
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

3237

Abstract—XML data consists of a very flexible tree-structure

which makes it difficult to support the storing and retrieving of XML
data. The node numbering scheme is one of the most popular
approaches to store XML in relational databases. Together with the
node numbering storage scheme, structural joins can be used to
efficiently process the hierarchical relationships in XML. However, in
order to process a tree-structured XPath query containing several
hierarchical relationships and conditional sentences on XML data,
many structural joins need to be carried out, which results in a high
query execution cost. This paper introduces mechanisms to reduce the
XPath queries including branch nodes into a much more efficient form
with less numbers of structural joins. A two step approach is proposed.
The first step merges duplicate nodes in the tree-structured query and
the second step divides the query into sub-queries, shortens the paths
and then merges the sub-queries back together. The proposed
approach can highly contribute to the efficient execution of XML
queries. Experimental results show that the proposed scheme can
reduce the query execution cost by up to an order of magnitude of the
original execution cost.

Keywords—XML, Xpath, tree-structured query, query reduction.

I. INTRODUCTION
INCE XML is widely used as a standard language for
information exchange on the Web, the technologies to store

and retrieve XML are gaining a considerable amount of interest
in both the research and commercial sectors. In general, XML
data consists of a very flexible tree-structure which makes it
difficult to support such storing and retrieving of XML data.
While databases store XML in various ways, the node
numbering scheme is one of the most popular approaches to
store XML in relational databases. Each XML node can be
represented with <docid, begin_pos, end_pos, level>
information [1,2]. The docid is the document identifier which is
used when more than one document exists, and begin_pos and
end_pos are the starting and ending offsets of the XML nodes

Manuscript received June 15, 2006. This work was supported in part by the

Korean Ministry of Commerce, Industry and Energy, and also in part by the
second stage of the BK21 program of the Ministry of Education and Human
Resources Development.

Minsoo Lee is with the Dept of Computer Science and Engineering, Ewha
Womans University, 11-1 Daehyun-Dong, Seodaemoon-Ku, Seoul, Korea
120-750 (e-mail: mlee@ ewha.ac.kr).

Yun-mi Kim is with the Dept of Computer Science and Engineering, Ewha
Womans University, 11-1 Daehyun-Dong, Seodaemoon-Ku, Seoul, Korea
120-750 (e-mail: cherish11@ewhain.net).

Yoon-kyung Lee is with the Dept of Computer Science and Engineering,
Ewha Womans University, 11-1 Daehyun-Dong, Seodaemoon-Ku, Seoul,
Korea 120-750 (e-mail: polyandry@hanmail.net).

within a document, and level is the depth of the node starting
from the root node. An XPath query such as
“Paper[Title=’XML’]/Author/Name” would require the
evaluation of the parent-child (or ancestor-descendant)
relationships among ‘Paper’ and ‘Title’, ‘Paper’ and ‘Author’,
and ‘Author’ and ‘Name’, etc. Structural joins [3] can calculate
node pairs that satisfy a hierarchical relationship using the node
numbering storage scheme. Assuming two XML node sets R
and S, the structural join that calculates the node pairs where a
node in R is an ancestor of a node in S is defined as:
StructuralJoin(R, S) = { <r,s> | (r ∈ R) ∧ (s ∈ S) ∧ (r.docid =
s.docid) ∧(r.begin < s.begin) ∧ (r.end > s.end) }
 (For parent-child relationships, the condition r.level=s.level-1
is added.)

Although the proposed structural join is very efficient, the
XML query processor still needs to carry out multiple structural
joins and experiences a high query execution cost. This is more
severe when tree-structured queries containing many
hierarchical relationships need to be processed.

In this paper, we introduce a method to reduce a
tree-structured XPath query to a more concise form with less
numbers of structural joins. A two step approach is proposed.
The first step merges duplicate nodes in the query, and the
second step divides the query into sub-queries and recursively
reduces the sub-queries and merge them back together. The
proposed scheme can contribute to the query optimizer for
obtaining a more efficient query execution plan.

The organization of the paper is as follows. Section 2
discusses the related research. Section 3 explains preliminary
concepts including the basic data structure called the XIP tree
and the linear query reduction algorithms. Section 4 provides
the reduction algorithm for tree-structured queries and section
5 shows the experimental results. Section 6 gives the
conclusion.

II. RELATED RESEARCH
Several node numbering schemes for storing large amounts

of XML documents in relational databases have been proposed.
Zhang et al. [2] suggested using the offsets of the beginning and
ending word of each node to represent the 'containment'
relationship between nodes in an XML document. The node
numbering scheme proposed by Li et al. [1] provides flexibility
and efficiency when updating XML documents. Srivastava et
al. [3] proposed efficient algorithms for structural joins that can
be used to retrieve XML data that is organized using a node
numbering scheme. Chien et al. [4] proposed structural join

A Two-Step Approach for Tree-structured XPath
Query Reduction

Minsoo Lee, Yun-mi Kim, and Yoon-kyung Lee

S

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

3238

algorithms for indexed XML documents. XML queries
containing paths or branches require several consecutive
structural joins. Join order selection methods [5] can be used to
reduce the cost caused by several joins. Holistic twig
joins[6][7] was proposed to process paths or branches at a time
instead of stitching several structural joins, but the cost of
algorithms are also expected to get higher as the number of
nodes involved in XML queries increases.

As for query rewriting techniques, Fernandez et al. [8]
proposed query pruning and rewriting techniques for regular
path expressions using graph schemas which represent partial
knowledge about the structures of the semi-structured
documents. Their query rewriting methods are based on state
extents over the graph schema, while our query reduction
focuses on the reduction of the query itself.

III. PRELIMINARIES: LINEAR XPATH QUERY REDUCTION
We first explain the concept and the effects of XML query

reduction. Assume that we have stored into the database an
XML document that has the structure shown in Fig. 1.

<ProgramTable>
<ProgramInformation>
 <programId>P0001</programId>
 <BasicDescription>
 <Title>Sunrise News</Title>
 <Synopsis>Morning News</Synopsis>
 <Keywords>
 <Keyword>politics</Keyword>
 <Keyword>economy</Keyword>
 </Keywords>
 <Genre> <Name>News</Name> </Genre>
 <CastList>
 <CastMember>
 <Role>Reporter</Role>
 <Name>Richard Perry</Name>

<Role>Producer</Role>
 <Name>Richard Perry</Name>
 </CastMember>
 </CastList>
 </BasicDescription>
</ProgramInformation>
<ProgramInformation>
…
</ProgramTable>

Fig. 1 An example XML document

A user can give the following two different forms of the
same query for “Retrieve all names of the cast members of the
program of which the id is ‘P1234’.
(1) //ProgramInformation[@programId=‘P1234’]/

BasicDescription /CastListCast Member/Name
(2) //ProgramInformation[@programId=‘P1234’]//

CastMember/Name
However, when the query processor receives these two

different inputs from the users, the query execution plans
created from these inputs could be totally different. Query (1)
needs to perform 5 structural joins, while query (2) only needs

to perform 3 structural joins. As shown in this example, the
XML query that is specified by the user could be in any
arbitrary form while the query processor prefers a reduced
number of nodes in the query for efficient execution. In this
sense, a query reduction stage is necessary when optimizing
user given XML queries.

A. Equivalance Classes among XPaths and XIP trees
In order to perform query reduction on XML queries, we

introduce the equivalence class concept between regular path
expression XML queries. A group of regular path expressions
that are interchangeable among each other (i.e., expressions
that yield the same result) is defined to form an equivalence
class. For example, the two regular expression queries (1), (2)
discussed above belong to the same equivalence class. To
identify regular path expressions that belong to the same
equivalence class, a structure called the XML instance path
(XIP) tree is used. The XIP tree is dynamically created from the
input XML documents and merges structurally similar paths
together by holding only a single node in the XIP tree for those
child nodes that appear multiple times under the same parent
node in the original XML document. Even if two different input
XML documents are based on the same DTD or XML Schema,
the generated XIP tree can be different. In other words, the XIP
tree is constructed for each XML document instance. Fig. 2
shows the XIP tree generated from the XML document in Fig.
1. Note that nodes like Keyword appear multiple times in Fig. 1
but appear only once in Fig. 2.

Fig. 2 An example XML Instance Path (XIP) Tree

The size as well as the building cost of the XIP tree in many

cases is expected to be small enough to be kept in main memory
like the DTD or XML Schema.

B. Linear XPath Reduction Algorithm: A Top-down
Approach

The basic idea of path reduction is that a chain of parent-child
(‘/’) axes can be replaced with an ancestor -descendant axis
(‘//’), on condition that the resulting regular path expression
belongs to the same equivalence class as the original regular
path expression. Given a regular path expression, possible
expressions within the same equivalence class are too many to

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

3239

evaluate each expression one by one in order to find the shortest
one (i.e., 2k-1Ck paths for k-length paths). To simplify the path
reduction process, we make use of a greedy algorithm. The
algorithm sequentially probes each node of the given XPath
expression from left-to-right (i.e., top-down order in XIP tree)
and determines whether it can be removed or not. When a node
is removed, its preceding axis is replaced with '//' accordingly.
A node can be removed only if the resulting XPath expression
where the node is removed still belongs to the original
equivalence class. If an arbitrary node is removed from the
XPath expression, the resulting one could represent a path that
is not a member of the equivalence class of the original regular
path expression. The Expand() function is used at this time to
check the membership in the equivalence class. Details of the
top-down path reduction algorithm are specified in [9].

C. Linear XPath Reduction Algorithm: A Bottom-up
Approach

The greedy algorithm used by the top-down approach has a
few problems. One of the problems is that the execution time of
the algorithm could be significantly large when the path tree is
complex, due to the fact that the Expand() function needs to be
called every time a node in the original path expression is
traversed in the algorithm. Another problem is that an efficient
shortest path may not be found because the algorithm considers
the nodes in the original path expression in a left-to-right
manner. Eliminating nodes closer to the leaves of the XIP tree
(i.e., nodes on the right side within a path expression) is more
effective than eliminating the ones near the root (i.e., nodes in
the left side), because usually if a node is closer to a leaf in the
XIP tree, there are more instances of the node occurring in the
XML document.

Therefore, an improved algorithm using a bottom-up
approach was devised. This algorithm uses not only the XIP
tree but also a hash table which maps the node names to the
ID’s of the nodes that have the name in the path tree. While
inspecting the nodes in the original path expression from
right-to-left, we also traverse the corresponding nodes in the
XIP tree in a bottom-up manner to check if any nodes in the
original path expression could be transformed into ‘//’,
resulting in a shorter path expression. This requires the
identification of anchor nodes, which are nodes that cannot be
deleted and should be maintained in the shortened path
expression. Details can be found in [9].

IV. TREE-STRUCTURED XPATH QUERY REDUCTION

A. Equivalance Classes for Tree-Structured XPath Query
To handle the tree-structured XPath queries, we use the

following definitions.
Definition 1. Complete tree
A path expression C is a complete path expression if it is both

an absolute path expression (i.e., starts with the '/' axis) and
does not include any '//' axis within the path expression.

Definition 2. Matching complete tree

If a complete tree T results in a path down the XIP tree where
the arbitrary tree X (which may contain a '//' axis and contains
branch nodes) also represents the same paths in the XIP tree,
then T is a 'matching complete tree' of X.

Definition 3. Expand
An Expand function takes an arbitrary tree as input and

returns the set of all matching complete trees of the input path
expression. Given an arbitrary tree X, Expand(X) = {T1. T2,…
,Tk} where Ti (1 <= i <= k) is a matching complete tree of X.
Every matching complete tree T of X is always an element of
Expand(X).

Definition 4. Equivalence class
A set of path expressions, Xset = {X1, X2, … , Xm} (where m >=

1), form an Equivalence class iff there exists a set of complete
trees, Tset = {T1, T2, … , Tn } (where n >= 1), such that for all Xi
(1 <= i <= m) in Xset, Expand(Xi) = Tset. In other words, for all Xi
(1 <= i <= m) in Xset, Expand(X1) = Expand(X2) = … =
Expand(Xi) = … = Expand(Xm) = Tset.

B. Tree-structured XPath Query Reduction Algorithm
If an XPath query contains conditional sentences, the query

takes the form of a tree-structure. In this case, the previously
discussed linear path reduction algorithm cannot be applied.
Therefore, we propose a new algorithm that can handle
tree-structured queries in order to reduce such queries into a
more efficiently executable form.

The tree-structured XPath query reduction algorithm uses
the previously discussed path reduction algorithms to reduce
linear paths. The idea behind the tree-structured XPath query
reduction is that the branching node (i.e., ProgramInformation
in the query (1)) will divide the branch query into several
sub-paths and each sub-path could be recursively processed via
the branch query reduction algorithm until the sub-path
becomes a linear path. Once the linear path is identified, the
previously discussed path reduction algorithms, either
top-down or bottom-up, can be applied. The merging of these
individual results from the paths can be done by comparing the
participating node ids. We call this process base reduction.

In some cases, the branch query contains duplicate nodes. In
this case, we first attempt to merge duplicate nodes in the
branch query as a preprocessing step. When merging duplicate
nodes together, we consider three cases based on the level and
relationships among the duplicate nodes. Examples of the
following cases are shown in Fig. 3. The detail reduction
algorithm is described in Fig. 4.
Case 1. Duplicate nodes are located at the same level and have
the same parent.

Duplicate nodes are merged together and the merged node is
linked to the common parent as a child node. The path that is
then reduced using base reduction.
Case 2. Duplicate nodes are located at the same level and have
the same parent, but are not leaf nodes.

Duplicate nodes are merged and the children that the
duplicate nodes have are linked to the merged node as

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

3240

non-overlapping children. Then the tree-structure is reduced
using the base reduction process.

Case 3. Duplicate nodes have different parents and may be
at different levels.

Fig. 3 Query tree transformation cases

If the parent node of the duplicate node is located at a lower

level or located at the same level, the branching node can be
eliminated. We delete the higher level duplicate node and link
their children with the lower level duplicate node. Afterwards
the transformed tree is reduced using base reduction. But if we
can’t eliminate the branching node because the node is an
anchor node, we don’t transform the tree but just reduce it via
the base reduction. At this time, we need to perform the process
of extending the reduced tree using the Expand() function in
order to examine whether the branching node can be deleted or
not. However this process has a problem. If the depth of the
query tree is deep, checking for the deletion of the branching
node can incur a significant amount of overhead. To solve the
problem, we decide the threshold for the depth of the query tree

for performing the Expand() function and select the expand
node by a heuristic method. However, in general, most of the
query trees do not have the depth exceeding the threshold.
Therefore we defer this problem for future work.

Although the details of the algorithm are provided in Fig. 4, a
simple example is given to illustrate how the algorithm works.

As an example, consider the path expression /ProgramTable
/ ProgramInformation / BasicDescription [keywords="AA"] /
keywords / keyword. This path has duplicate nodes,
‘keywords’. So, we first merge the nodes and transform the
query tree’s figure and then we reduce the branch path using
base reduction. In order to check whether there exist duplicate
nodes, we scan the regular expression. Then the results are
stored such as same_node[0] = ‘keywords’, same_node[1] =
‘keywords’. As the path expression has duplicate nodes, it falls
into case2. And we the following information; merge_data =
‘keywords’, merge_node[0] = ‘Null’, merge_node[1] =
‘keyword’. We delete same_node[1], and link merge_node[1]
to merge_data as the child of merge_data by changing axis of
the first node of merge_node[1] to ‘//’. After we perform this
process, the duplicate nodes are merged as one node and the
path becomes a linear path. Using the top-down or bottom-up
path reduction algorithm introduced in the previous section, the
resulting path is //BasicDescription [keywords =
"AA"]//keyword.

TreeStructuredQueryReduction()
input : P = A1N1...AiNi[Pi]....AnNn /* Ni is a branch node, Pi is a
branch paths.*/
 XIPtree, HashTable

/* declarations for base reduction */
exist_branch_node ← NULL; preceding_path ← NULL;
branching_node ← NULL;
branch_path[MAX] ← NULL; branch_reduced_path[MAX] ←
NULL;
all_branch_path ← NULL; result_path ← NULL;
/* declarations for transforming the tree */
count ← 0; same_node[MAX] ← NULL;
merge_data ← NULL; merge_node ← NULL;
/* check whether the path include the same nodes or not */
for each i from 1 to n-1 do
 for each j from i+1 to n do
 if Ni = Nj then
 same_node[count++] ← Ni ;
 end
 end
end
if same_node != NULL then
 for each i from 0 to count -1 do
 merge_data = getData(same_node[i]);
 for each j from 0 to same_node[i].length-1 do
 merge_node[j] = same_node[i].item(j);
 end
/* case 1 : same level, same parent, all nodes are leaf nodes */
 if merge_nodes' level are same & nodes' parents are same &
nodes are leaf nodes do
 delete(all nodes except merge_node[0]);
 end
/* case 2 : same level, same parent, nodes are not leaf nodes */

 else if merge_nodes' level are same & nodes' parents are same
& nodes aren't leaf nodes do

 delete(all nodes except merge_node[0]);
 /* move the delete node's children to merge_node[0] */
 moveChildren();
 end

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

3241

/* case 3 : different level, different parent */
 else if merge_nodes' level are different & nodes' parents are
different do
 /* check the possibility that nodes' parent nodes can become the
same node. The reduction tree is in the equivalence class with the
original tree. So, it can delete parent nodes of lower level */
 if CheckEquivalClass() do
 delete(all nodes except the lowest level node);
 /* move the delete node's children to the lowest level node */
 moveChildren();
 end
 end
 end
end
/* Base Reduction */
/* check whether the path is linear path or not */
for each i from 1 to n do
/* CheckBranchNode() is a function to check if the node has two or
more children */
 if CheckBranchNode() = TRUE then
 exist_branch_node ← TRUE;
/* The path has one or more branch nodes */ break;
 end
end
/* The path is a linear path */
if exist_branch_node = FALSE then
 result_path = LinearPathReduction(P, XIPtree, HashTable);
end
/* The path has a branch query */
else

for each i from 1 to n do
/* If the node isn't a branching node */

 if CheckBranchNode() = FALSE then
 preceding_path ← preceding_path + AiNi;
 end
 else /* If that node is a branching node */
 branching_node ← AiNi; SetAnchorNode();

/* The function sets the anchor node */
 peceding_path←preceding_path+branching_node;
 for each j from 1 to number_children do
 if Pi's A1 = '//' then
 branch_path[count] ← preceding_path + Pi ; count ++;
 end
 else
 branch_path[count]← preceding_path + '/' + Pi ; count ++;
 end
 end
 number_count ← count ; count ← 0;
 /* each path does reduction recursively */
 for each k from 0 to number_count -1 do
 branch_reduced_path[k]=BranchQueryReduction

(branch_path[k],XIPtree,HashTable);
 end
 /* For Merge */
 for each a from 1 to branch_reduced_path[0].length do
 if branch_reduced_path[0]'s AaNa != branching_node then
 result_path←result_path+branch_reduced_path[0]'s AaNa;
 end
 else /* if the node is branching node */
 result_path ← result_path + branch_node + '[' ;

/*The number of the children is 2*/
if number_children = 2 then

 if Aa+1 = '/' then
 result_path←result_path+

The rest of branch_reduced_path[0] except Aa+1 + ']' ;
 result_path←result_path+branch_reduced_path[1] ;
 end
 else /* Aa+1 = '//' */
 result_path←result_path+

The rest of branch_reduced_path[0] + ']' ;

 result_path←result_path+branch_reduced_path[1] ;
 end

break;
end

 else
/*The number of the children is more than 2*/

 if Aa+1 = '/' then
 result_path←result_path+The rest of

branch_reduced_path[0] except Aa+1 + '|' ;
 end
 for each b from 1 to number_children - 2 do
 if branch_reduced_path[b] 's A1 = '/' then
 result_path←result_path+branch_reduced_path[b]

except A1 + '|' ;
 end
 else /* The path starts '//' */
 result_path←result_path+branch_reduced_path[b] + '|' ;
 end
 end
 /* store the last child path */

 if branch_reduced_path[b] 's A1 = '/' then
 result_path←result_path+branch_reduced_path[b]

except A1 + ']' ;
 end
 else /* The path starts '//' */
 result_path←result_path+branch_reduced_path[b] + ']' ;
 end
 result_path←result_path+branch_reduced_path[b+1] ;
 break;
 end

end
 end

break;
end

end
return result_path ;
end

Fig. 4 Algorithm of Branch Query Reduction

V. EXPERIMENTAL RESULTS
We evaluated the performance of the XML query reduction

algorithm in terms of the overhead of evaluating the XIP trees
for query reduction and the benefit in query execution time.
About 1G bytes of an XML document generated from the
XMark benchmark[10] were populated into the Berkeley DB
[11] using the node numbering scheme proposed by Zhang et
al. [2]. For an exhaustive performance evaluation of the
proposed algorithms, we used as many as 200 XML branch
queries that are available from the generated XIP trees. The
length of the queries varied from 4 to 10. We implemented the
tree-structured query reduction and the structural join
algorithm by Srivastava et.al. [3]. Fig. 5, Fig. 6, Fig. 7
summarize the experimental results. For each query set which
has the same length varying between 4 and 10, we compared
the number of resulting structural joins between the original
and the reduced query. Fig. 5 shows that at least 33% of the
structural joins could be eliminated by the proposed query
reduction algorithm. The response time for the original query
and the reduced query were also compared and the results are
shown in Fig. 6. The response time of the reduced query could
be in some cases 58% less of the response time of the original
query. Fig. 7 shows the overhead incurred by the query
reduction. As the number of queries increase, the time taken for
the structural joins will increase at a very fast pace. However,
the time taken for the query reduction does not increase as

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

3242

much. This illustrates that the time taken for the query
reduction incurs a minimal amount of overhead, while in return
it can reduce the time taken for structural joins dramatically.
Though the effectiveness of the query reduction algorithm
could vary depending on the structure of the XIP tree and the
queries in the domain area, in most cases, it is expected to
improve the query execution time with very little overhead in
query reduction time.

Fig. 5 Query length comparison

Fig. 6 Response time comparison

Fig. 7 Reduction time and structural join time comparison

VI. CONCLUSION

This paper proposed an XML path reduction algorithm for
tree-structured queries. This work reduces the number of query
nodes in a complex XML query so that an XML query
processor exploiting node numbering schemes and structural
joins can more efficiently execute the query. The schemes use
XIP trees, which reflect the summarized structure of input
XML document instances. The equivalence class concept
among regular path expressions is very useful for reducing path
expressions. Experimental results show that the presented
tree-structured XPath query reduction algorithm could
eliminate up to 58 % of the original query execution time with
only a little extra cost for query reduction. As a result, the
performance of the XML query execution was enhanced by up
to an order of magnitude.

REFERENCES
[1] Quanzhong Li and Bongki Moon. Indexing and querying XML data for

regular path expressions. In Proc. of the 27th VLDB conference, Rome,
Italy, Sep. 2001.

[2] Chun Zhang, Jeffrey F. Naughton, Qiong Luo, and David J. DeWitt, and
Guy M. Lohman. On supporting containment queries in relational
database management systems. SIGMOD conference, Santa Barbara, CA,
USA, May 2001.

[3] Divesh Srivastava, Shurug Al-Khalifa, H. V. Jagadish, Nick Koudas,
Jinesh M. Patel, and Yuqing Wu. Structural joins: A primitive for efficient
XML query pattern matching. IEEE conference on Data Engineering, San
Jose, USA, Feb. 2002.

[4] Shu-Yao Chien, Zografoula Vagena, Donghui Zhang, vassilis J. Tsotras,
and Carlo Zaniolo. Efficient structural joins on indexed XML documents.
28th VLDB conference, p.263-274, Hong Kong, China, Aug. 2002.

[5] Yuqing Wu, Jignesh M. Patel, and H. V. Jagadish, Structural Join Order
Selection for XML Query Optimization. IEEE conference on Data
Engineering, p. 443-454, Bangalore, India, March 2003.

[6] Nicolas Bruno, Nick Koudas, and Divesh Srivastava, Holistic twig joins:
optimal XML pattern matching, SIGMOD conference, p. 311-321,
Madison, Wisconsin, USA, Jun. 2002.

[7] Haifeng Jiang, Wei Wang, Hongjun Lu, and Jeffrey Xu Yu, Holistic Twig
Joins on Indexed XML Documents, 29th VLDB conference, p. 273-284,
Berlin, Germany, Sep. 2003.

[8] Mary Fernandez and Dan Suciu. Optimizing regular path expressions
using graph schemas. IEEE Conference on Data Engineering, p. 4-13,
Orlando, Florida, Feb. 1998.

[9] Hyoseop Shin, Minsoo Lee, An Efficient Branch Query Rewriting
Algorithm for XML Query Optimization, ODBASE 2005, LNCS 3761,
Springer-Verlag, p. 1629-1639, Agia Napa, Cyprus, October 31 -
November 4, 2005.

[10] Albrecht Schmidt, Florian Waas, Martin L. Kersten, Michael J. Carey,
Ioana Manolescu, Ralph Busse. XMark: A Benchmark for XML Data
Management. In Proc. of the 28th VLDB conference, p. 974-985, Hong
Kong, China, Aug. 2002.

[11] Sleepycat Software Inc., http://www.sleepycat.com.

