(X).  

Definition 4.  Equivalence class 
A set of path expressions, Xset = {X1, X2, … , Xm} (where m >= 

1), form an Equivalence class iff there exists a set of complete 
trees, Tset = {T1, T2, … , Tn } (where n >= 1), such that for all Xi 
(1 <= i <= m) in Xset, Expand(Xi) = Tset. In other words, for all Xi 
(1 <= i <= m) in Xset, Expand(X1) = Expand(X2) = … = 
Expand(Xi) = … = Expand(Xm) = Tset. 

B. Tree-structured XPath Query Reduction Algorithm 
If an XPath query contains conditional sentences, the query 

takes the form of a tree-structure. In this case, the previously 
discussed linear path reduction algorithm cannot be applied. 
Therefore, we propose a new algorithm that can handle 
tree-structured queries in order to reduce such queries into a 
more efficiently executable form.  

The tree-structured XPath query reduction algorithm uses 
the previously discussed path reduction algorithms to reduce 
linear paths. The idea behind the tree-structured XPath query 
reduction is that the branching node (i.e., ProgramInformation 
in the query (1)) will divide the branch query into several 
sub-paths and each sub-path could be recursively processed via 
the branch query reduction algorithm until the sub-path 
becomes a linear path. Once the linear path is identified, the 
previously discussed path reduction algorithms, either 
top-down or bottom-up, can be applied. The merging of these 
individual results from the paths can be done by comparing the 
participating node ids. We call this process base reduction. 

In some cases, the branch query contains duplicate nodes. In 
this case, we first attempt to merge duplicate nodes in the 
branch query as a preprocessing step. When merging duplicate 
nodes together, we consider three cases based on the level and 
relationships among the duplicate nodes. Examples of the 
following cases are shown in Fig. 3. The detail reduction 
algorithm is described in Fig. 4.  
Case 1. Duplicate nodes are located at the same level and have 
the same parent. 

Duplicate nodes are merged together and the merged node is 
linked to the common parent as a child node. The path that is 
then reduced using base reduction. 
Case 2. Duplicate nodes are located at the same level and  have 
the same parent, but  are not leaf nodes. 

Duplicate nodes are merged and the children that the 
duplicate nodes have are linked to the merged node as 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

3240

 

 

non-overlapping children. Then the tree-structure is reduced 
using the base reduction process.  

Case 3. Duplicate nodes have different parents and may be 
at different levels. 

 

 
Fig. 3  Query tree transformation cases 

  
If the parent node of the duplicate node is located at a lower 

level or located at the same level, the branching node can be 
eliminated. We delete the higher level duplicate node and link 
their children with the lower level duplicate node. Afterwards 
the transformed tree is reduced using base reduction. But if we 
can’t eliminate the branching node because the node is an 
anchor node, we don’t transform the tree but just reduce it via 
the base reduction. At this time, we need to perform the process 
of extending the reduced tree using the Expand() function in 
order to examine whether the branching node can be deleted or 
not. However this process has a problem. If the depth of the 
query tree is deep, checking for the deletion of the branching 
node can incur a significant amount of overhead. To solve the 
problem, we decide the threshold for the depth of the query tree 

for performing the Expand() function and select the expand 
node by a heuristic method. However, in general, most of the 
query trees do not have the depth exceeding the threshold. 
Therefore we defer this problem for future work.  

Although the details of the algorithm are provided in Fig. 4, a 
simple example is given to illustrate how the algorithm works. 

As an example, consider the path expression /ProgramTable 
/ ProgramInformation / BasicDescription [keywords="AA"] / 
keywords / keyword. This path has duplicate nodes, 
‘keywords’. So, we first merge the nodes and transform the 
query tree’s figure and then we reduce the branch path using 
base reduction. In order to check whether there exist duplicate 
nodes, we scan the regular expression. Then the results are 
stored such as same_node[0] = ‘keywords’, same_node[1] = 
‘keywords’. As the path expression has duplicate nodes, it falls 
into case2. And we the following information; merge_data = 
‘keywords’, merge_node[0] = ‘Null’, merge_node[1] = 
‘keyword’. We  delete same_node[1], and link merge_node[1] 
to merge_data as the child of merge_data by changing axis of 
the first node of merge_node[1] to ‘//’. After we perform this 
process, the duplicate nodes are merged as one node and the 
path becomes a linear path. Using the top-down or bottom-up 
path reduction algorithm introduced in the previous section, the 
resulting path is //BasicDescription [keywords = 
"AA"]//keyword. 

 
TreeStructuredQueryReduction()  
input : P = A1N1...AiNi[Pi]....AnNn /* Ni is a branch node, Pi is a 
branch paths.*/  
       XIPtree, HashTable  
 
/* declarations for base reduction */  
exist_branch_node ← NULL;    preceding_path ← NULL;  
branching_node ← NULL;   
branch_path[MAX] ← NULL;  branch_reduced_path[MAX] ← 
NULL;  
all_branch_path ← NULL;       result_path ← NULL;  
/* declarations for transforming the tree */  
count ← 0; same_node[MAX] ← NULL;  
merge_data ← NULL; merge_node ← NULL;  
/* check whether the path include the same nodes or not */  
for each i from 1 to n-1 do  
  for each j from i+1 to n do  
    if Ni = Nj then  
      same_node[count++] ← Ni ;  
    end  
  end  
end  
if same_node != NULL then  
  for each i from 0 to count -1 do  
    merge_data = getData(same_node[i]);  
    for each j from 0 to same_node[i].length-1 do  
      merge_node[j] = same_node[i].item(j);  
    end  
/* case 1 : same level, same parent, all nodes are leaf nodes */  
    if merge_nodes' level are same & nodes' parents are same & 
nodes are leaf nodes do  
      delete(all nodes except merge_node[0]);  
    end  
/* case 2 : same level, same parent, nodes are not leaf nodes */  

    else if merge_nodes' level are same & nodes' parents are same 
& nodes aren't leaf nodes do  

      delete(all nodes except merge_node[0]);  
      /* move the delete node's children to merge_node[0] */  
      moveChildren();     
    end  
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/* case 3 : different level, different parent */  
    else if merge_nodes' level are different & nodes' parents are 
different do  
      /* check the possibility that nodes' parent nodes can become the 
same node.  The reduction tree is in the equivalence class with the 
original tree. So, it can delete parent nodes of lower level */  
      if CheckEquivalClass() do  
        delete(all nodes except the lowest level node);  
        /* move the delete node's children to the lowest level node */  
        moveChildren();  
      end  
    end   
  end  
end     
/* Base Reduction */ 
/* check whether the path is linear path or not */  
for each i from 1 to n do  
/* CheckBranchNode() is a function to check if the node has two or 
more children */  
  if CheckBranchNode() = TRUE then  
    exist_branch_node ← TRUE;  
/* The path has one or more branch nodes */  break;  
  end  
end 
/* The path is a linear path */  
if exist_branch_node = FALSE then  
  result_path = LinearPathReduction(P, XIPtree, HashTable);  
end  
/* The path has a branch query */  
else  

for each i from 1 to n do       
/* If the node isn't a branching node */  

    if CheckBranchNode() = FALSE then  
      preceding_path ← preceding_path + AiNi;  
    end  
    else   /* If that node is a branching node */         
      branching_node ← AiNi;   SetAnchorNode();  

/* The function sets the anchor node */  
     peceding_path←preceding_path+branching_node;  
      for each j from 1 to number_children do  
        if Pi's A1 = '//' then  
          branch_path[count] ← preceding_path + Pi ;   count ++;  
        end  
       else  
          branch_path[count]← preceding_path + '/' + Pi ;   count ++; 
        end  
      end  
      number_count ← count ;     count ← 0;  
       /* each path does reduction recursively */  
      for each k from 0 to number_count -1 do  
      branch_reduced_path[k]=BranchQueryReduction 

(branch_path[k],XIPtree,HashTable);  
      end  
     /* For Merge */  
     for each a from 1 to branch_reduced_path[0].length do  
        if branch_reduced_path[0]'s AaNa != branching_node then  
           result_path←result_path+branch_reduced_path[0]'s AaNa;  
        end  
        else   /* if the node is branching node */  
          result_path ← result_path + branch_node + '[' ;  

/*The number of the children is 2*/  
if number_children = 2 then   

               if Aa+1 = '/' then  
                 result_path←result_path+ 

The rest of branch_reduced_path[0] except Aa+1 + ']' ;  
                  result_path←result_path+branch_reduced_path[1] ;  
               end  
               else  /* Aa+1 = '//' */  
                 result_path←result_path+ 

The rest of branch_reduced_path[0] + ']' ;  

                 result_path←result_path+branch_reduced_path[1] ;  
               end  

break;  
end 

     else   
/*The number of the children is more than 2*/  

             if Aa+1 = '/' then  
             result_path←result_path+The rest of 

branch_reduced_path[0] except Aa+1 + '|' ;  
            end  
            for each b from 1 to number_children - 2 do  
              if branch_reduced_path[b] 's A1 = '/' then  
                result_path←result_path+branch_reduced_path[b] 

except A1 + '|' ;  
              end  
              else  /* The path starts '//' */  
                result_path←result_path+branch_reduced_path[b] + '|' ; 
              end  
            end  
           /* store the last child path */ 

 if branch_reduced_path[b] 's A1 = '/' then  
               result_path←result_path+branch_reduced_path[b] 

except A1 + ']' ;  
            end  
            else  /* The path starts '//' */  
              result_path←result_path+branch_reduced_path[b] + ']' ;  
            end  
            result_path←result_path+branch_reduced_path[b+1] ;  
            break;   
           end  

end  
      end   

break;  
end 

end  
return result_path ;  
end 

Fig. 4  Algorithm of Branch Query Reduction 

V. EXPERIMENTAL RESULTS 
We evaluated the performance of the XML query reduction 

algorithm in terms of the overhead of evaluating the XIP trees 
for query reduction and the benefit in query execution time. 
About 1G bytes of an XML document generated from the 
XMark benchmark[10] were populated into the Berkeley DB 
[11] using the node numbering scheme proposed by Zhang et 
al. [2]. For an exhaustive performance evaluation of the 
proposed algorithms, we used as many as 200 XML branch 
queries that are available from the generated XIP trees. The 
length of the queries varied from 4 to 10. We implemented the 
tree-structured query reduction and the structural join 
algorithm by Srivastava et.al. [3]. Fig. 5, Fig. 6, Fig. 7 
summarize the experimental results. For each query set which 
has the same length varying between 4 and 10, we compared 
the number of resulting structural joins between the original 
and the reduced query. Fig. 5 shows that at least 33% of the 
structural joins could be eliminated by the proposed query 
reduction algorithm. The response time for the original query 
and the reduced query were also compared and the results are 
shown in Fig. 6.  The response time of the reduced query could 
be in some cases 58% less of the response time of the original 
query.  Fig. 7 shows the overhead incurred by the query 
reduction. As the number of queries increase, the time taken for 
the structural joins will increase at a very fast pace. However, 
the time taken for the query reduction does not increase as 
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much. This illustrates that the time taken for the query 
reduction incurs a minimal amount of overhead, while in return 
it can reduce the time taken for structural joins dramatically.  
Though the effectiveness of the query reduction algorithm 
could vary depending on the structure of the XIP tree and the 
queries in the domain area, in most cases, it is expected to 
improve the query execution time with very little overhead in 
query reduction time. 

 

 
Fig. 5 Query length comparison 

 

 
Fig. 6 Response time comparison 

 
Fig. 7 Reduction time and structural join time comparison 

VI. CONCLUSION 

This paper proposed an XML path reduction algorithm for 
tree-structured queries. This work reduces the number of query 
nodes in a complex XML query so that an XML query 
processor exploiting node numbering schemes and structural 
joins can more efficiently execute the query. The schemes use 
XIP trees, which reflect the summarized structure of input 
XML document instances. The equivalence class concept 
among regular path expressions is very useful for reducing path 
expressions. Experimental results show that the presented 
tree-structured XPath query reduction algorithm could 
eliminate up to 58 % of the original query execution time with 
only a little extra cost for query reduction. As a result, the 
performance of the XML query execution was enhanced by up 
to an order of magnitude. 
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